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H1-Control of an ensemble of half-spin systems replacing Rabi
pulses by adiabatic following

Ulisses Alves Maciel Neto∗, Paulo Sergio Pereira da Silva†, Karine Beauchard ‡, and Pierre Rouchon§¶

Abstract

This work considers the control of an ensemble of
non-interacting half-spin systems (Bloch equations) in
a vertical static field B0 subject to a pair of controlled
radio-frequency inputs (u1(t),u2(t)) acting on the hor-
izontal plane. The state M(t,ω) ∈ S2 belongs to the
Bloch sphere S2, and it is indexed by the Larmor fre-
quency ω ∈ (ω∗,ω

∗). Previous works have constructed
a local stabilizing feedback based on a Lyapunov func-
tional which is essentially a convenient H1-norm of a
Sobolev space H1((ω∗,ω

∗),S2) (see Beachard, Pereira
da Silva and Rouchon [3]-[4]). This feedback assures
local L∞-convergence of the initial state M0(ω) to −e3.
However, the control law of that paper is a sum of a
(infinite dimensional) state feedback with a T -periodic
comb of π-Rabi pulses (Dirac impulses). The present
work shows that one may replace this comb of Dirac
pulses by adiabatic pulses. It is shown in the paper
that, if ‖M0(ω) + e3‖H1 is small enough, our control
strategy assures, for any ε > 0, the existence of a pair
(T, `) where T ∈ R and ` ∈ N such that ‖M(`T, ·) +
e3‖L∞ ≤ ε . Simulations has shown that this new strat-
egy produces faster convergence than the one that is
based on the comb of Rabi pulses. The new method
seems to work well even for initial conditions such that
‖M0(ω)+ e3‖H1 is “relatively big”.
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1. INTRODUCTION

Most controllability results available for infinite di-
mensional bilinear systems are related to systems with
discrete spectra (see for instance, Beauchard and Coron,
[1] for exact controllability results and Beauchard
and Nersesyan, [5] Chambrion, Mason, Sigalotti, and
Boscain, [7], Nersesyan [13], for approximate control-
lability results). As far as we know, very few control-
lability studies consider systems admitting a continu-
ous part in their spectra. In Mirrahimi [12] an approx-
imate controllability result is given for a system with
mixed discrete/continuous spectrum: the Schrödinger
partial differential equation of a quantum particle in an
N-dimensional decaying potential is shown to be ap-
proximately controllable (in infinite time) to the ground
bounded state when the initial state is a linear superpo-
sition of bounded states. Ensemble controllability was
studied for instance Li and Khaneja [10], [11] in the
context of quantum systems that are described by Bloch
equations depending continuously on a finite number of
scalar parameters, and with a finite number of control
inputs. The goal of ensemble controllability is to simul-
taneously steer a continuum of systems between states
of interest with the same control inputs. Such continu-
ous family of ordinary differential systems sharing the
same control inputs can be seen as an interesting exam-
ple of infinite dimensional systems with purely continu-
ous spectra. The role of Lie algebras in the characteriza-
tion of ensemble controllability was the main contribu-
tion of Li and Khaneja [11]. In Beauchard, Coron, and
Rouchon [2], these aspects are studied under a func-
tional analysis setting, developed for infinite dimen-
sional systems governed by partial differential equa-
tions (see, e.g., Coron [8], for samples of these meth-
ods). Many results for this ensemble of Bloch equa-
tions, that include the discrimination between approxi-
mate and exact controllability are obtained in that pa-
per. For instance, it is shown that a priori bounded
L2-controls are not sufficient to achieve exact control-
lability, but unbounded controls (containing a sum of
Dirac masses) are able to recover controllability. In



Beauchard et al. [3] it is shown that the ensemble of
Bloch equations is approximately controllable to the
south pole of the Bloch Sphere (in the Sobolev space
H1) in finite time. with unbounded controls.

In this paper one considers the ensemble M(t,ω) ∈
S2 ⊂ R3 of Bloch equations:

Ṁ(t,ω) = S(u(t)e1 + v(t)e2 +ωe3)M(t,ω), (1)

where −∞ < ω∗ < ω∗ < +∞, ω ∈ (ω∗,ω
∗), and

{e1,e2,e3} is the canonical basis of R3, and S(·) is the
(unique) antisymmetric matrix that defines the wedge
product, that is, S(c)v = c∧ v for all c,v ∈ R3. Note
that, for c = c1e1 + c2e2 + c3e3. one has:

S(c) =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 (2)

It must be stressed that u(t) and v(t) are common con-
trols for all the members of the ensemble, and they can-
not depend on ω . Such control problems have been ad-
dressed since a long time in the NMR community (see
[16], [9]). For simplicity the derivative of M with re-
spect to time is denoted by Ṁ, and the derivative of M
with respect to ω is denoted by M′. To avoid confu-
sion with derivation with respect to ω , the transpose of
a matrix A will be denoted by A>. We shall consider
only the Larmor dispersion (represented by the param-
eter ω). One does not consider rf-inhomogeneity in this
paper. We will state the control problem:

Definition 1 (Control Problem) Given an initial state
M0 ∈H1((ω∗,ω

∗),S2)), and given ε > 0, choose Tf > 0
and construct (bounded) controls u : [0,Tf ] → R and
v : [0,Tf ]→ R in a way that1 ‖M(Tf , ·)+ e3‖L∞ ≤ ε .

Beauchard et al [3] has investigated feedback sta-
bilization of the ensemble (1), which possesses a con-
tinuous spectra. As in Mirrahimi (2009), the feedback
design is based on a Lyapunov functional that is closely
related to the norm of the state space (H1), a Banach
space. This feedback assures local L∞-stabilization of
the initial state M0(ω) to −e3. The control law that was
considered in that paper is a sum of a bounded control
(u1(t),u2(t)) with a comb of T -periodic π-Rabi pulses.

The main contribution of the present work is to
show that this comb of Rabi pulses may be replaced by
an adiabatic following technique, which relies on a pri-
ori bounded T -periodic pair of inputs (u(t),v(t)).

The potential practical interest of such stabilization
techniques consists in a simple algorithm providing an

1Recall that, for continuous functions, the L∞ norm is equivalent
to the sup norm.

open loop control steering from the initial state to the
final state. This algorithm just consists in the numerical
integration of the closed loop system where the control
values are recorded at each sample integration time.

The main results are presented in section 2. Com-
puter simulations are presented in section 3. Those sim-
ulations have indicated a faster convergence than the
original feedback law of [3] , [4]. The shape of the adi-
abatic pulses are presented in figure 6 (see appendix A).
Some proof sketches are presented in the Appendix B.

2. MAIN RESULTS AND HEURISTICS

The main ingredients of our control strategy are the
adiabatic following and the H1-stabilizing strategy. One
shall begin describing the adiabatic following and its
(discontinuous) propagator.

2.1. The adiabatic propagator

Consider the adiabatic propagator equation:

Ȧ(t,ω) = S(ū(t)e1 + v̄(t)e2 +ωe3)A(t,ω) (3)

where A(t,ω) ∈ SO(3), and A(0,ω) = I,∀ω ∈ [ω∗,ω
∗]

and the pair (ū(t), v̄(t)) is the adiabatic control.
Consider that one applies the adiabatic control

ū(t) = B1(t)sinφ(t), (4a)
v̄(t) = B1(t)cosφ(t), (4b)

where φ(t) and B1(t) are defined by:

φ̇(t) = k̄(t)ā(t), φ(0) = 0
B1(t) = k̄(t)b̄(t)

where ā(·), b̄(·), and k̄(·) are T -periodic functions de-
fined by ā(t) = a(t/T ), b̄(t) = b(t/T ), and k̄(t) =
Kk(t/T ), where a(·), b(·), and k(·) are 1-periodic nor-
malized functions defined in the Appendix A, and K > 0
is a chosen gain.

We shall re-initialize the propagator to the identity
at t0k = kT , for k ∈ N. One will denote the discon-
tinuous2 but T -periodic propagator A : R× [ω∗,ω

∗)→
SO(3) by A(t,ω). The left-limit lim

t→T−
A(t,ω) is denoted

by A(T−,ω)
The following convergence result can be proved by

using standard adiabatic techniques [15] or by averag-
ing methods [14]:

Theorem 1 Fix K > max{|ω∗|, |ω∗|}. Then
lim

T→∞
‖A(T−,ω) − I‖L∞ = lim

T→∞
max

ω∈[ω∗,ω∗]
‖A(T−,ω) −

I‖= 0.
2The discontinuities occur at t = kT for k ∈ N



It must be stressed that the last theorem only holds
because of the particular symmetries of the adiabatic
pulses described in Appendix A (see Figure 6).

2.2. The H1 control law of the auxiliary system

One forgets for the moment that A(t,ω) has some
discontinuities and considers the following rotating co-
ordinate change:

N(t,ω) = A>(t,ω)M(t,ω).

In each interval [kT,(k+1)T ) one may show that3:

Ṅ(t,ω) = S
[
A>(t,ω)(u1(t)e1 +u2(t)e2)

]
N(t,ω) (5)

where u(t) = u1(t) + u(t) and v(t) = u2(t) + v(t) and
N(kT,ω) = A>(kT,ω)M(t,ω) = M(t,ω),k ∈ N. This
construction would imply that N(t,ω) may have discon-
tinuities at t = kT,k ∈ N. In this paper one regards the
continuous solution N(t,ω) of (5):

Remark 1 (Very important) The system (5) with in-
put (u1(t),u2(t)) and initial condition N0 = M0 will
be called by Auxiliary System. Its (continuous) solu-
tion will be denoted by N(t,ω). This implies that the
discontinuous map M1(t,ω) = A>(t,ω)N(t,ω) will not
be the corresponding (continuous) solution of (1), with
input u(t) = u1(t) + u(t) and v(t) = u2(t) + v(t) and
initial condition M0. In appendix B it is shown that
M1(t,ω) = A>(t,ω)N(t,ω) is only an approximation
of the (continuous) solution M(t,ω).

Consider the Lyapunov functional

L =
1
2
‖N+e3‖2

H1 =
∫

ω∗

ω∗

[
1
2
〈N′,N′〉+1+ 〈N,e3〉

]
dω

In order to compute L̇ note that ξ = u1(t)e1 +u2(t)e2
does not depend on ω . One has

Ṅ′ = S(A>ξ )N′+S((A′)>ξ )N

Hence

L̇ =
∫

ω∗

ω∗
〈N′, [(A>)′ξ ∧N]〉+ 〈e3, [(A>)ξ ∧N]〉dω

= H1u1 +H2u2

where

Hi =
∫

ω∗

ω∗
〈N′, [(A>)′ei∧N]〉+ 〈e3, [(A>)ei∧N]〉dω,

(6a)
3Using the fact that AS(ξ )ν = S(Aξ )Aν for all ξ ,ν ∈ R3 and A ∈

SO(3).

for i = 1,2. One may construct the control law

ui(t) =−Hi(A(t, ·),N(t, ·)), i = 1,2. (6b)

obtaining
L̇ =−(H2

1 +H2
2 ) (7)

The closed loop system (5)-(6a)-(6b) with initial con-
dition N0(ω) = M0(ω) will be called the closed loop
auxiliary system.

2.3. Main result

Before stating the main result, note that system (5)
is parameterized by T in the sense that the adiabatic in-
puts (4) depends on T , and so is the adiabatic propaga-
tor A(t,ω). This implies that the (continuous) solution
N(t,ω) of (5) depends on the chosen T . The next theo-
rem assures the solution of the problem of Def. 1.

Theorem 2 There exists δ > 0, such that for all ε > 0
and any initial condition M0 ∈ H1((ω∗,ω

∗),S2) such
that ‖M0 + e3‖H1 < δ , then there exist4 T > 0 and
` ∈ N and a control law Ω : [0, `T ] → R2 such that
‖M(`T, ·)+ e3‖L∞ ≤ ε . Furthermore, for the chosen T
and `, the control law Ω(t) to be applied to (1) can be
obtained in the following way:
Step 1: Determine the adiabatic control
Ω̄(t) = (ū(t), v̄(t)) given in (3).
Step 2: Compute the solution of the closed loop system
(5)-(6a)-(6b) with initial condition N0 = M0 in the in-
terval [0, `T ], obtaining the feedback law (u1(t),u2(t))
given by (6a)-(6b).
Step 3: Apply Ω(t) = (u(t),v(t)) = (u1(t) +
ū(t),u2(t)+ v̄(t)) to the system (1) .

3. COMPUTER SIMULATIONS

One has chosen a priori T = 20, s0 = 0.1, K = 10,
`= 16 and Tf = `T for the new method5. As defined in
(6a)-(6b), we have chosen unitary gains of the feedback
law (we mean, there is no gain multiplying Hi of (6b)).
For the old method6, we have chosen T = 1 and unitary
gains as well. We have verified that greater values of T
than 1 for the old method are worse, but smaller values
of T will not improve the result. Figure 1 shows the
simulation results in the Bloch sphere for these choices.

The obtained error of the adiabatic propagator is
‖A(T−, ·)− I‖ ≤ 0.0009 obtained in our computer sim-
ulation. So ε2 = `‖A(T−, ·)− I‖ ≤ 0.015. It is very

4The proof of Theorem 2 shows that the values of T and of ` must
be big enough.

5See Appendix A for the definition of s0.
6One has simulated the method of [4] considering the trivial tar-

get profile identically equal to −e3. This is essentially equal to the
method of [3].



small in this case. In the simulations we have found
that ε1 = ‖N(`T )+e3‖L∞ is more than ten times greater
than ε2. Hence one will show only the behaviour of the
auxiliary state N(t,ω).

In figure 1 one may see the initial condition N0 =
M0 and the final condition N(`T ). One has obtained
ε2 = ‖N(Tf ) + e3‖L∞ = 0.185 with our new method,
and ε2 = 0.58 with our old method. Both methods have
considered the same unitary gains multiplying Hi (see
(6a)-(6b)). The expressions of the feedback of the old
method is analogous to (6a)-(6b), with the difference
that A(t,ω) is replaced by the matrix exp(Sωe3σ(t)),
where σ̇(t) = (−1)E(t/T ), E(s) is the integer part of s,
and σ(0) = 0). Our new method have produced a result
that is more than 3 times better than the old method with
respect to the final L∞ norm..

Figure 2 regards only the new method. It shows the
evolution of the Lyapunov functional L (t) = 1

2‖N(t)+
e3‖2

H1 . In that figure one shows also the evolution of
‖N(t)+ e3‖L∞ The controls u1(t) and u2(t) are also de-
picted in that figure. Figure 3 is a ”zoom” of the last
one. This allows to see the “microstructure” of the con-
trol of the new strategy.

Figure 4 shows the plot of log(‖N(t)+ e3‖2
H1) ver-

sus time. The inclination of the curves of log(‖N(t)+
e3‖2

H1) would give a measure of the exponential rate of
decaying of ‖N(t)+ e3‖2

H1 = 2L (t). One sees that the
convergence is not exponential, the inclination is de-
creasing as time passes for both methods. However, the
inclination is much bigger for the first method in the be-
ginning, and this inclination decreases faster for the old
method with respect to the new one. This indicates that
the new method seems to be more effective than the old
one.

The Figure 5 presents a comparison of the input
norms of the old and the new method.

4. CONCLUSIONS AND FUTURE RE-
SEARCH

The main result of this work indicates that the Rabi
pulses that are commonly encountered in Nuclear Mag-
netic Ressonance (NMR) techniques (for instance spin-
echo pulses) are not a mandatory ingredient for an ef-
ficient open loop control law. One might ask if this
could imply that one may develop NMR methods with
pulses with less intensity than the ones that are found
in the present state of the art. This could be an interest-
ing topic of future research, which may lead to produce
less “agressive” NMR techniques for medical (and other
possible) applications.
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A. Definition of normalized functions
a(s),b(s), and k(s)

In this appendix we define the functions s), (
¯
s), and

k(s) that are used in the adiabatic control. A computer
simulation is presented in order to illustrate the conver-
gence result (Theorem 1). For this, let s0 ∈ (0,1/4).
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Define the function a : [0,1]→ R by (see Figure 6):

a(s) =



−1, if s ∈ [0,s0];

−cos
[

2π(t−s0)
(1−4s0)

]
, if s ∈ (s0,

1
2 − s0];

1, if s ∈ (1/2− s0,1/2+ s0];

−cos
[

2π(t−3s0)
(1−4s0)

]
, if s ∈ ( 1

2 + s0,1− s0];
−1,s ∈ (1− s0,1].

(8a)
Define the function b(·) by

b̄(s) = 1−{ā(s)}2 (8b)

and k(·) by

k̄(s) =
{

1, if s ∈ [0,0.5),
−1, if s ∈ [0.5,1] (8c)

One may extend these functions a, b, k to be 1-periodic
functions in a natural way. Figure 6 shows these func-
tions for s0 = 0.1.

A computer simulation of the adiabatic propagator
A(t,ω) was done for T = 10, T = 15 and T = 20, with
s0 = 0.1 and K = 10. The values of ‖A(T−,ω)− I‖ as a
function of ω is given in Figure 7. The fast convergence
of the maximum value of this norm to zero when T →∞

is easily seen in that figure.

B. Proof Sketches

B.1. Auxiliary Results

In order to prove the main result, one proves first
the following important results
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Theorem 3 Fix t0 = kT for some k ∈ N. Let7 T0 > 0
and τ0 = s0T0 with s0 ∈ (0,1/4). There exists δ > 0
with the following property: for all ε > 0, there exist
c > 0 such that, for every T ≥ T0, and for every initial
condition N0 = N(t0) such that ‖N0 + e3‖H1 < δ , and
‖N0 + e3‖L∞ ≥ ε , then, one will have L (N(t0 + τ0)) ≤
(L (N0)−c) for system (5) in closed loop with the con-
trol law (6a)-(6b).

The proof of Theorem 3 is based on the following Lem-
mas, whose proofs may be found in [4] (particularized
for R = I):

Lemma 1 Fix t0 = kT . There exists δ > 0 such that,
if ‖N0(ω)+ e3‖ < δ and the control law (u1(t),u2(t))
defined by (6a)-(6b) is null on [t0, t0 + τ0], then N0 =
−e3.

The following result is also similar. Since the auxiliary
system is T -periodic, we shall state the result for t0 = 0.

Lemma 2 Consider a sequence of initial conditions
(Nn

0 )n∈N of H1([ω∗,ω∗],S2) such that Nn
0 ⇀ N∞

0 weakly
in H1 and the associated controls (Ωn)n∈N, Ω∞. Then
the solution Nn(t, ·) ⇀ N∞(t, ·) weakly in H1 and
Ωn(t)→Ω∞(t) for t ∈ [0,τ0].

Proof. (Of Theorem 3) Let γ = ‖N0(ω)+ e3‖H1 < δ ,
where δ is defined in Lemma 1. Since the auxiliary
system is T -periodic, there is no loss of generality in
considering t0 = 0. The proof of this theorem is based
on Lemmas 1 and 2. By contradiction, if the result does

7By construction, for T ≥ T0 the adiabatic control (ū, v̄) is null for
t ∈ [0,τ0]).
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not hold, one may construct a sequence Nn
0 ,n ∈ N of

initial conditions of the auxiliary system with the fol-
lowing properties:
(i) ‖Nn

0 + e3‖L∞ ≥ ε,∀n ∈ N;
(ii) ‖Nn

0 + e3‖H1 ≤ γ,∀n ∈ N;
(iii)

∫ τ0
0 [(un

1)
2(t)+(un

2)
2(t)]dt ≤ 1/n,∀n ∈ N,n > 0.

By (ii), passing to a convenient subsequence if neces-
sary, one may assume Nn

0 ⇀ N∞
0 weakly in H1. In par-

ticular, Nn
0 → N∞

0 strongly in the L∞ norm. Moreover,
due to weak convergence, ‖N∞

0 +e3‖H1 ≤ lim
n→∞

inf‖Nn
0 +

e3‖H1 ≤ δ [6].
Now we shall show that the initial condition N∞

0 pro-
duces null controls for t ∈ [0,τ0], which will be a contra-
diction with respect to Lemma 1. Now, by the Lemma
2, one has that Ωn(t) = (un

1(t),u
n
2(t))→ Ω∞(t) where

omega
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Figure 7. Plot of the Frobenius norm
‖A(T−,ω)− I‖ as a function of ω with s0 = 0.1
and K = 10, for T = 10, T = 15 and T = 20.

Ω∞(t) is the control that is obtained with the initial con-
dition N∞

0 . An extra work shows that the controls are
of class C1, and they are uniformly bounded, as well
as their time-derivatives. In particular, the sequence of
controls Ωn(t) are uniformly bounded and equicontinu-
ous, and so by Ascoli-Arzela theorem, passing to a sub-
sequence if necessary, Ωn converges to Ω∞ in C0 with
the sup norm. Assuming that Ω∞ is not identically null,
this gives a contradiction with the fact that the L2 norm
of Ωn tends to zero. �

In order to prove the next results, one introduces
the Propagator equation of the original system (1):

Ḃ(t,ω) = S [u(t)e1 + v(t)e2 +ωe3]B(t,ω) (9)

with initial condition B0(ω) = B(0,ω) ∈
H1((ω∗,ω

∗),SO(3)). By proposition 1 of [4], there
exists B0 ∈ H1((ω∗,ω

∗),SO(3)) such that B0e3 = M0.
It is then clear that the solution of the original system
(1) is such that M(t,ω) = B(t,ω)e3, where B(t,ω)
is the solution of (9) and M(t,ω) is the solution of
(1) with the same applied input (u(t),v(t)). It is also
important to consider the propagator equation that is
related to system (5) given by:

Ċ(t,ω) = S
[
A>(t,ω)(u1(t)e1 +u2(t)e2)

]
C(t,ω)

(10)
One denotes by C(t,ω) the (continuous) solution of
(10) with the same initial condition C0 = B0 and input
(u1(t),u2(t)) such that u(t) = u1(t) + ū(t) and v(t) =
u2(t) + v̄(t). It is then clear that N(t,ω) = C(t,ω)e3,



where N(t,ω) is the solution of (5). Define the (discon-
tinuous) map B1(t,ω) = A(t,ω)C(t,ω), where A(t,ω)
is the (T -periodic) adiabatic propagator defined in (3).
The following proposition regards the transformations
between solutions of (1) and (5) and between solutions
of (9) and (10):

Proposition 1 Assume that M1(t,ω) = A(t,ω)N(t,ω).
Then, the state N(t,ω) is a solution of (5) in the interval
[kT,(k+1)T ) with input (u1(t),u2(t)) if and only if the
state M1(t,ω) is a solution of (9) in the same interval
with input u(t) = u1(t)+ u(t) and v(t) = u2(t)+ v(t).
Similarly, assume that B1(t,ω) = A(t,ω)C(t,ω). Then,
the propagator C(t,ω) is a solution of (10) in the in-
terval [kT,(k + 1)T ) with input (u1(t),u2(t)) if and
only if the propagator B1(t,ω) is a solution of (9) in
the same interval with input u(t) = u1(t) + u(t) and
v(t) = u2(t)+ v(t).

In one hand, if one fixes a (continuous) solution
B(t,ω) of the propagator equation (9), one will obtain
a “discontinuous solution” C1(t,ω) = A>T (t,ω)B(t,ω)
of the propagator equation (10). On the other hand,
we shall consider (continuous) solutions of the auxil-
iary system (10), that will produce a “discontinuous so-
lution” B1(t,ω) = A(t,ω)C(t,ω):

Lemma 3 Consider the corresponding (continuous)
solution of C(t,ω) of the propagator equation (10) that
is obtained by the application of an input (u1(t),u2(t))
in an interval [0,Tf ] with initial condition C0 =
B0. Let B1(·,ω) be the map defined by B1(t,ω) =
A(t,ω)C(t,ω), where A(t,ω) is the T -periodic map
defined in section 2.1. Then the (continuous) so-
lution B(t,ω) of (9) that is obtained with with the
same initial condition B0 = C0 and applying the in-
put (u(t),v(t)) = (u1(t)+ ū(t),v1(t)+ v̄(t)) is such that
‖B(`T,ω)−B1(`T,ω)‖ ≤ `‖A(T,ω)− I‖.

Proof. See appendix B.2. �

B.2. Proof of Lemma 3

The proof of the Lemma 3 is a consequence of the
right-invariance of the propagator equation and the fact
that the Frobenius norm is invariant by right- and left-
multiplications by orthogonal matrices.

Proposition 2 Fix ω ∈ (ω∗,ω
∗). The following affir-

mations are equivalent for the propagator equation (9):

• B1(t,ω) and B(t,ω) are solutions of (9) in the in-
terval [t0, t1) with the same applied inputs u(t) and
v(t).

• There exists a right-translation R(ω)∈ SO(3) such
that B(t,ω) = B1(t,ω)R(ω). Furthermore, the
Frobenius norm ‖B1(t,ω)−B(t,ω)‖ is constant in
[t0, t1) and given by ‖R(ω)− I‖.

The proof of the last proposition is a straightforward
consequence of the right-invariance of (9), the unique-
ness of solutions of (9) and the invariance of the Frobe-
nius norm with respect of right- and left-multiplications
by matrices in SO(3). An easy consequence of the last
proposition is the following one, which means that, if
B(·,ω) is a “continuous solution” of (9) and B1(·,ω) is
a “discontinuous solution” of (9), both with the same
initial condition B0(ω) = B1(0,ω) = B(0,ω), then the
Frobenius distance between B(·,ω) and B1(·,ω) is
bounded by the sum of discontinuities of B1.

Proposition 3 Let Tf = `T for some ` ∈ N. Assume
that B1(·,ω) : [0,Tf ]→ is a map such that B1(t,ω) is
a solution of (9) in each interval [kT,(k+ 1)T ),k ∈ N
and B(·,ω) : [0,Tf ]→ is another map with the same
property. Assume that the map B1(·,ω) is continuous
in each interval [kT,(k + 1)T ) with possible disconti-
nuities at t = kT,k = 1,2, . . . , `. Assume that the map
B(·,ω) is continuous in [0,Tf ]. Assume that B(0,ω) =
B1(0,ω) = B0(ω). Then ‖B1(t,ω) − B(t,ω)‖ ≤
∑
`
k=1 ‖B1(kT−,ω)−B(kT+,ω)‖,∀t ∈ [0,Tf ].

Now note that a (continuous) solution C(t,ω) of
(10) is transformed into a discontinuous map B1(t,ω) =
A(ω, t)C(t,ω). From Proposition 1, B1(t,ω) is a so-
lution of the propagator equation (9) inside the in-
tervals [kt,(k + 1)T ). The “discontinuous” solution
B1(t,ω) is such that, at each instant t = kT one
has a discontinuity of B1 of a distance ‖B1(kT+)−
B1(kT−)‖ = ‖A(kT+)C(kT+)−A(kT−)C(kT−)‖. By
the continuity of the map C(·,ω), then C = C(kT+) =
C(kT−). As the Frobenius distance is invariant by
right- and left-multiplications by orthogonal matrices,
then ‖A(kT+)C−A(kT−)C‖= ‖A(kT+)−A(kT−)‖=
‖A(T−,ω)− I‖ (recall that A(kT+) = I). So, after ` pe-
riods of T seconds, Proposition 3 implies that the Frobe-
nius distance ‖B1(`T,ω)−B(`T,ω)‖ is not greater than
the sum of all individual discontinuities. This shows
Lemma 3.

B.3. Proof of Theorem 2

Proposition 4 Given ε > 0 and T0 > 0 there exist some
δ > 0 and ` ∈ N such that, if ‖M0 + e3‖H1 < δ , then
‖N(`T, ·)+ e3‖L∞ ≤ ε for all T > T0.

Proof. Let c > 0 (that depends on ε) be the con-
stant that is defined in Theorem 3. Let p ∈ N such



that L (N0)− pc ≤ 0. By contradiction, assume that
‖N(`T, ·)+e3‖L∞ ≥ ε for all `∈ {0,1, . . . , p}. Since the
Lyapunov functional L (t) is nonincreasing, the repet-
itive application of Theorem 3 at the instants t = kT
for k = 0,1, . . . , p would give L (N(pT )) ≤ L (N0)−
pc < 0. This is not possible since the Lyapunov func-
tional is always nonnegative. So there must exist some
` ∈ {0,1, . . . , p} with the claimed property. �

Proposition 5 Fixed k ∈ N, the solution M(t,ω) of (1)
with initial condition M0(ω) is such that

‖M(kT, ·)‖L∞ ≤ k‖A(kT−, ·)− I‖L∞ +‖N(kT, ·)+e3‖L∞

Proof. Consider the original system (1) with initial con-
dition M0. Let N(t,ω) be the (continuous) solution of
(5) with initial condition N0 = M0. It is clear that

M1(t,ω) = A(t,ω)N(t,ω)

is a “discontinuous” solution of (1). Note that
M1(t,ω) = A(t,ω)N(t,ω) = A(t,ω)C(t,ω)e3 =
B1(t,ω)e3. Recall that the “continuous solution”
M(t,ω) of the system (1) with initial condition M0 =N0
is such that M(t,ω) = B(t,ω)e3. Since A(kT,ω) = I,
then from Lemma 3 one gets ‖M(kT,ω)+ e3‖= ‖M−
M1 + M1 + e3‖ ≤ ‖(B− B1)e3‖+ ‖N(kT,ω) + e3‖ ≤
k‖A(T−,ω)− I‖+ ‖N(kT,ω) + e3‖ which completes
the proof. �

Proof. (of the Theorem 2) Fix ε > 0 and choose ε1 > 0
and ε2 > 0 such that ε = ε1 + ε2. It is possible to find
` ∈ N, T0 > 0 and a control law ΩT : [0,Tf ]→ R2 (de-
pending on T ), with Tf = `T , in a way that the appli-
cation of ΩT (t) = (u1(t),u2(t)) to system (5) furnishes
‖N(`, ·)+ e3‖L∞ ≤ ε1 for all T > T0.
Find T ? > T0 big enough (depending on `) such that
`‖A(T−, ·)− I‖L∞ ≤ ε2 and apply the open loop control
(u(t),v(t)) =ΩT ?(t)+(ū(t), v̄(t)) to system (1), obtain-
ing ‖M(`, ·)+ e3‖ ≤ ε1 + ε2 = ε .

�
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