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Abstract

In a previous article (Fausty et al. A novel level-set finite element formula-
tion for grain growth with heterogeneous grain boundary energies, Materials
and Design 2018; 160:578-590) a new level-set finite element formulation for
pure grain growth with heterogeneous grain boundary energies (i.e. one en-
ergy per grain interface) was developed and validated for simple configura-
tions. In this work, the authors apply this new tool to the simulation of
two dimensional grain growth of polycrystals using different disorientation
dependent grain boundary energy functions. The results of these full-field
calculations are assessed using the time dependent evolution of the follow-
ing criteria: grain size, grain number, total interface energy, grain boundary
disorientation distribution, grain boundary energy distribution and number
of neighboring grains distribution. Of particular interest is the relationship
between the grain boundary energy function and the evolution of the grain
boundary network in the sense of both its morphology and its constitution.
Some notable results are that the disorientation distribution evolution is in-
versely correlated to the grain boundary energy function itself and that the
kinetics of grain growth are heavily effected by the heterogeneity of the sys-
tem.
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Most full-field grain coarsening models have the capacity to account for
the local geometry of the grain boundary network at the microstructural level
[1–5]. However, there are fewer numerical tools that allow for the prediction
of the time evolution of local grain boundary properties or even distributions
of grain boundary characters [6–16]. Of particular note is the relatively new
phase-field formulation used in [6], which allows for both the definition of het-
erogeneous grain boundary energies and mobilities, and the method applied
in [7], which shows very interesting results in special dual grain boundary
microstructures. However, in general, phase-field formulations suffer from
inherent numerical instabilities when increasing the heterogeneity of the sys-
tem if one does not include higher order terms [17]. Level-set methods also
exist to model grain growth with heterogeneous grain boundary energies, of
which the most mature is probably the one developed in [13]. Even so, the
formulation in [13] uses a synthetic treatment and definition of the grain
boundary energies. In this formulation, one defines a grain component en-
ergy per grain and then calculates the grain boundary energy as a linear
combination of adjacent grain component energies. Other very recent work
[16] goes so far as to simulate the full anisotropic case (misorientation and
inclination dependent grain boundary energy) using a level-set formulation
close to the one studied here [18] but on a regular grid.

In practice, the grain boundary energy function is very difficult, perhaps
even impossible, to measure directly. However, aspects of the function it-
self may be parameterized through experimental studies of grain boundary
movement. Often when experimentalists look to use a homogeneous grain
boundary energy model, they first look at the kinetics of pure grain growth
in their material [19, 20]. Using a Burke-Turnbull type law, they can deduct
an approximated value for the reduced mobility.

Implicit in this work is the idea that perhaps the same could be done
for determining richer models for the grain boundary energy. This model,
although much simpler than the reality of a 5 parameter grain boundary
model, does inversely correlate the grain boundary energy function with the
disorientation distribution. This observation lends weight to the idea that
aspects of the grain boundary energy dependence on the disorientation angle
can be inferred from the disorientation distributions of real microstructures
that have been annealed for long times. As such, if one adopts the hypotheses
and simplifications that are made in the elaboration of this framework, then
one could possibly use an inverse analysis approach on the disorientation
distribution evolution of real materials to generate plausible candidates for
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disorientation dependent grain boundary energy functions.
In the following, the level-set finite element (FE) formulation for grain

coarsening [2] with heterogeneous grain boundary energies developed in [18]
will be used to simulate 2D grain growth of digital polycrystals. The sen-
sitivity of the method to both mesh size and time step will be explored.
Furthermore, the variation in the evolution of a polycrystal with different
forms for the grain boundary energy function will be studied. However, grain
boundary energies that depend on the inclination of the grain boundaries will
not be studied here because these types of energies constitute the limitations
of the framework. The inclination dependent energies can be referred to as
“anisotropic” while the term “heterogeneous” will be used to refer to grain
boundary energies that are only misorientation dependent.

1. The numerical framework

While [18] gives a more detailed description of the framework from both
a numerical and mathematical point of view, the most important aspects of
the method are summarized in the following paragraphs.

1.1. The level-set method

First described in [21] the level-set method is a versatile and robust ap-
proach for modeling interface dynamics. Applicable in a number of physical
problems, it was first employed for the simulation of polycrystal grain coars-
ening in [22]. The concept is the following: by defining a continuous scalar
field φ in space Ω

{
φ : Ω→ R

φ(X ∈ Ω) = 0 
 X ∈ Γ

}
, (1)

where the iso-zero value of this field represents an interface Γ, one may suc-
cessfully capture the dynamics of the interface by studying the evolution of
the field. This field is called a level-set. The Γ interface may be subjected to
an arbitrary velocity field v by solving the transport equation:

∂φ

∂t
+ v · ∇φ = 0. (2)

As such, the models for the physical phenomena that provoke interface
movement are completely encapsulated in the v velocity field. When the
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physical space is comprised of a massively interconnected network of inter-
faces (as is the case in polycrystals), one may define a set of level-set functions
Φ = {φi, i = {0, . . . , N}} that capture all the interfaces of the domain. A
reciprocal set of transport equations must then be solved in order to capture
the dynamics of all the interfaces. If the normalization constraint

|∇φ| = 1 (3)

is fulfilled ∀x ∈ Ω, then the level-set field becomes a distance field to the
Γ interface. This distance property is usually imposed in practice [2].

Often the velocity field v does not preserve the space-filling property or
the impenetrability constraints of the level-set description of the grains of a
polycrystal. The level sets flow into each other or leave voids behind. Also,
the solving of the transport equation does not retain the normalization of
the fields required in equation (3). As such, the resolution of

φi(X) =
1

2

[
φi(X)−max

j 6=i
φj(X)

]
, ∀i = {0, . . . , N}, (4)

is classically used [22] to correct both overlaps and voids in the microstruc-
ture and a direct re-initialization procedure [23] is used to re-normalize the
gradient of the level-set functions after solving the transport equations.

1.2. The grain boundary velocity formulation

The velocity field v is the object through which the physics of grain
coarsening is introduced to the simulation. For various reasons described in
[18] the expression used in this work for the velocity of the grain boundary
is

v = µ(∇γ · n− γκ)n, (5)

where µ is the mobility of the grain boundary, γ is the energy of the grain
boundary, n is the outside normal to the grain boundary and κ is the mean
curvature of the grain boundary. This formulation has been developed in
an isochoric and isothermal setting where no other defects beyond the grain
boundaries are present in the microstructure. These same assumptions are
applied here. If the level-set function φ used to describe a grain is a distance
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function, positive inside the grain and negative outside, then

n = −∇φ(X ∈ Γ), (6)

κ = −∆φ(X ∈ Γ), (7)

and as such

v = µ(∇γ · ∇φ− γ∆φ)∇φ (8)

which leads to a strong formulation of the transport equation (2)

∂φ

∂t
+ µ∇γ · ∇φ− γ∆φ = 0 (9)

and the weak formulation, with ϕ ∈ H1
0 (Ω),∫

Ω

∂φi
∂t

ϕdΩ + 2

∫
Ω

µ∇γ · ∇φiϕdΩ

+

∫
Ω

µγ∇ϕ · ∇φidΩ−
∫
∂Ω

µγϕ∇φi · n∂Ωd(∂Ω) = 0.

which will be referred to as the heterogeneous formulation for grain growth.
In the following, the discretized FE formulation utilizes P1 type ele-

ments with an unstructured triangular mesh and is stabilized by a streamline
upwind Petrov-Galerkin method [24]. While periodic boundary conditions
might be more relevant for these types of numerical simulations, both the
remeshing algorithm and microstructure generation algorithm do not sup-
port the constraints of these types of boundary conditions. As such, given
the usefulness of both these algorithms, von Neumann type boundary con-
ditions are employed for the resolution of the equations which impose that
the grain boundaries touching the borders of the domain be orthogonal to
them locally. All the initial meshes were generated using the Gmsh software
package [25].

2. Characterization of the numerical microstructure

A reference numerical microstructure will be used for the following sec-
tions. This polycrystal is representative of a monophase material with a
log-normal distribution of grain sizes as shown in Figure 1.
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Figure 1: Normalized numerical microstructure initial grain radius distribution in both
analytical form as well as discretized.

Crystallographic orientations are attributed to the grains by generating
Euler angles randomly, for example Figure 2a where the color scheme is de-

veloped using the vector magnitude e =
√
ϕ2

1 + Φ2 + ϕ2
2 where (ϕ1,Φ, ϕ2) are

Euler angles, leading to a Mackenzie type disorientation distribution [26] as
demonstrated in Figure 2b. The computation of these disorientation angles is
undertaken in exactly the same manner as in [18]. Also, all the disorientation
distributions measured in this work are weighted by boundary length and not
by number.

The polycrystal is generated using a Laguerre-Voronoi tessellation with
a dense sphere packing algorithm described in [27]. The size of the domain
determines the number of grains. Anisotropic re-meshing is used [28, 29]
and the mesh refined close to the interfaces as exhibited in Figure 3. With
this algorithm, the sizes of the grains at the border of the domain respect
the imposed distribution and thus can and are considered in the statistical
analysis.

The mesh size in the normal direction is studied in Section 3. The mesh
size in the tangential direction as well as far away from the interface (at a
distance η = 6.2µm) is fixed at 5µm. The initial average grain radius is
R̄ ' 12µm. The average grain boundary energy is aimed at γ̄ ' 1 J ·m−2

and the mobility used is µ = 0.1mm4 · J−1 · s−1 which are of the order of
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(a) Example of a generated microstructure containing approximately 5000 grains
and colored by the magnitude of a vector whose components are the Euler angles
of the crystallographic orientations.

(b) Initial disorientation distribution with the analytical solution for the Mackenzie
plot [26]

Figure 2: Crystallographic characterization of the microstructure: (a) an image of the
numerical microstructure and (b) its disorientation distribution.
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Figure 3: Illustration of the anisotropic mesh refinement operating at the interfaces be-
tween grains as in [28, 29], using the same color map as Figure 2a.

pure Nickel at 1400K [30, 31].

3. Sensitivity analyses

In order to study the sensitivity to numerical parameters in a hetero-
geneous setting, a form for the misorientation dependent grain boundary
energy must be chosen. In the following sections, due to its prevalence in the
literature, a Read-Shockley type function (RS) [32] is chosen

γ(θ) =

 γmax

(
θ

θmax

)(
1− ln

(
θ

θmax

))
, θ < θmax

γmax, θ ≥ θmax

(11)

where θ is the disorientation, γmax is the maximal grain boundary energy
here equal to 1.012J · m−2 and θmax is a threshold angle taken here, to be
30◦. Commonly, when using the Read-Shockley function, the low angle grain
boundary cut-off is considered to be in the 10−15◦ range. Here, a value of 30◦

was chosen in order to exagerate the heterogeneity and produce measurable
heterogeneous effects. The function is plotted in Figure 4.
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Figure 4: The Read-Shockley (RS) function for grain boundary energy.

The sensitivity of the evolution of the mean grain size R̄, the number of
grains Ngr as well as the total interface energy

EΓ =

∫
Γ

γdΓ, (12)

will be studied. Convergence with regard to a numerical variable x (where x
can be the mesh size or the time step) will be determined using an averaged
L2 error eL2 relative to the energy evolution of the microstructure

eL2(x) =

√
1

tend

∫ tend

0

(Eref
Γ − EΓ(x))2dt, (13)

where Eref
Γ is determined from a linear fit with respect to time of the most

precise simulation (i.e. the smallest time step and mesh size). Supposing the
evolution of eL2 follows a polynomial type law,

eL2(x) = Axn, (14)

one may extract the convergence parameters A and n using a logarithmic
scale plot.

In order to study the sensitivity of the simulation to the discretization of
both space and time a microstructure of physical side length l = 0.5mm was
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(a) EΓ = fhn(t) (linear fit) (b) Ngr = fhn(t)

(c) f(hn) = eL2 (d) R̄ = fhn(t)

Figure 5: Evolution of mean field values with the mesh size hn at a fixed time step ∆t = 10s

generated (containing about 600 grains) and virtually annealed for a physical
time of tend = 30min with different mesh sizes hn in mm and time steps ∆t
in s. The mean value results of these simulations are exposed in Figures 5
and 6 for the mesh size and time step convergence respectively.

Convergence is clearly established both as a function of mesh size and
time step for the polycrystal simulations in the range of values presented here.
This means that the precision of the solutions obtained can be improved by
refining both time and mesh discretizations arbitrarily and independently.

In the calculations that follow, the choice of time step and mesh size will
be fixed at hn = 0.3µm and ∆t = 10 s.
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(a) EΓ = f∆t(t) (linear fit) (b) Ngr = f∆t(t)

(c) f(∆t) = eL2 (d) R̄ = f∆t(t)

Figure 6: Evolution of mean field values with the time step ∆t at a fixed mesh size
hn = 0.3µm
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4. Various grain boundary energy functions

Even though the RS function for the grain boundary energy is widespread,
it does not allow for testing large heterogeneities in untextured microstruc-
tures. As such, in order to study the response of a polycrystal to different
levels of heterogeneity, grain boundary energy test functions have been gen-
erated and compared with respect to the homogeneous case.

Also, one may very well question the statistical representativity of any
size microstructure one might chose to simulate [33]. The size of the virtual
microstructure determines the population of grain boundaries in the domain
and thus whether or not one may consider a given result as representative
enough of a given polycrystal behavior. To the authors’ knowledge, no such
study has been conducted in virtual statistical polycrystal generation such
that there is a clear answer as to the number of grain boundaries one might
need to simulate in order to obtain trustworthy results in the case of het-
erogeneous grain boundary energies. As such, in order to circumvent this
understandable objection to the results present in this section, the authors
propose to only compare microstructural evolutions that originate from ex-
actly the same microstructure. By fixing not only the geometry of the initial
grain boundary network but also the orientations of all the grains, the de-
viations of simulated microstructural evolutions from one another can only
be attributed to the differences in their grain boundary energy functions. As
such, by comparing any heterogeneous grain boundary energy function to the
homogeneous case the simulations may be qualitatively compared so as to
infer the effect the heterogeneous grain boundary energy might have on the
initial polycrystal. By proceeding in this relative sense the representativity of
the microstructure is no longer an issue. In the following, a microstructure
with a side length of 1.5mm and approximately 5000 initial grains along
with the statistical characteristics described in Section 2 is studied.

4.1. The grain boundary energy functions

In order to compare the effects of different grain boundary energy func-
tions fairly, there must be a common scaling imposed upon the functions
such that they become comparable. In this study, an average initial grain
boundary energy of the microstructure was imposed constant for all map-
pings γ(θ):

γ̄ =

∫
Γ
γdΓ∫

Γ
dΓ

, (15)
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which can also be seen as the same initial total energy for all cases given
that the initial polycrystal is also unvarying. In order to solve this problem
analytically, one can integrate the grain boundary energy function over the
disorientation distribution of the microstructure, which is the Mackenzie plot
in this case,

γ̄ =
1

θlim

∫ θlim

0

γpMacdθ, (16)

where pMac is the probability density related to the Mackenzie distribution
[26] and θlim = 62.8 is the limit of the fundamental region of the disorientation
for cubic structures.

Even so, when attempting to choose a misorientation dependent grain
boundary energy function there are multiple things one might want to look
for. The constant grain boundary energy function, i.e. the homogeneous case,
is by default the reference case. The Read-Shockley [32] type grain boundary
energy is the most popular function in the current literature for modeling low
angle grain boundaries. However, if one wishes to introduce a more diverse
set of grain boundaries, one may modify the RS function, for example, in
a very discontinuous manner such that the disorientation region where twin
boundaries are found can be much lower energy than the rest. Also, in both
numerical and experimental approaches to determining the grain boundary
energy function, cusps are present and one might wish to study the effect
these minima might have on the evolution of the grain boundary network,
hence one may use a ”bumpy” energy function in order to study these cusps
as shown below. In a mathematical approach, one may use a more classical
function, such as a Gaussian distribution function, in order to probe the
effects of a more “naturally” distributed energy. Given this reasoning, five
test functions, which do not aim to be physical representations of the grain
boundary energy function, are considered in this work:

Homogeneous
γ = γ̄ (17)

RS the same as in equation (11).
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(a) γ(θ) (b) γpMac(θ)

Figure 7: Considered test grain boundary energy functions.

RS+

γ =


γmax′

(
θ

θmax

)(
1− ln

(
θ

θmax

))
, θ < θmax

γmax′, θthresh > θ > θmax
0.1γmax′, θ > θthresh

, (18)

where γmax′ ' 1.1 J/m2 and θthresh = 55◦.

Bumpy
γ = γb(α3| sin(3θ)|+ α5| sin(5θ)|) (19)

where γb ' 1.2 J/m2, α3 = 0.9 and α5 = 0.3.

Gaussian

γ = γge
−(θ−θµ)2

2θ2σ (20)

with γg ' 1.54J/m2, θµ = 40◦ and θσ = 10◦.

Figure 7 shows both the plot of the grain boundary energy functions as
well as a graph of the analytical grain boundary energy distribution densities
γpMac.

What is most striking in Figure 7 is that seemingly large differences in the
base grain boundary energy functions can actually have little to no impact on
the actual heterogeneity present in the microstructure. For example, Figure
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Energy Function dL2

RS 2.89e-3
RS+ 3.70e-2
Bumpy 2.90e-2
Gaussian 6.44e-2

Table 1: The L2 distances of the heterogeneous γpMac functions from the homogeneous
one.

7b shows that the RS function is actually extremely close to the homogeneous
function when the disorientation distribution is taken into account. Even so,
the panel of functions chosen here gives access to a relatively diverse spec-
trum of heterogeneities in the actual microstructure. This can be quantified
by the values present in Table 1 which represent the L2 distance of each of
the heterogeneous γpMac functions with respect to the homogeneous γpMac

function calculated using a simple trapezoidal rule for the numerical integra-
tion. This table gives a gauge of the heterogeneities present in each of the
functions which can be observed to vary from least to most heterogeneous in
the following order: RS, Bumpy, RS+ and Gaussian.

4.2. Evolution of mean field variables

The mean grain size evolution of the homogeneous case is fitted with a
generalized Burke and Turnbull type law [3, 34].

The first observation concerning the time evolution of both the mean
grain radius and the number of grains is that the more heterogeneous a
grain boundary energy function is, the slower its kinetics, a result easily
corroborated in most heterogeneous grain growth simulations in the literature
[6–11, 14, 15]. Looking at the evolution of the energy however, the cases with
the most heterogeneity are also those which dissipate the interface energy
the most efficiently. As such, the most heterogeneous case should have the
smallest grains and thus the largest amount of interface length and yet it has
the smallest total energy. A direct explanation for this phenomenon could
be that the most heterogeneous cases have the most diverse grain boundary
energy distributions and thus the most degrees of freedom for minimizing the
energy of the system.

Also, the slowing of the kinetics of grain growth could be related to the
phenomenon discussed in certain experimental studies known as orientation
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(a) EΓ = f(t) (b) Ngr = f(t)

(c) R̄ = f(t)

Figure 8: Time evolution of mean values for the different grain boundary energy functions.
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pinning [35, 36]. This mechanism is related to the fact that as grains grow
and compete for space, the probability that a grain encounters a particu-
larly unfavorable orientation for its continued expansion increases. As the
grain meets this disadvantageous orientation (creating a low energy grain
boundary) its kinetics slow and therefore the orientation cohabitation tends
to persist during the rest of the grain coarsening process. Typically, this is
a process that is not observable in simulations unless using a heterogeneous
description of the grain boundary energy and becomes even more evident as
the heterogeneity is increased.

More generally, the results presented in Figure 8 show that even with the
same average grain boundary energy, the kinetics of grain growth can vary
significantly. As such, using time evolution of grain size, for example, in
order to calibrate average grain boundary energies experimentally is clearly
limited. More in depth characterizations of the microstructure are needed in
order to probe the nature of the grain boundary energy distribution. In [37]
is proposed an interesting idea in which the grain boundary character distri-
bution should be inversely correlated to the grain boundary energy function.
In other terms, the most energetic grain boundaries should tend to disappear
leaving only the least energetic boundaries during grain growth.

4.3. Grain boundary network characterizations

In a three dimensional experimental polycrystal, the grain boundary char-
acter distribution would have to be set in the five dimensional grain boundary
space [38] in order to be complete. However, this is impractical due to the
high dimensionality and small datasets available. In this work, given the way
in which the grain boundary energy functions are defined, only one variable
of the grain boundary character is considered, the disorientation. As such,
the disorientation distributions at 10000 s are plotted for the different grain
boundary energy functions as well as the grain boundary energy distribu-
tions in Figure 9. The grain size distributions are also compared in the same
figure.

The differences in between the disorientation distributions obtained from
the different grain boundary energy functions are striking. While the ho-
mogeneous case emulates the Mackenzie plot throughout the simulation, the
RS function, even given its proximity to the homogeneous case, favors low
angle grain boundaries, a result also found in [6, 12, 13]. The RS+ case also
encourages low angle grain boundaries, as in the RS case, but tilts towards
the high angle boundaries as well (the transition is around 55◦). The bumpy
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(a) Normalized grain boundary disorientation distribution

(b) Normalized grain boundary energy distribution

(c) Normalized grain size distribution (in number)

Figure 9: Comparisons of the different grain boundary energy functions using various
distributions after 10000 s of numerical annealing.
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case also tends toward keeping its least energetic boundaries, a behavior
replicated in the gaussian case which tilts towards a bimodal distribution.
Globally, using this formulation for grain growth, the character distribution
of the boundaries are clearly inversely correlated with the grain boundary
energy functions, a statement also supported by the grain boundary energy
distributions, which would corroborate [37].

The grain size distributions are relatively diverse as well. However, upon
closer inspection, they all respect a lognormal type distribution law and their
differences can be clearly explained by the different growth kinetics of the
different cases shown in Figure 8.

The virtual micrographs of the various cases after 3 hours of annealing
are presented in Figure 10. The quantitative results present in Figure 9 are
clearly represented in the virtual microstructures qualitatively given the di-
versity of grain boundary energies. Perhaps more interestingly however, the
grain boundary energy landscape is not the only observable difference in be-
tween the grain boundary networks developed using different grain boundary
energy functions. The morphology of the grains in different cases are also
relatively varied. While the least heterogeneous cases tend to favor rela-
tively regular polyhedra, the most heterogeneous cases seem to develop more
rectangular and disparate grains. This observation can be made more quan-
titative with the introduction of Figure 11. The distributions of the number
of neighboring grains for each grain boundary energy functions remain cen-
tered around 5 and 6. However, the more heterogeneous cases tend to flatten
their distributions acquiring a greater zoology of grains than in the more
homogeneous cases, a result corroborated by [8] but contested by [10]. This
polycrystal behavior is most likely a product of the diversity of triple junc-
tions in the most heterogeneous cases compared to the more homogeneous
ones. Indeed, as more and more triple junctions stray from the homogeneous
120◦ angle equilibrium, the forms of the grains become more irregular and
the polycrystal manages to obtain a more diverse set.

Conclusion

A sensitivity analysis to multiple numerical parameters for the simulation
of grain coarsening has been performed for heterogeneous grain boundary
energy microstructures. The response of the grain coarsening simulation was
then studied for different grain boundary energy functions and it was found
that:
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(a) Homogeneous (b) RS

(c) RS+ (d) Bumpy

(e) Gaussian

Figure 10: States of grain boundary networks obtained for all grain boundary energy
functions after 3 hours of numerical heat treatment.
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Figure 11: Normalized number of neighboring grains distributions for all of the studied
grain boundary energy functions at 10000 s.

• the kinetics of grain growth are slower for more heterogeneous grain
boundary energy functions, similar to the findings in other works [6–
11, 14, 15],

• the disorientation distributions are clearly inversely correlated to the
grain boundary energy functions as predicted in [37],

• and the morphology of the grains are also heavily dependent upon the
grain boundary energy function used in the simulation of grain growth.

With the authors’ present knowledge of the heterogeneous grain growth lit-
erature, no other study has compared the effects of grain boundary energy
functions on grain growth using such a diverse set.

A serious limitation to the application of these results to experimental
works is the 2D nature of the simulations. However, the mathematical for-
mulation is dimension independent and 3D calculations are forthcoming. Dif-
ferent misorientation dependent grain boundary energy functions have been
proposed in the literature [39, 40], and their testing and comparison with
experimental results is a perspective of this study. Also, the dependence
of the grain boundary energy to the inclination of the boundary as well as
the misorientation rotation axis were conveniently ignored in this work and
their integration is a perspective non-trivial step in the continuation of the
framework’s development. For example, the torque terms generated by in-
clination dependent grain boundary energies cannot be simply expressed by
the contraction of gradient of the grain boundary energy function ∇γ on the
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normal n given the tangentiality of this gradient field to the grain boundary
surface far away from boundary junctions. As such, new supplemental terms
depending both on γ and the geometry of the boundary must be developed
and integrated in order to aspire to a fully anisotropic formulation for grain
growth.
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