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Abstract. Ultimate levelings are operators that extract important im-
age contrast information from a scale-space based on levelings. During
the residual extraction process, it is very common that some residues are
selected from undesirable regions, but they should be filtered out. In or-
der to avoid this problem some strategies can be used to filter residues ex-
tracted by ultimate levelings. In this paper, we introduce a novel strategy
to filter undesirable residues from ultimate levelings based on a regres-
sion model that predicts the correspondence between objects of interest
and residual regions. In order to evaluate our new approach, some ex-
periments were carried out with a plant dataset and the results show the
robustness of our method.

1 Introduction

Residual operators are transformations that involve combinations of morpho-
logical operators with differences. Morphological gradient, top-hat transforms,
skeleton by maximal balls and ultimate opening are some examples of residual
operators widely used in image processing applications.

There is a class of important residual operators called ultimate levelings [5].
They are residual operators that analyze the evolution of the residual values
between two consecutive operators on a scale-space of levelings and keep the
maximum residues for each pixel. The residual value of these operators can re-
veal important contrast information in images. This class of operators includes
maximum difference of openings (resp., closings) by reconstruction [15], differen-
tial morphological profiles [21], ultimate attribute openings (resp., closings) [22],
differential attribute profiles [9], shape ultimate attribute openings (resp., clos-
ings) [12], differential area profiles [19] and ultimate grain filters [3]. They have
successfully been used as a preprocessing step in various applications such as
texture features extraction [15], segmentation of high-resolution satellite im-
agery [20,9], text location [23,1] and segmentation of building façades [12].

Due to the design of the ultimate levelings, some residues extracted by them
can be from undesirable regions. In this sense, several researches have been pro-
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posed in recent years, introducing strategies to filter undesirable residues dur-
ing the residual extraction process [5,12,3,2]. They are based on attributes ex-
tracted from residual regions. However, when the number of attributes increases
the strategy construction becomes difficult, because you need to find thresholds
to apply the strategy. In order to deal with this problem we can made use of
machine learning. In addition, the combination of machine learning and morpho-
logical operators is successfully applied in a large range of problems, such that:
morphological operators learning [16], convolutional nets and watershed cuts [8],
morphological profiles [9], and others.

Given the above considerations, the main contribution of this paper is a novel
strategy to filter undesirable residues based on machine learning. Since ultimate
levelings can be efficiently computed from morphological trees, information can
be extracted from branches of the trees to obtain features for a regression or a
classification model. This idea is inspired by maximally stable extremal regions
[17] and morphological profiles [9], but we made it considering contrast informa-
tion extracted by the residues. In order to apply and evaluate our new approach,
we chose the plant bounding box detection problem [18].

The remainder of this paper is structured as follows. Sections 2 and 3 briefly
recall some definitions and properties about the morphological trees and the ul-
timate levelings. The original contribution of this paper is given in Section 4,
where we introduce a novel strategy to filter undesirable residues from the ul-
timate levelings based on a regression model that predicts the correspondence
between objects of interest and residual regions. Experimental results are shown
in Section 5. Finally, Section 6 concludes this work and presents some future
research directions.

2 Theoretical Background

For decades, image representations through trees have been proposed to carry out
tasks of image processing and analysis, such as: filtering, segmentation, pattern
recognition, contrast extraction, compression and others. In this scenario, the
image is represented by means of a tree, then all tasks are performed through
information extraction or modifications in the tree itself, and finally an image is
reconstructed from the modified tree.

In order to build the trees considered in this paper, we need the following
definitions. First, we consider images as mappings from a Cartesian grid D ⊂ Z2

to a discrete set of k ≥ 1 integers K = {0, 1, . . . , k − 1}. These mappings can be
decomposed into lower (strict) and upper (large) level sets, i.e., for any λ ∈ K,

X λ↓ (f) = {p ∈ D : f(p) < λ} and X ↑λ (f) = {p ∈ D : f(p) ≥ λ}. From these sets,
we define two other sets L(f) and U(f) composed by the connected components
(CCs) of the lower and upper level sets of f , i.e., L(f) = {τ ∈ CC(X λ↓ (f)) : λ ∈
K} and U(f) = {τ ∈ CC(X ↑λ (f)) : λ ∈ K}, where CC(X ) denotes the sets of
either 4 or 8-CCs of X , respectively.

The ordered pairs consisting of the CCs of the lower and upper level sets
and the usual inclusion set relation, i.e., (L(f),⊆) and (U(f),⊆), induce two
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dual trees [24,13,7] called component trees. It is possible to combine them into a
single tree in order to obtain the so-called tree of shapes. Then, let P(D) denote
the powerset of D and let sat : P(D) → P(D) be the operator of saturation [7]
(or filling holes). Then, SAT (f) = {sat(τ) : τ ∈ L(f) ∪ U(f)} be the family of
CCs of the upper and lower level sets with holes filled. The elements of SAT (f),
called shapes, are nested by the inclusion relation and thus the pair (SAT (f),⊆)
induces a tree which is called tree of shapes [7].

In tree of shapes, and also component trees (max-tree and min-tree), each
pixel p ∈ D is associated only to the smallest Connected Component (CC) of the
tree containing it; and through parenthood relationship, it is also associated to
all its ancestor nodes. Then, we denote by SC(T , p) the smallest CC containing
p in tree T . Similarly, we say p ∈ D is a compact node pixel (CNP) of a given
CC τ ∈ T if and only if τ is the smallest CC containing p, i.e., τ = SC(T , p).
Fig. 1 shows examples of min-tree, max-tree, and tree of shapes, where CNPs
are highlighted in red.
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Fig. 1. Min-tree (a), max-tree (b) and tree of shapes (c) as compact representations of
(L(f),⊆) and (U(f),⊆), and (SAT (f),⊆), respectively, of the image f . Only Compact
Node Pixels (CNPs) are stored and they are highlighted in red.

3 Ultimate levelings

Ultimate levelings constitute a wider class of residual operators defined from a
scale-space of levelings {ψi : i ∈ I} [5,3,2]. An ultimate leveling analyzes the
evolution of residual values from a family of consecutive primitives, i.e. r+i (f) =
[ψi(f)− ψi+1(f) ∨ 0] and r−i (f) = [ψi+1(f)− ψi(f) ∨ 0], keeping the maximum
positive and negative residues for each pixel. Thus, contrasted objects can be
detected if a relevant residue is generated when they are filtered out by one of
these levelings.

More precisely, the ultimate leveling R is defined for any image f as follows:

R(f) = R+(f) ∨R−(f), (1)

where R+(f) = supi∈I{r+i (f)} and R−(f) = supi∈I{r−i (f)}.
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Residual values of these operators can reveal important contrasted structures
in the image. In addition to these residues, other associated information can
be obtained such as properties of the operators that produced the maximum
residual value. For example, W. Li [15] introduced a function qImax : D → I that
associates to each pixel the major index that produces the maximum non-null
residue, i.e.,

p ∈ D, qImax
(p) =

{
q+Imax

(p), if [R(f)](p) > [R+(f)](p),

q−Imax
(p), otherwise.

(2)

where q+Imax
(p) = max{i + 1 : [r+i (f)](p) = [R+(f)](p) > 0} and q−Imax

(p) =

max{i+ 1 : [r−i (f)](p) = [R−(f)](p) > 0}.
The ultimate levelings can be efficiently implemented thanks to the theorem

proposed in W. A. L. Alves et. al [4], which shows that an increasing family
of levelings {ψi : i ∈ I} can be obtained through a sequence of pruned trees
(T 0
f , T 1

f , . . . , T
IMAX

f ) from the structure of the max-tree, min-tree or tree of
shapes Tf constructed from the image f . Then, the i-th positive (resp. negative)
residue r+i (f) can be obtained from the set of nodes N r(i) = T if�T

i+1
f , i.e.,

∀τ ∈ N r(i),

r+T i
f

(τ) =


level(τ)− level(Parent(τ)), if Parent(τ) /∈ N r(i),
level(τ)− level(Parent(τ))

+ r+T i
f

(Parent(τ)), otherwise,
(3)

where level(τ) and Parent(τ) are functions that represent the gray level and
the parent node of τ in Tf , respectively. Thus, the i-th positive (resp. negative)
residue r+i (f) is given as follows:

∀p ∈ D, [r+i (f)](p) =

{
r+T i

f

(SC(T if , p)), if SC(T if , p) ∈ N r(i),
0, otherwise.

(4)

Those facts lead to efficient algorithms for computing ultimate levelings and its
variations [3,10].

Ultimate levelings are operators that extract residual information from prim-
itive families. During the residual extraction process, it is very common that
undesirable regions of the input image contain residual information that should
be filtered out. These undesirable residual regions often include desirable resid-
ual regions due to the design of the ultimate levelings which consider maximum
residues. Thus, residual information can be improved by filtering of residues
extracted from undesirable regions [5,12,3,2]. We can decide whether a residue
r+i (f) (resp., r−i (f)) is filtered out or not, just checking nodes τ ∈ N r(i) that
satisfy a given filtering criterion Ω : P(D)→ {desirable,undesirable}. Thus, we
just calculate the ultimate leveling R for residues r+i (resp., r−i ) such that satisfy
the criterion Ω. So, positive (resp. negative) residues are redefined as follows:

∀τ ∈ N r(i), rΩ+
T i
f

(τ) =


r+T i

f

(τ), if ∃C ∈ N r(i)
such that Ω(C) is desirable;

0, otherwise,

(5)
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and thus redefined the ultimate levelings with strategy for filtering from undesir-
able residues as follows: RΩ(f) = R+

Ω(f)∨R−Ω(f), where,R+
Ω(f) = sup{rΩ+

i (f) :
i ∈ I} and R−Ω(f) = sup{rΩ−i (f) : i ∈ I}.

Given the above considerations, in this paper we are interested in the max-
imum desirable residues provided by Ultimate Levelings. In this sense, is pre-
sented in the Section 4 a new approach to construct a strategy based on machine
learning techniques.

4 Strategy to filter undesirable residues based on
machine learning

In this section, we present the construction of a strategy to filter undesirable
residues from the ultimate levelings based on a regression that predicts the cor-
respondence between objects of interest and residual regions.

For this, we recall that an increasing family of levelings {ψi : i ∈ I} can be ob-
tained through a sequence of pruned trees (T 0

f , T 1
f , . . . , T

IMAX

f ) from the struc-
ture of the max-tree, min-tree or tree of shapes Tf constructed from the image f .
In addition, thanks to Eq.4, a sequence of residues

(
r0(f), r1(f), . . . , r|I−1|(f) :

ri(f) = ψi(f) − ψi+1(f)
)

can be obtained by the sequence of residual nodes(
N r(0),N r(1), . . . ,N r(|I| − 1) : N r(i) = T if�T

i+1
f

)
. Thus, from a sequence

of residual nodes, we can use the tree structure to define strategies for filtering
undesirable residues of the ultimate levelings.

Given this consideration, our idea is to represent each residue through an
attribute vector extracted from overlapping residual regions with low contrast.
Therefore, we define a partial order relation � on the collection of residual nodes
Br = {N r(i) : i = 0, 1, . . . , |I| − 1} such that for any N r(i),N r(j) ∈ Br, we
write N r(i) � N r(j) if and only if the nodes belonging to N r(i) are descendants
of some node belonging to N r(j) in Tf .

This is equivalent to
⋃
{p ∈ τ : τ ∈ N r(i)} ⊆

⋃
{p ∈ τ : τ ∈ N r(j)}. Now,

we use this poset (Br,�) in order to extract an attribute vector on a sequence
of residual nodes, that is defined as follows:

B∆(i) =
(
N r(i− k) ∈ Br : −∆ ≤ k ≤ ∆

)
, (6)

where N r(i − ∆) � N r(i − ∆ + 1) � . . . � N r(i) � N r(i + 1) � . . . �
N r(i+∆) and ∆ ∈ N is a parameter that defines the amount of residual regions.
In addition, if there are bifurcations in the path between the nodes N r(i −∆)
to N r(i + ∆), we choose the path with biggest accumulated area to define the
sequence. This is based on the fact that all descendent nodes of a given node are
subset of it, then the path of descendant with biggest accumulated area contains
more region in common with the node, it means that the nodes of the path are
more stable [14]. Note that the length of B∆(i) is 2∆+ 1. An example of poset
(Br,�) and the sequence B∆(i) is showed in Fig. 2. Then, we define an attribute
vector Λ(i) ∈ Rn(2∆+1) on a sequence B∆(i) for any i ∈ I, as follows:

Λ(i) =
(
κj(N r) : N r ∈ B∆(i) and j = 1, 2, . . . , n

)
, (7)
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where κj : P(D)→ R is an attribute (feature) extracted from the largest residual
region belonging to N r ∈ B∆(i) and n is the number of attributes.
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a) The labels 0, 1, . . . , 13
are related to the sets
N r(0),N r(1), . . . ,N r(13).

b) Ascendant (in green)
and descendant paths (in
orange) of N r(7) (in red).

c) Ascendant (in green)
and descendant paths (in
orange) of N r(10) (in red).

Fig. 2. An example of feature extraction using our approach for ∆ = 2. In b) the
path formed by N r(10) � N r(11) is the ascendant path of N r(7) and there are two
descendant paths of N r(7) formed by N r(0) � N r(3) and by N r(1) � N r(4). In c)
there is a similar situation.

To construct the regression, we define a training set (X,Y ) with m ∈ N
labeled samples such that X ⊆ Rm × Rn(2∆+1) is a set of attribute vectors of
the residual regions and Y ⊆ Rm is a set of measure of similarities. Thus, we
have that Λ(i) ∈ X is an attribute vector that represents the residual region of
ri and Match(N r(i), Label(f)) ∈ Y is the value of measure of similarity between
the residual region of ri and a labeled region R ∈ Label(f) of an image f . This
measure of similarity is defined as follows:

Match(N r(i), Label(f)) = max
R∈Label(f)

|R ∩ τregion|
|R ∪ τregion|

, (8)

where τregion =
⋃
{p ∈ τ : τ ∈ N r(i)} is residual region of ri. An example

of training set extraction is shown in Fig. 3. We remember that, a machine
learning model usually tries to find a function h : Rn(2∆+1) → R, also called the
hypothesis, that best fits the training set (X,Y ).
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Λ(7) = (κ(N r(0)), . . . , κ(N r(11))

Ri

∩

∪

y7 =

Match(N r(7), Label(f))

Fig. 3. An example of training set computation. For each residual node set N r(i) we
extract an attribute vector Λ(i) and the matching value yi. Thus, the pair (Λ(i), yi) is
a sample.

Once h has been trained, we can decide when a residue r+i (f) (resp., r−i (f))
is desirable, if the prediction of Λ(i) is greater than a threshold ε, that is:

∀τ ∈ N r(i), rh+T i
f

(τ) =

{
r+T i

f

(τ), if h(Λ(i)) > ε,

0, otherwise,
(9)

and thus redefined the ultimate levelings with strategy for filtering from undesir-
able residues as follows: Rh(f) = R+

h (f)∨R−h (f), where,R+
h (f) = sup{rh+i (f) :

i ∈ I} and R−h (f) = sup{rh−i (f) : i ∈ I}.

4.1 Selecting disjoint residual regions

As mentioned in [5], the ultimate levelings can produce nesting of residual re-
gions. Selecting disjoint residual regions (DRR) is a good way to deal with this.
Thus, let πF be the set of N r(i) that contains nodes in the path started from a
leaf F to the root of Tf . During this path, we say that the best residual region
is the one with greatest prediction, that is:

DRR =
{
S : S = arg max

Nr(i)∈πF

{h(Λ(i)) : @N r(j), N r(j) � N r(i)
with h(Λ(j)) > h(Λ(i))}

} (10)

Thus, we select all best residual node sets applying Eq. 10 for each leaf F in
Tf and then we redefined Eq. 9 only with the residues N r(i) belonging to the
set DRR. An illustration of the disjoint residual node sets selection that apply
the Eq. 10 is shown in Fig. 4.
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Fig. 4. An example of DRR selection. We start exploring paths from leaves to root
of the tree according to Eq. 10. Residual node sets of more than one color represent
residual node sets that are the best for two or more paths. For example the residual
node set N r(15) (marked by a dashed red circle) is the best of the paths N r(1) �
· · · � N r(15) � · · · � N r(18), N r(0) � · · · � N r(15) � · · · � N r(18), N r(4) � · · · �
N r(15) � · · · � N r(18) and N r(8) � · · · � N r(15) � · · · � N r(18) .

5 Results and experiments

In this section we present the results of experiments conducted with our new
approach. To this purpose, we choose an important vision task problem called
plant bounding box detection. Plants have a very complex morphology, so the
detection of their bounding box is considered a difficult task. A good plant
dataset in literature is provided by Minervine et al. [18]. In respect of plant
bounding box detection task, the dataset is composed by three subsets: Ara2012,
Ara2013-Canon and Ara2013-Rpi, totalizing 70 images with size between 3108×
2324 and 2592× 1944 pixels.

An overview of our approach applied to plant bounding box detection is
shown in Fig. 5. First, we constructed regression model using features based on
contrasts, colors and shapes. After, this regression model is used to select the de-
sirable residues (see Eq. 9). Finally we define the bounding boxes using the DRR
extracted of the desirable residues (see Eq. 10). The main parameters are: (1)
the primitives obtained by the area attribute with min area of 50 and max area
of 95, 000 and the bounding box area attribute with min area of 150 and max
area of 400, 000; (2) the attributes chose to extract the features of the residual
regions: 3 contrast attributes (residue, maximum residue and altitude), 3 color
attributes (green level, distance of RGB foreground and distance of RBG back-
ground) and 3 shape attributes (TBMR, compactness, eccentricity). Totalizing
9 type of feautures, i.e., k = 9; (3) the minimal value ε to avoid false bounding
boxes in DRR (see Eq. 10).

Thus we trained h with a Multilayer Neural Network using 3 hidden layers
with (50, 30, 10) units and a learning rate of 0.005 found by a grid search. The
model was trained on the 1.59 million of training samples and evaluated on
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the 32 thousand of validation and test samples. We notice overfitting when the
number of neurons and hidden layers were set to high values.

∀(U(fg),⊆)

∀Label(f)

Training set

(X,Y )

(U(fg),⊆)

Ara2012

Choose primitives,

attributes and

∀Nr(i) ∈ Nr,
extract (Λ(i), yi)

h

Training a regression

Choose Nr(i)
according to Eq. 10

Making new predictions

Fig. 5. Overview of our approach. First we train a regression model h. Then, we can
make new predictions to detect bounding boxes according to Eq. 10.

In order to study the influence of ∆ in plant bounding box detection, we
conducted some experiments varying this parameter. We remember that the
choice of the type of features and the number of them are usually challenges in
machine learning. Thus, to select the best combination of both, we performed a
grid search tuned by cross-validation as shown in Fig. 6.
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Fig. 6. Evolution of ∆ during model validation. Note that, the number of features is
k(2∆ + 1), where k is the number of attributes. For example, consider ∆ = 3, the
number of features for all attributes is 9× (2× 3 + 1) = 63.

The results are summarized in Fig. 6. They reveal that ∆ parameter and the
number of features have a big influence in the model, because when we increase
∆ and the number of features the MSE of all models tends to decrease. The best
h was obtained with ∆ = 3 and 63 features.
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Another parameter that influences the result of plant bounding box detection
is ε. This parameter determines the minimum prediction value for a residual node
set to be considered desirable. In Fig. 7 is shown the evolution of ε during tests.
The best accuracy was obtained using ε = 0.7.
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Fig. 7. Evolution of ε during tests.

Previously, we presented results in plant bounding box detection using non
supervised strategies [11,6]. In order to compare them with our new approach,
we chose the metrics provided by Minervine et al [18]. Those measures are: SBD
that is a kind of accuracy metric; DiC that is the difference between predicted
bounding box and the annotated bounding box, and |DiC| that is the absolute
value of DiC. In a general way, the results obtained by our new approach are
the best results of all our works in plant bounding box detection. Those results
are summarized in Table 1.

Table 1. Results obtained with our new approach compared to our previously works.
In a general way the results of our new approach is the best of our works.

Dataset Approach SBD[%] DiC |DiC|

Ara2012

Mumford Shah Energy [11]
MSER [6]
TBMR [6]
Our

92.00
91.90
93.60
95.43

0.20
0.20
0.00
-0.18

0.20
0.20
0.00
0.43

Ara2013-Canon

Mumford Shah Energy [11]
MSER [6]
TBMR [6]
Our

87.50
89.40
92.00
95.20

0.10
0.10
0.20
0.14

0.30
0.10
0.20
0.37

Ara2013-RPi

Mumford Shah Energy [11]
MSER [6]
TBMR [6]
Our

80.30
83.20
84.00
92.55

0.10
0.20
0.30
-0.33

0.40
0.40
0.30
0.48

Mean (All)

Mumford Shah Energy [11]
MSER [6]
TBMR [6]
Our

85.80
87.60
89.30
94.23

0.00
0.10
0.10
-0.11

0.30
0.20
0.10
0.42



Ultimate levelings with strategy for filtering undesirable residues 11

6 Conclusion

This paper presented a novel approach to construct a strategy to filter undesir-
able residues from the ultimate levelings based on a regression that predicts the
correspondence between objects of interest and residual regions. As it is known,
during the residual extraction process, it is very common that undesirable re-
gions of the input image contain residual information that should be filtered out.
In this sense, we designed a filter based on the regression to filter out residues
extracted from undesirable regions. The results obtained applying the filter in
plant bounding box detection reveal the robustness of our approach. Further
studies should investigate the following areas: (i) apply regression prediction as
a weight of Ultimate Levelings residues, (ii) explore classifiers models instead of
regressions and (iii) methods to determine ∆ parameter.
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