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Abstract

The modeling of Artificial Ground Freezing in geotechnical engineering applications has two

main objectives, the first is the prediction of the extent of the frozen zone around the cooling

sources (Thermo-Hydraulic models) and the second is the prediction of the ground’s defor-

mations and the site stability (Thermo-Hydro-Mechanical models). Reliable predictions

require the consideration of unfavorable hydro-geological conditions such as high seepage

velocities, ground heterogeneity and saline groundwater that may negatively influence the

performance of AGF. The influence of the saturating fluid salinity on the THM behavior of

the ground during freezing is the less documented point among the three and is therefore

the subject of this paper. To this end, a fully coupled THM model considering the salinity

effect has been derived. The formalism is completely thermodynamically consistent and

introduces some simplifying assumptions, especially to describe phase change terms (capil-

lary pressure and latent heat), in order to achieve a mathematical formulation that can be

easily handled by computation software. Stress-free freezing laboratory tests carried out on

specimens initially fully saturated with sodium chloride solutions at three different concen-

trations allowed to validate the proposed approach and to highlight some key mechanisms

associated with the phase change of saline-saturated porous media.
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1. Introduction

The rising population flow and road traffic create a growing demand for underground

transportation infrastructure, all over the world (for e.g. subway extension projects in Paris

and Beiging). Consequently, the risk of encountering unfavorable ground conditions like

water-bearing soil or soft rock is becoming increasingly important. Artificial Ground Freez-

ing is a technique that has proven to be effective in waterproofing and ensuring the stability

of such weak grounds (Sophiaspoor tunnel in the Netherlands [10], Napoli undergound metro

stations [24, 32], Gongbei Tunnel in Hong Kong [19] and Nanjing metro in China [18]). It

is then becoming a widely-used technique, not only in tunneling projects, but in a broad

range of geotechnical applications like shaft sinking [34] and protection barriers of mineral

deposits [35, 45]. However, caution must be taken in the presence of high groundwater

velocities as the flow-generated heat slows down or even prevent the closure of the frozen

barrier in some localized areas [33]. This point is fairly well documented; different validated

thermo-hydraulic models exist and can be used to predict the closure time and the extent

of the frozen area [28, 31, 43, 44, 53]. Another problematic issue is the groundwater salin-

ity that notably modifies the freezing behavior of the soil. The freezing point depression

[2, 46] is only one effect among many [30]. Nevertheless, there has been very little research

attempting to extend the existing thermo-hydraulic models with phase change to the case of

porous media saturated with an aqueous solution instead of pure water. Rouabhi et al. [30]

recently proposed a fully coupled heat and mass transfer formulation taking into account

the salinity of the saturation fluid and carried out laboratory freeze-thaw experiments to

validate it. In addition to the freezing point depression, their model considered also the im-

pact of salt concentration on the physical properties of the aqueous solution and the phase

change equations of state, directly derived from thermodynamically consistent liquid and ice

Gibbs potential functions. However, the effect of the presence of solutes in the saturation

fluid on the ground deformation was not investigated. This brings us to the third and likely

one of the most important issues of ground freezing: the ground deformation resulting from

the pore water’s expansion while freezing which could lead to the deterioration of adjacent
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structures.

When the ground subjected to freezing is frost-susceptible such as clay, silt, clayey sand

and silty sand, the water migrating by capillary action from unfrozen regions to the frozen

front forms ice lenses that produce a ground surface heave [37]. Literature has extensively

investigated these phenomena and two approaches of thermo-hydro-mechanical modeling of

ground freezing could be distinguished: capillary models [8, 26, 53] and frozen-fringe models

[22, 38, 52]. Both approaches have their strengths and weaknesses and their capabilities to

reproduce the behavior of the ground could be assessed only through experimental verifi-

cation. The frozen-fringe models, on the contrary of capillary models, successfully capture

the formation of discrete ice lenses in fine-grained soils but haven’t been extended yet into

three dimensions. Their verification is often carried out using one-dimensional long frost

heave experiments [49]. The capillary models framework is more adapted to the simulation

of rapid uniform freezing laboratory tests [8, 50] and at higher in situ overburden pressure

conditions where ice lenses cannot form [40]. Again, the common shortcoming of the models

of both categories, cited above, consists in neglecting the effects of the presence of solutes in

the pore water. Recently, there has been an increasing interest in the behavior of saline soil

among researchers concerned about the damage to buildings and infrastructure foundations

resulting from the frost heave of sulfate saline soil in permafrost regions [23, 29, 48, 49]. In

these works, the effects of the thermo-hydro-mechanical and chemical coupling were studied

mainly through laboratory experiments consisting of cycles of uniaxial freezing and thaw-

ing for a single value of solute concentration. The theoretical framework, when provided,

suffered from the luck of thermodynamic consistency and from unclear methodology, and

required additional experimental verification regarding the freezing conditions, the type of

the saturating fluid and the values of salt content.

To fill this gap, this paper proposes a coupled thermo-hydro-mechanical and chemical

(THMC) model of ground freezing that falls into the category of capillary models for the

reasons cited above in relation with the type of conducted experiments. The phase change

fronts are tracked using the liquid saturation degree function, and the stress state of the

ground is characterized through the concept of effective stress. Based on the literature men-
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tioned above, the thermodynamics of phase change is recalled and the simplifications usually

used to derive the expression of the capillary pressure are reviewed in order to take account

of the liquid pressure effect. The paper is structured as follows: in Section 2 the balance

and constitutive equations are derived within the theory of porous media, and in Section 3

the modeling formalism is validated against stress-free freezing laboratory experiments per-

formed on limestone specimens initially fully saturated with sodium chloride solutions at

various concentrations.

Nomenclature

Main symbols

ρα apparent density of phase α

ρα density of phase α

να specific volume of phase α

∆νw difference between partial specific volumes of water in ice and liquid phases

Cpα heat capacity at constant pressure of phase α

ρCp volumetric heat capacity of the porous medium

Λα thermal conductivity of phase α

Λ thermal conductivity of the porous medium

k0 intrinsic permeability

kr relative permeability of phase λ

ηλ dynamic viscosity of phase λ

Dλ diffusivity coefficient of salt in phase λ
−→
ψ conductive heat flux vector
−→
V filtration velocity of phase λ
−→
J diffusion velocity vector of salt in phase λ

π̂γ mass rate of ice formation

hα specific enthalpy of phase α

gα specific Gibbs free energy of phase α
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∆hw latent heat of water phase change/ difference between partial enthalpies of

water in ice and liquid phases

Lλγ latent heat of phase change on the coexistence curve

µwλ chemical potential of water in phase λ

µγ chemical potential of ice

c salt concentration in phase λ

csat salt concentration at saturation

n porosity

nα volume fraction of phase α

pα pressure of phase α

$ equivalent pore pressure

pλγ coexistence pressure at thermodynamic equilibrium between λ and γ

pc capillary pressure

Sλ liquid saturation degree

T temperature

Tλγ coexistence temperature at thermodynamic equilibrium between λ and γ

1 second order unit tensor

σ total stress tensor

ε total strain tensor

−→u displacement vector

εv volumetric strain

A drained linear thermal expansion coefficient

B Biot coefficient

(E0,ν0) Young’s modulus and Poisson’s ratio of the material in the nonfrozen state

(Ef,νf) Young’s modulus and Poisson’s ratio of the material in the fully frozen state

Subscripts or superscripts

σ solid phase

λ liquid phase
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γ ice

s salt

w water

2. Theoretical framework

We consider an isotropic porous medium fully saturated with an aqueous solution and

subjected to freezing. It consists of a solid skeleton phase σ, a liquid phase λ and an ice

phase γ. The liquid phase is comprised of two components: water w and sodium chloride s.

Ice is a single-component solid phase exchanging matter with the liquid phase; it is assumed

to follow the movement of the solid skeleton phase σ and to behave as a fluid phase endowed

with its own pressure and temperature. In what follows, T is the absolute temperature of all

the phases (local thermal equilibrium assumption), n is the Eulerian porosity of the porous

medium and c is the mass concentration of salt s in liquid phase λ. For each phase α =

(λ, γ), pα denotes its pressure, −→v α its macroscopic velocity, ρα its density, να = 1/ρα its

specific volume, nα its volume fraction, ρα = ραnα its apparent density and Sα = nα/n its

saturation degree, with Sλ + Sγ = 1. For phase σ, nσ = 1 − n is its volume fraction and

ρσ = ρσnσ its apparent density. For each function ϕ(−→x , t) attached to the porous medium,

.
ϕ= ∂tϕ+ −→v σ.

−→
∇ϕ denotes its time derivative following the motion of solid skeleton phase σ.

The mechanical behavior is assumed to be elastic and the small deformation assumption is

adopted.

2.1. Balance equations

In this section, mass, energy and momentum balance equations are derived, by applying

the volume averaging method to the pore scale balance equations, as can be found in [17, 47]

and by taking the motion of solid phase σ as a reference.
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2.1.1. Mass balance equation

A local conservative form of the mass balance equation of a component k of a fluid

phase α at the pore scale can be written as follows:

∂t (ραckα) +
−→
∇. (ραckα−→v kα) = 0 (1)

where ckα is the mass concentration of the component k in the phase α and −→v kα is the

macroscopic velocity vector of the component k.

When applying the volume averaging method, the apparent density ρα = nαρα is introduced,

and the following macroscopic mass balance equation of the component k can be obtained:

∂t (ραckα) +
−→
∇. (ραckα−→v kα) = π̂αk (2)

where the mass provided by chemical reactions has been neglected and where π̂αk is the

amount of mass provided to phase α due to the interfacial exchanges of the component k,

such as
∑

α π̂
α
k = 0 and

∑
k π̂

α
k = π̂α, which represents the total mass of all the components

that are exchanged at the interfaces with the phase α.

By introducing the diffusion velocity
−→
J α

k = nαckα(−→v kα − −→v α), that describes the rela-

tive movement of the component k with respect to phase α, and the filtration velocity
−→
V α = nα(−→v α − −→v σ), that describes the relative movement of phase α with respect to

phase σ, and by using a lagrangian time derivative, the following mass balance equation

of the component k can be deduced:

.
(ραckα) + (ραckα)

.
J/J +

−→
∇.
(
ραckα

−→
V α + ρα

−→
J α

k

)
= π̂αk (3)

where J is the Jacobian of the solid transformation. The hypothesis of small deformations

entails that
.
J = J

.
εv, with εv = tr

(
ε
)

the volumetric component of the linearized strain

tensor ε =
(
∇−→u + t∇−→u

)
/2, represented by the symmetric part of the gradient of the solid

displacement vector −→u .

Note that by summing Equation 3 for all the components of a phase α, the mass balance

equation of the latter can be obtained:

.
ρα + ρα

.
εv +

−→
∇.
(
ρα
−→
V α
)

= π̂α (4)

7



In our case, since ice phase is assumed to follow the movement of the solid skeleton (
−→
V γ =

−→
0 )

and the liquid phase λ contains only two components, water w and salt s, only one filtration

velocity, one mass concentration and one diffusion velocity are required to formulate the

problem to be solved. Hence, the notations will be simplified by setting:
−→
V =

−→
V λ,

−→
J =

−→
J λ

s

and c = csλ.

By using Equation 4, the following mass balance equations of phases λ and γ can be deduced:

The mass balance equations of the phases λ and γ can be written in the following form:

.
ρλ + ρλ

.
εv +

−→
∇.
(
ρλ
−→
V
)

= π̂λ (5)

.
ργ + ργ

.
εv = π̂γ (6)

where εv = tr
(
ε
)

is the volumetric component of the linearized strain tensorε =
(
∇−→u + t∇−→u

)
/2,

represented by the symmetric part of the gradient of the solid displacement vector −→u ; π̂α

is the amount of mass exchanged by phase α during phase change of water w, such as

π̂λ + π̂γ = 0, and
−→
V is the filtration velocity of the liquid phase λ.

Where π̂γ = −π̂λ is the amount of mass provided to phase γ by the phase change of the

water w.

We can get rid of the exchanged mass term by summing Equations (5) and (6). The mass

balance equation of the two phases λ and γ can therefore be written as follows: The mass

balance equation of the two phases λ and γ, obtained by summing Equations (5) and (6),

can therefore be written as follows:

.
ρλ +

.
ργ +

(
ρλ + ργ

) .
εv +

−→
∇.
(
ρλ
−→
V
)

= 0 (7)

By using Equation 3 and 5, with π̂λs = 0 since salt is not exchanged between phases, the

following mass balance equation of salt s can be deduced is given by [30]:

ρλ
.
c + ρλ

−→
V .
−→
∇ c+

−→
∇.
(
ρλ
−→
J
)

= π̂γc (8)

where
−→
J is the diffusive velocity of salt in phase λ.
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2.1.2. Heat equation

The heat balance equation can be written as follows [30]:

ρCp
.
T + ρλCpλ

−→
V .
−→
∇ T = −

−→
∇.
−→
ψ − π̂γ∆hw (9)

with

ρCp =
∑
α

ραCpα (10)

and

∆hw (pλ, pγ, T, c) = hγ − hλ + c∂chλ (11)

where Cpα denotes the heat capacity at constant pressure of phase α,
−→
ψ is the surface

density of the amount of heat exchanged by conduction, hγ(pγ, T ) and hλ(pλ, T, c) are the

enthalpies of the ice and the liquid phases, respectively, and ∆hw is the latent heat of water

phase change.

2.1.3. Momentum balance

If the inertial terms are neglected, the equation of balance of momentum reads:

−→
∇.σ + ρ−→g =

−→
0 (12)

where the tensor σ stands for the total stress tensor acting on both solid and fluid phases,

ρ =
∑

α ρ
α is the mass density of the porous medium and −→g is the gravitational acceleration

vector.

In macroscopic approaches, the water-ice interfaces are usually tracked using the water

saturation degree function Sλ, equal to one in liquid saturated regions. Consequently, the

balance between the pressure jump across these interfaces and the surface tension forces

could be expressed through a macroscopic relationship between the pressure difference, the

temperature, the salt concentration and the liquid saturation degree Sλ, as follows:

Sλ = S(pc, T, c) (13)

where pc = pγ − pλ is the pressure difference across the interface λγ, called the capillary

pressure and S is an empirical function that has been widely investigated in literature [3, 4,
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11, 12, 21, 36, 39]. This latter could ideally be determined through one of the experimental

methods used in the references cited above or otherwise via a back analysis of laboratory

[30] or in situ measurements [40, 45].

2.2. Constitutive equations

To sum up, the set of partial differential equations to be solved is the following:

.
ργ + ργ

.
εv = π̂γ

.
ρλ +

.
ργ +

(
ρλ + ργ

) .
εv +

−→
∇.
(
ρλ
−→
V
)

= 0

ρλ
.
c − c

( .
ργ + ργ

.
εv
)

+ ρλ
−→
V .
−→
∇ c+

−→
∇.
(
ρλ
−→
J
)

= 0

ρCp
.
T + ∆hw(

.
ργ + ργ

.
εv) + ρλCpλ

−→
V .
−→
∇ T +

−→
∇.
−→
ψ = 0

−→
∇.σ + ρ−→g =

−→
0

(14)

where ρCp and Sλ are given by Equations 10 and 13, respectively.

The System 14 is composed of four scalar equations and one vector equation. At the same

time, it introduces eleven scalar unknowns: T , c, pλ, pγ, n, ρλ, ργ, Cpλ, Cpγ, ∆hw and

π̂γ, four vector unknowns: −→u ,
−→
V ,
−→
J and

−→
ψ and one tensor unknown σ. The number

of unknowns being greater than the number of equations, System 14 needs then to be

supplemented, in addition to the thermodynamic equations of state, by some complementary

equations (constitutive equations) to express the secondary unknowns (π̂γ,
−→
V ,
−→
J ,
−→
ψ ), the

porosity evolution equation and the constitutive law of the solid matrix.

2.2.1. Complementary equations

With regard to the term π̂γ, resulting from the matter exchange at the interface λγ,

we assume, for the sake of simplicity, that the chemical equilibrium of the component w at

the interface λγ is reached instantaneously and without any dissipation. Consequently, the

chemical potentials of the ice phase and of water in phase λ are equal, as follows:

µγ(pγ, T ) = µwλ(pλ, T, c) (15)

Ice, being a pure phase, its chemical potential µγ is independent of the concentration c and

equal to its Gibbs specific free energy gγ. The chemical potential of water in phase λ is

µwλ = g λ − c∂cg λ.
10



Previous works [30, 31, 42] presented elaborate mathematical developments of Equation

15 in both cases of saline and non-saline porous media, that entailed the following relation:

∀(pλ, pγ, T, c) :

∫ pγ

pλγ(T,c)

νγ(x, T )dx =

∫ pλ

pλγ(T,c)

(νλ − c∂cνλ) (x, T, c)dx (16)

with pλγ being the coexistence pressure at the thermodynamic equilibrium between λ and γ.

This equation allows the determination of the capillary pressure pc as a function of (pλ, T, c).

As in most of the literature about porous media, the secondary unknowns
−→
V ,
−→
J and

−→
ψ

are expressed, respectively, by the generalized Darcy’s law, Fick’s law and Fourrier’s law, as

follows:
−→
V = −kλ

ηλ

(−→
∇ pλ − ρλ−→g

)
,
−→
J = −Dλ

−→
∇ c ,

−→
ψ = −Λ

−→
∇ T (17)

where kλ is the intrinsic permeability associated to the filtration of phase λ through the

solid skeleton, ηλ is the dynamic viscosity of the liquid phase λ, Dλ is the diffusivity of salt s

into phase λ and Λ is the thermal conductivity of the porous medium. In order to allow the

consideration of the effects of the ice phase formation on preventing the liquid phase flow,

the four scalars may depend on the saturation degree in addition to the thermodynamic

state variables (pλ, T, c).

2.2.2. Mechanical constitutive law and porosity evolution

To express the stress-strain relationship, the concept of effective stress [6] is used and a

partition of the total strain rate tensor
.
ε into an elastic component

.
ε
e
, a non-elastic one

.
ε
ne

and a thermal component A
.
T 1 is adopted. This entails the following equation:

.
σ +B

.
$ 1 = H

∼
:
(
.
ε− .

ε
ne −A

.
T 1
)

(18)

where A is the drained linear thermal expansion coefficient, B is the Biot coefficient, $ is

the equivalent pore pressure and H
∼

is the drained Hooke’s elasticity tensor.

The Biot coefficient B is often approximated using the following expression:

B = 1− K

Kσ

(19)
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where K and Kσ are the drained and solid bulk moduli, respectively.

The pore pressure $ is assumed to be a function of the pressure pλ and the capillary

pressure pc and is expressed as follows [40]:

$ = pλ +

∫ pc

0

(1− Sλ(x)) dx (20)

Classical mechanical tests on frozen and unfrozen materials in literature have shown that

the Young’s modulus and the Poisson’s ratio are dependent upon temperature. To account

for this property, equivalent Young’s modulus and Poisson’s ratio (E, ν) of the mixture

[16, 53] are considered, as follows:

E = SλE0 +
(
1− Sλ

)
Ef

ν = Sλν0 +
(
1− Sλ

)
νf

(21)

where (E0, ν0) and (Ef, νf) are the Young’s moduli and the Poisson’s ratios of the material

in the nonfrozen state and the fully frozen state, respectively.

To determine partial porosities of λ and γ phases, the following evolution equation of

the total porosity is used [7]:

.
n =

(
B − n

)( .
εv − 3A

.
T +

1−B
K

(
Sλ

.
pλ +

(
1− Sλ

) .
pγ
))
−B .

εnev (22)

In this paper, the non-elastic strain tensor is assumed to be zero. Indeed, numerical simu-

lations presented in Section 3.2 have shown that a non-linear elastic model is sufficient to

explain the measured freezing-induced strains.

2.2.3. Thermodynamic equations of state

The density and the thermal capacity of the solid skeleton phase are assumed to be

constant. Consequently, in this subsection and the next one, the α subscript refers to

phase λ or phase γ.

In order to build a thermodynamically consistent model, the state functions of each

phase α should be derived from its thermodynamic potential and its partial derivatives. The

thermodynamic state independent variables being
(
pα, T, c

)
, the thermodynamic potential
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chosen in this work is thus the Gibbs specific free energy gα. The specific volumes να, the

thermal capacities Cpα and the enthalpies hα can then be expressed as follows [14]:
.
να/να = χTα

.
T − χpα

.
pα + χsα

.
c

χTα = ∂2pαTgα/να ,
χpα = −∂2pαgα/να , χsα = −∂2pαcgα/να

Cpα = −T∂2T 2 gα , hα = gα − T∂Tgα

(23)

where χTα and χpα are respectively the isobaric thermal expansion coefficient and the isother-

mal compressibility of phase α. The coefficient χsα accounts for the effect of the variation

of salt concentration at constant pressure and temperature.

The condition of water chemical equilibrium formulated in Equation (15) combined to

the above expression of enthalpy leads to the following expression of phase change latent

heat ∆hw:

∆hw(pλ, pγ, T, c) = Lλγ(T, c)− T
∫ pγ

pλγ(T,c)

∂Tνγ(x, T )dx+ T

∫ pλ

pλγ(T,c)

∂T (νλ − c∂cνλ) (x, T, c)dx

(24)

where Lλγ(T, c) = ∆hw

(
pλγ(T, c), pλγ(T, c), T, c

)
denotes the latent heat of the solid-liquid

water phase change within the domain of chemical equilibria such as pλ = pγ = pλγ(T, c).

Its expression is obtained by derivating Equation 15 with respect to T , which leads to:

Lλγ(T, c) = T∆νw

(
pλγ(T, c), T, c

)
∂Tpλγ(T, c) (25)

where ∆νw

(
p, T, c

)
= νγ

(
p, T

)
− (νλ − c∂cνλ) (p, T, c) .

In this paper, the Gibbs free energy of aqueous NaCl solution g λ is given by Archer and

Carter [1] and the Gibbs function of ice gγ is defined by Feistel and Wagner [13].

2.2.4. Simplification of equations of state

By using the rigorous mathematical expressions of the Gibbs potential functions men-

tioned in the previous subsection to derive the state laws, the resulting mathematical for-

malism would be complex and heavy to integrate in numerical codes. For this reason, some

simplifying assumptions need to be introduced to reduce the computational load of the

formalism without affecting its reliability and accuracy.
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First of all, let’s assume that the specific volumes of the liquid and ice phases are pressure-

independent: νλ(p, T, c) = νλ(p0, T, c) and νγ(p, T ) = νγ(p0, T ). Accordingly, the equality 16

becomes:

pc = ργ(T )∆νw

(
T, c
)(
pλγ(T, c)− pλ

)
(26)

Secondly, if a first order approximation around the reference state (p0, T0(c)) is used

for pλγ (see [30]), the pressure at the thermodynamic equilibrium between λ and γ can be

written as:

pλγ(T, c) = p0 + p′λγ(c)
(
T − T0(c)

)
(27)

The term
(
pλγ(T, c)−pλ

)
in Equation 26 can be rewritten as

(
pλγ(T, c)−pλγ(Tλγ(pλ, c))

)
,

with Tλγ the coexistence temperature at the thermodynamic equilibrium between λ and γ.

Thus, by making use of Equation 27, Equation 26 becomes:

pc = ργ(T )∆νw

(
T, c
)
p′λγ(c)

(
T − Tλγ(pλ, c)

)
(28)

The variation of Tλγ(pλ, c) with pλ is often neglected compared to its variation with c

(see [8, 30, 44]). To investigate the validity of this hypothesis, we represent in Figure 1 the

two-phase coexistence curve Tλγ, numerically obtained from the equality 15 for T = Tλγ

and pλ = pγ = p, as a function of c ranging from 0 to 0.25 (saturation concentration of

NaCl aqueous solutions) for four values of p. These latter were chosen on the basis of a

literature review on hydraulic pressure values that could be reached during the freezing of

an initially fully saturated geomaterial. Indeed, the magnitude of p depends on the cooling

conditions, drained or undrained, on the nature of the liquid saturating the pores and on

the hydro-mechanical parameters of the material (permeability, Young’s modulus, etc). The

figure clearly shows that the difference between the reference curve Tλγ(p0, c) and the other

curves becomes significant for higher values of liquid pressure. Therefore, the assumption

of replacing Tλγ(pλ, c) by T0(c) is not always valid and is not retained in this work. The

expression of capillary pressure is then as follows:

pc = −ργ(T )∆νw

(
T, c
)(
pλ − p0

)
+ ργ(T )∆νw

(
T, c
)
p′λγ(c)

(
T − T0(c)

)
(29)
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Figure 1: Representative curves of the function Tλγ(p, c) for four values of p.

Regarding the phase change enthalpy, two assumptions are often introduced to simplify

its mathematical formulation, namely, a first order approximation for Lλγ, and temperature-

independent specific volumes νλ(p, T, c) = νλ(p0, T0(c), c) and νγ(p, T ) = νγ(p0, T0(c)) [30,

44]. This entails:

∆hw(pλ, pγ, T, c) = Lλγ(T, c) = L0(c) + L′0(c)
(
T − T0(c)

)
(30)

with L0(c) = T0(c) ∆νw0 p
′
λγ(c) and ∆νw0(p0, T0(c), c) = νγ

(
p0, T0(c)

)
−(νλ − c∂cνλ) (p0, T0(c), c).

The assumption of temperature-independent specific volumes allows to further simplify

Equation 29 and leads to the following expression of capillary pressure that will be adopted

in what follows:

pc(pλ, T, c) = ργ
(
p0, T0(c)

)(
−∆νw0

(
pλ − p0

)
+ L0(c)

(
T/T0(c)− 1

))
(31)

To sum up, two main assumptions were used to derive the simplified expressions of cap-

illary pressure (Equation 31) and phase change latent heat (Equation 30): a linear temper-

ature dependence of the functions pλγ and Lλγ, and pressure and temperature independent
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specific volumes of phases λ and γ. While the assumption of linearity is used solely to

derive simplified expressions of pc and ∆hw, the second assumption is expected to have

implications on the balance equations by canceling the contribution of the transient terms

related to the fluids compressibility and thermal dilation. Knowing that this hypothesis is

often unwarranted in coupled hydro-mechanical problems, a distinction must then be drawn

between the assumptions used to derive mechanical and chemical equilibrium conditions at

the interface λγ and those used in balance equations. Undoubtedly, this methodology is

not without consequences for the overall coherence of the formalism. However, one should

not overestimate the significance of these inconsistencies, given that the capillary pressure

and the latent heat functions intervene in the model as a parameter of an empirically de-

termined function Sλ, or multiplied by an empirical term π̂γ, respectively. Consequently,

the dependency of specific volumes of brine and ice upon temperature and pressure is main-

tained in the balance equations. For the sake of simplicity, they were supposed to be linearly

correlated with temperature and pressure (χTα and χpα are constants) as follows: νγ(pγ, T ) = νγ0
(
1 + χTγ

(
T − T0(0)

)
− χpγ

(
pγ − p0

))
νλ(pλ, T, c) = νλ0

(
1 + χTλ

(
T − T0(0)

)
− χpλ

(
pλ − p0

))
ν̃λ(c)

(32)

where νγ0 = νγ
(
p0, T0(0)

)
and νλ0 = νλ

(
p0, T0(0), 0

)
.

As for the thermal capacities Cpα, only their variation with the concentration is consid-

ered. Indeed, the effect of this variation is significant in comparison with that of temperature

and pressure:

Cpγ = Cpγ
(
p0, T0(0)

)
, Cpλ = Cpλ

(
p0, T0(c)

)
(33)

The approximated expressions of T0(c), L0(c), L
′
0(c), Cpλ(c), Cpγ, νγ0 , νλ0 , ν̃λ(c), χTγ,

χTλ, χpγ and χpλ are given in Table 1. They are determined through Least-Squares fitting

of their full expression established on the basis of empirical expressions of the Gibbs free

energy functions of ice and NaCl solution.
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ϕ0 a1 a2 a3 b1 b2 b3

νγ0 (m3/kg) 1.090844× 10−3

χTγ (/K) 0.15984× 10−3

χpγ (/MPa) 0.11778× 10−3

Cpγ (kJ/kg/K) 2.09671

νλ0 (m3/kg) 1.000157× 10−3

χTλ (/K) −0.67717× 10−4

χpλ (/MPa) 0.50884× 10−3

ν̃λ (m3/kg) 1. −0.701 0.247 0.98 2.675

Cpλ (kJ/kg/K) 4.21944 −3.224 3.356 1.082 1.379

T0 (K) 273.1526 −0.20822 −1.08254 −11.9205 0.992 2.576 5.53

L0 (kJ/kg) −333.427 −0.636 0.623 −19.341 1.018 1.234 4.394

L′0 (kJ/kg/K) −2.45825 −0.4524 145.821 614412 0.79 3.56 10.17

Table 1: Simplified equations of state; ϕ = ϕ0
(
1 +

∑
aic

bi
)
. p0 = 0.1 MPa.

3. Laboratory experiments and model validation

In this section, the THMC model is validated against freezing experiments. Since the

objective is to study the mechanical effect induced by the freezing of a sodium chloride

saturated porous material, no additional mechanical external stress was applied. Indeed,

combining a thermal and a mechanical load would definitely not serve that purpose and

would request, for better interpretation of results, an appropriate rheological model to ac-

count for irreversible strains. Three concentrations were studied to allow a discussion of the

influence of the initial salt content of the saturating fluid on the temperature and strain

response.

We note that these freezing tests have been designed primarily to further advance our under-

standing of THMC couplings. Furthermore, contrary to classical frost heave tests conceived

for natural freezing problems, the presented freezing tests are more representative of artifi-

cial freezing in terms of the prescribed temperature magnitude, the quick cooling kinetics
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and the uniform thermal boundary conditions.

In the following,First, the experimental setup is first briefly described, then the presented

approach is used to simulate those experiments and the obtained results are compared with

the experimental data.

3.1. Laboratory experiments

The experimental campaign was conducted on the Anstrude limestone (France). This

rock has been selected for its isotropy and homogeneity (monomineral composition) and,

at the same time, its important porosity of 20% , that is representative of the usual value

of porosity in projects where the technique of artificial ground freezing is used. Moreover,

its porous network allows a rapid and easy saturation of the specimens. The physical and

mechanical parameters of the Anstrude limestone are given in Table 2.

The freezing experiments were carried out using a temperature controlled environmental

chamber, offering a temperature range from -30 ◦C to 130 ◦C and a maximum ramp rate of

1 ◦C/min. The samples are cylinders measuring 10 cm in height and 5 cm in diameter, and

vacuum saturated, for one week before the test, with an aqueous solution of sodium chloride

with a specific concentration. Two thermocouples were used to measure the temperature

on the surface and at the center of the specimen, which required to drill a 1 mm hole

through each specimen. Given the low magnitude of the thermal contraction strains of

limestone, the strain gauges were chosen over other strain measurement methods. Two

strain gauges were bonded to the surface of the specimen, a 60 mm long gauge in the

vertical direction and a 120 mm long gauge in the horizontal direction, recording axial

and circumferential strains respectively. We note that the use of gauges with long lengths

enabled us to measure an averaged strain over a larger area. However, the temperature-

induced apparent strain in strain gauges could be a significant source of error, given the

important changes of temperature and the low magnitude of contraction thermal strains.

In order to be able to correct it, identical (same length and gauge factor) compensating

gauges were bonded to an Invar sample, of which the thermal expansion coefficient is known

(2.×10−6), and connected to the main gauges through a Wheastone bridge circuit. Because
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of phase change, temperatures on the surface of Invar and limestone samples don’t remain

equal throughout the test, that’s why the temperature on the surface of the Invar was also

monitored in order to make the necessary corrections. For more clarity, the exact location

of the thermocouples and strain gauges is shown in Figure 2.

In order to test the capability of the model to reproduce experimental data of different

scenarios of thermal loading, the water saturated specimens were subjected to two types

of thermal loading paths: a multi-stage and a fixed rate temperature variation. Specimens

saturated with an aqueous NaCl solution were subjected to a fixed rate temperature variation

only in order to avoid any overlapping with the phase change temperature plateaus.

3.2. Numerical simulations

Despite the small size of the test specimens, measurements have shown that during

phase change the distribution of temperature and strain becomes heterogeneous. Indeed,

temperatures at the surface and inside the specimen become different. The same applies to

the axial and circumferential strains. Consequently, a finite element analysis was performed

to simulate the laboratory experiments, using the COMSOL software, where the theoretical

formalism presented in Section 2 was implemented using the nonlinear coefficient form PDE

formulation.

A constraint is added to the system of equations with regard to the salt concentra-

tion evolution. Indeed, it is known that in saline porous media subjected to freezing, the

formation of ice induces an increase of the salt concentration in the remaining nonfrozen

interstitial liquid until it reaches a solubility limit csat at which salt may precipitate. In

the presented freezing tests, we noticed that the crystallization is particularly slow; tests of

longer duration are required to observe salt efflorescences on the surface of the sample. The

phenomenon of salt precipitation is then not considered for the simulation of these tests and

the concentration c is assumed to respect the following inequality:

c ≤ csat
(
T
)

(34)

Due to the geometry and loading symmetries, only one quarter of the specimen was

modeled as a 2D axisymmetric problem. The used mesh consisted of approximately 1000
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eight-node quadrilateral elements. The mesh was refined to ensure the non-dependency of

the results on mesh size.

(a) The specimen inside the environmental chamber.

(b) Schematic illustration of the arrangement of thermocouples and strain gauges in the specimen.

Figure 2: Testing setup.
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Parameter Unit Value

General model E0 GPa 3.6

parameters Ef GPa 7.2

ν0 0.22

νf 0.3

ρσ kg m−3 2500

Cpσ J kg−1 K−1 900

Kσ GPa 80

n 0.2

Dλ m2 s−1 10−14

Equation 35 m 0.6

P MPa 0.3

Equations 36 and 37 k0 m2 9×10−16

r 0.9

Equation 38 (a1, a2, a3) (1.85, 4.1, 44.5)

(b1, b2, b3) (1, 2, 3)

Equation 39 Λλ W m−1 K−1 0.6

Λγ W m−1 K−1 2.3

Λσ W m−1 K−1 2

Equation 40 H W m−2 K−1 20

csat(T ) = 0.2626 + 0.535 θ1.888 − 0.479 θ2 , θ = T/T0(0)− 1

η0(T ) = 1.034× 10−4
(
θ + 0.1616

)−1.562
A(T ) =

(
3.7735 + 8.4731 θ + 9.6996 θ2

)
10−6

Table 2: Constants for numerical simulations.

3.2.1. Parameters calibration

The previously mentioned coefficients, namely Sλ, kλ, ηλ, Λ, Dλ and A are either ex-

perimentally determined or estimated through empirical models that are commonly used in
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literature. This paragraph details the approach used to identify each parameter.

First, in order to express the liquid saturation degree Sλ, the van Genuchten empirical

function [41] was chosen for its widespread applicability in ground freezing studies, especially

when the porous medium is initially saturated with pure water [7, 26, 51]. In addition, it was

recently successfully extrapolated to porous media where the saturating fluid is an aqueous

solution [30]. Its expression can be written as follows:

Sλ(pc) =
(

1 + (pc/P )1/(1−m)
)−m

(35)

which involves two material parameters, m and P .

With regard to the permeability for liquid phase flow kλ, it is usually defined as a

product of an intrinsic permeability k0 (m2), characteristic of the structure of the porous

space regardless of the flowing phases, and a liquid relative permeability kr function only of

the liquid saturation degree, to account for the effect of ice presence on reducing the liquid

phase flow:

kλ = k0 kr(Sλ) (36)

The intrinsic permeability being already identified in previous works, the unknown is

therefore the relative permeability function which expression is classically [26, 31] derived

from the van Genuchten model [25] and introduces one additional material parameter r, as

follows:

kr
(
Sλ
)

=
√
Sλ

(
1−

(
1− S1/r

λ

)r)2
(37)

The liquid phase viscosity is a function of pressure, temperature and concentration, as

follows:

ηλ = η0(T, pλ)
(

1 +
∑

aic
bi
)

(38)

where η0 is the dynamic viscosity of pure water (Pa s). Its variation with pressure can be

neglected compared to the variation caused by temperature, especially in the pressure and

temperature ranges that are considered in this paper [27]. The influence of temperature is

described using a power law given by Gawin et al. [15]. The parameters ai and bi used in
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this equation, to account for the salinity dependence, are those given by Koniorczyk and

Gawin [20].

The thermal conductivity of the porous media Λ is recurrently expressed by a geometric

mean of the thermal conductivities of the phases [5, 26, 30]:

Λ = Λnσ
σ Λnλ

λ Λnγ
γ = Λ1−n

σ ΛnSλ
λ Λn(1−Sλ)

γ (39)

where Λσ, Λλ and Λγ, the conductivities of the three phases, are assumed to remain constant

in the present work.

The diffusivity coefficient Dλ, generally dependent on many factors (porous medium,

type of solute-solvent, temperature. . . ), is assumed constant.

Concerning the thermal expansion coefficientA, it was deduced from a stress-free cooling

test on a dried limestone. Figure 3 shows the thermal contraction of a dried limestone A∆T

and the fitted curve from which the thermal expansion coefficient was determined.
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Figure 3: Thermal strain of a dried limestone specimen.

The parameters used in all the numerical simulations are listed in Table 2. Notice that

the parameters of the water saturation degree (m and P ) and the relative permeability (r)
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were calibrated against freezing tests with pure water and multi-stage loading conditions.

An example of fitting a stress-free multi-stage freezing laboratory test performed on a water

saturated specimen is shown in Figures 4 and 5. As can be observed, the calibrated values

of the parameters m, P and r allowed to satisfactorily describe the evolution of temperature

and strain in the specimen.
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Figure 4: Comparison between measured and predicted temperatures for c = 0, in the case of a multi-stage

temperature variation.
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3.2.2. Initial and boundary conditions

Temperature and concentration were initially set to their respective values at the begin-

ning of each experimental test, and the liquid pressure was initially equal to p0.

The thermal boundary conditions were simulated using the Newton’s law of cooling, as

follows:
−→
ψ .−→n = H (T − Ta) (40)

where H is the convective heat transfer coefficient, Ta is the air temperature inside the

environmental chamber and −→n is the outward unit vector normal to the boundary of the

sample.

A zero-flux boundary condition was imposed for concentration (in the case of NaCl

saturated specimens) and a free drainage boundary condition for liquid phase pressure:
−→
J .−→n = 0

pλ = p0
(41)

3.2.3. Numerical results and comparison with experimental data

In this section we compare the numerical predictions, in terms of temperature and me-

chanical strain, with experimental results of three stress-free freezing tests corresponding to

three different concentrations. For each test, two figures are presented: a figure depicting the

variation of temperature versus time inside the specimen and on its surface in addition to

the air temperature Ta recorded inside the environmental chamber, and a figure showing the

variation in time of axial and circumferential strains. In both figures, experimental values

and calculated curves are given. Figures 6 and 7 correspond to the case of a water saturated

specimen whereas Figures (8, 9) and (10, 11) show the results of aqueous solution saturated

specimens, corresponding to an initial concentration equal to 0.08 and 0.14, respectively. As

can be seen, the numerical results (solid lines) agree fairly well with the experimental data

(circle points) for the three salinity levels. Moreover, several observations can be drawn from

these figures.

First, it can be observed that, contrary to the temperature curves of the water satu-

rated specimen showing only one phase change plateau around 0 ◦C (Figures 4 and 6), the
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temperature curves for the concentrations 0.08 and 0.14 exhibit two phase change plateaus

(Figures 8 and 10): the first one around the phase change temperature corresponding to

the initial salinity of the specimen’s saturating fluid (− 5 ◦C for c = 0.08 and − 10 ◦C for

c = 0.14) and the other one around the phase change temperature of a saturated NaCl

aqueous solution (− 25 ◦C for c = 0.25, approximately). It should be noted that this sec-

ond plateau is due to the constraint we added on the concentration variable so that it does

not exceed the saturation level. Figure 12 illustrates this phenomenon, showing the evolu-

tion of salt concentration inside the specimen in its center versus temperature for the two

salinities. Remark also that the phase change plateaus are less pronounced than in the

case of pure water, especially the first one, which may be explained by the evolution rate

of salt concentration in the saturating liquid and the resulting decrease of the coexistence

temperature.

Second, as can be seen in all the temperature curves, when the specimen’s temperature

reaches the phase change temperature, it decreases instead of remaining constant and phase

change does not occur. It is an unstable condition, called supercooling, and followed by

a nucleation phase during which temperature instantly increases up to the phase change

temperature. The phenomenon of supercooling, still difficult to predict, is not considered in

this work.

SecondThird, the strain curves in the case of pure water (Figures 5 and 7) exhibit three

major characteristic phases, a first phase during which the specimen only contracts, corre-

sponding in the temperature curve to the first decay of temperature beyond the freezing-

melting temperature (around 0 ◦C), a second phase when phase change occurs inducing an

important dilation in the axial and circumferential directions, and a third phase in which

transformation of water into ice ceases and the specimen restarts contracting but following

a slope larger than the slope of the first phase due to the presence of the newly formed ice

phase. The same thing applies to the strain curves for the concentrations 0.08 and 0.14

(Figures 9 and 11). Indeed, the initial pure contraction of the specimen ends at the shifted

freezing-melting temperature corresponding to the first change of temperature rate then

the specimen continues to contract following a less steep slope since ice crystals start to
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form. This change in strain rate remains negligible in front of the dilation that occurs when

the saturation concentration is reached, partly due to the important length of the second

plateau compared to the first one. We notice here that the model is capable of reproducing

this significant strain increase accompanying the saturation plateau but underestimates the

dilation occurring after the first freezing plateau. However, the overall strain magnitude

remains close to the measured values. Naturally, the quality of the numerical curve could

be enhanced if the saturation degree and relative permeability parameters were determined

independently for each specimen instead of using one global parameter set to simulate all

the tests.

The prevailing mechanism behind the swelling of specimens upon freezing is the mass

density discontinuity associated with water phase change. This induces a significant increase

of the equivalent pore pressure $ (Equation 20) as the temperature of the specimen decreases

below the freezing-melting temperature. Figure 13 depicts the evolution of the equivalent

pore pressure inside the specimens. Notice that for the concentrations 0.08 and 0.14, this

increase, in full accordance with axial and circumferential dilations, becomes significant

when temperature reaches the freezing-melting point of the saturated solution. We note also

that the greater the initial salt content, the more important the strain and pore pressure

magnitude. This can be partly explained by the increase of the liquid dynamic viscosity with

an increasing salinity (Equation 38) which induces a decrease of the permeability resulting

in a very high liquid pressurization during freezing. In practice, it is important to note that

freezing induces a rapid growth of the remaining liquid water’s concentration (Figure 12)

which could affect the magnitude of ground deformations and the conclusions drawn about

the stability of the medium, despite a low initial salt content of the saturating fluid.

ThirdFourth, we noticed that the maximum recorded circumferential strain was smaller

than the axial strain at a ratio of about 0.7, except in the case of c = 0.08, where circumfer-

ential strains exceeded axial strains. Indeed, a material variability is suspected to influence

the tendency. Simulations showed that temperature evolution during freezing is responsible

for the observed differences between the axial and circumferential strains. To illustrate this,

Figure 14 depicts temperature and pressure distribution and the corresponding deformed
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shape of the specimen at three key dates in the case of c = 0.14. The displacement scaling

factor is not the same for the three dates due to the large difference between the magnitude

of contraction and dilation strains. It appears that the borders of the top and the bottom

bases (by symmetry) of the cylindrical specimen always reveal high negative temperature

values compared to the center. A quicker cooling of that part of the specimen modifies the

direction of the temperature gradient and induces a heterogeneous growth of the equiva-

lent pore pressure $ when water starts turning into ice. Indeed, in the first phase, when

the specimen contracts (Figure 14a), the pore pressure remains nearly equal to the initial

pressure given the drained conditions. Consequently, the resulting strain distribution is

quite homogeneous. Then, water in the borders of the specimen start first to turn into ice

(Figure 14b), and as a consequence, pore pressure increases in the corners inducing a het-

erogeneous expansion of the specimen that becomes hourglass-shaped. As the freezing front

advanced in the other lateral zones of the specimen and towards the center (Figure 14c),

the pore pressure and the magnitude of volumetric expansion increase inside the specimen

that becomes barrel-shaped.

We should emphasize here the importance of carefully choosing the right boundary con-

ditions that allow to reproduce empirical observations. In our case, if a Dirichlet boundary

condition was applied instead of the Newton’s law (Equation 40), we wouldn’t be able to

explain the noted difference between axial and circumferential strains.
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temperature variation.
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Figure 8: Comparison between measured and predicted temperatures for c = 0.08.
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Figure 9: Comparison between measured and predicted strains for c = 0.08.
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Figure 10: Comparison between measured and predicted temperatures for c = 0.14.
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Figure 11: Comparison between measured and predicted strains for c = 0.14.
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(a) t = 4 h

(b) t = 5.7 h

(c) t = 6.4 h

Figure 14: Equivalent pore pressure in MPa (on the left) and temperature in ◦C (on the right) distribution,

and specimen’s deformed shape (in the center), with a displacement scaling factor of 2500 in (a) and (b)

and 400 in (c), for c = 0.14. 34



3.2.4. Effect of neglecting the liquid pressure contribution in the capillary pressure

In order to demonstrate this effect, a simulation of the test with c = 0.14, in which this

contribution was neglected, was performed for comparison purposes. This assumption is

equivalent to considering the following expression of capillary pressure:

pc(T, c) = ργ
(
p0, T0(c)

)
L0(c)

(
T/T0(c)− 1

)
(42)

This equation is classically adopted in literature on thermo-hydraulic modeling of ground

freezing [30, 44]. The resulting mathematical formulation is obviously more simple than the

one used in this paper but remains consistent with the level of approximation involved in

large-scale geotechnical applications, in particular when the main issue is the prediction of

the extent of the frozen area. When the problem is about the prediction of the freezing-

induced ground deformations, the influence of such assumption could be detrimental to

the model’s predictive capacities, especially in the presence of undrained ground conditions

that are favorable to a strong growth of liquid pressure beyond the initial pressure upon

freezing. Literature about free-dilation sealed experiments on mortar specimens [9] showed

that neglecting the effect of liquid pressurization in the capillary pressure expression induces

an overestimation of the amount of the ice formed and therefore an overestimation of the

pressure of the remaining unfrozen water.

In Figure 15, we compare temperature (Figure 15a) and equivalent pore-pressure (Fig-

ure 15b) in the center of the specimen in both cases: when using Equation 31 to express

capillary pressure and when using the simplified expression 42. As can be observed, while

the difference in terms of the calculated temperatures remains small, it is very significant in

terms of the calculated pore pressures: when using Equation 42 the pore pressure is largely

overestimated. The deformations being mainly pore-pressure controlled, the impact on them

is therefore non-negligible.
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Figure 15: Comparison between simulated temperature and pore pressure in the center of the specimen

when using Equation 31 or Equation 42.
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4. Conclusion

Through a thermodynamically consistent framework, a fully coupled THM model consid-

ering the salinity of the saturating fluid has been derived. It was built using a macroscopic

continuum approach based on the liquid saturation degree function to track the phase-change

fronts and on the concept of effective stress to predict the mechanical effect of ground freez-

ing. The expressions of the capillary pressure and the latent heat of phase change as functions

of liquid pressure, temperature and concentration were derived based on the thermodynamic

equilibrium at the liquid-ice phases interfaces and some simplifying assumptions. The in-

dependence of the specific volumes with respect to T and p is the most questionable one

among these assumptions as it was not integrated in balance equations, to the detriment of

the model’s global consistency. However, this inconsistency remains minor given that the

capillary pressure and the latent heat terms intervene in the model as a parameter of an

empirical function, or multiplied by an empirical expression, respectively.

The developed approach was used to simulate stress-free freezing laboratory tests carried

out on specimens initially fully saturated with sodium chloride solutions at three different

concentrations. The numerical predictions seemed to be in good agreement with the exper-

imental measurements of both temperature and strain. In addition, it was found that the

expansion of water when turning into ice leads to the build up of significant pore pressure,

which represents the leading mechanism behind specimen’s volumetric dilation. Moreover,

this dilation is more important in the presence of salt in the saturating fluid. Consequently,

if the effect of the salt concentration is ignored or not correctly modeled, the evolution of

the frozen zones and the ground’s movements can be mispredicted.

Although the model’s ability to capture the main thermo-hydro-mechanical phenomena

associated with the freezing of saline-saturated porous media was satisfactory, further in-

vestigation would be required to improve the proposed modeling approach and increase its

predictive capabilities. First, further studies are required to investigate the validity of the

use of the van Genuchten empirical model for the liquid saturation degree and the relative

permeability functions for saline-saturated ground. Second, future work can focus on salt
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crystallization phenomenon and its effect on the freezing advance and the ground’s deforma-

tion. Additional freezing tests could be undertaken with a high initial salt content close to

the saturation concentration and with a longer duration in order to enable the crystalliza-

tion. Finally Third, an investigation of the thawing phase and the volume shrinkage caused

by ice melting is also of great interest to geotechnical applications of ground freezing. Fi-

nally, in the case when loading/unloading mechanisms are taking place in a frozen ground,

the modeling framework presented in this paper must be supplemented with an appropriate

constitutive model that is able to predict non-elastic strains.
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Université de Marne la Vallée.

[12] Fabbri, A., Fen-Chong, T., 2013. Indirect measurement of the ice content curve of partially frozen

cement based materials. Cold Regions Science and Technology 90, 14–21.

[13] Feistel, R., Wagner, W., 2006. A new equation of state for h2o ice ih. Journal of Physical and Chemical

Reference Data 35 (2), 1021–1047.

[14] Fer, F., 1971. Thermodynamique macroscopique. 2. Vol. 2. ME Sharpe.

[15] Gawin, D., Majorana, C., Schrefler, B., 1999. Numerical analysis of hygro-thermal behaviour and

damage of concrete at high temperature. Mechanics of Cohesive-frictional Materials: An International

Journal on Experiments, Modelling and Computation of Materials and Structures 4 (1), 37–74.

[16] Ghoreishian Amiri, S., Grimstad, G., Kadivar, M., Nordal, S., 2016. Constitutive model for rate-

independent behavior of saturated frozen soils. Canadian Geotechnical Journal 53 (10), 1646–1657.

[17] Hassanizadeh, S. M., Gray, W. G., 1990. Mechanics and thermodynamics of multiphase flow in porous

media including interphase boundaries. Advances in water resources 13 (4), 169–186.

[18] Hu, J., Liu, Y., Li, Y., Yao, K., 2018. Artificial ground freezing in tunnelling through aquifer soil layers:

a case study in nanjing metro line 2. KSCE Journal of Civil Engineering, 1–7.

[19] Hu, X., Fang, T., Chen, J., Ren, H., Guo, W., 2018. A large-scale physical model test on frozen status in

freeze-sealing pipe roof method for tunnel construction. Tunnelling and Underground Space Technology

72, 55–63.

[20] Koniorczyk, M., Gawin, D., 2008. Heat and moisture transport in porous building materials containing

salt. Journal of Building Physics 31 (4), 279–300.

[21] Koopmans, R. W. R., Miller, R., 1966. Soil freezing and soil water characteristic curves. Soil Science

Society of America Journal 30 (6), 680–685.

[22] Lai, Y., Pei, W., Zhang, M., Zhou, J., 2014. Study on theory model of hydro-thermal–mechanical

interaction process in saturated freezing silty soil. International Journal of Heat and Mass Transfer 78,

805–819.

[23] Lai, Y., Wu, D., Zhang, M., 2017. Crystallization deformation of a saline soil during freezing and

thawing processes. Applied Thermal Engineering 120, 463–473.

[24] Mandolini, A., Viggiani, G. M., 2017. Experiences gathered from the construction of napoli under-

ground. Procedia Engineering 172, 31–41.

[25] Mualem, Y., 1978. Hydraulic conductivity of unsaturated porous media: generalized macroscopic ap-

39



proach. Water Resources Research 14 (2), 325–334.

[26] Nishimura, S., Gens, A., Olivella, S., Jardine, R., 2008. Thm-coupled finite element analysis of frozen

soil: formulation and application. Géotechnique 59 (3), 159–171.

[27] Ophori, D. U., 1998. Flow of groundwater with variable density and viscosity, atikokan research area,

canada. Hydrogeology Journal 6 (2), 193–203.

[28] Pimentel, E., Sres, A., Anagnostou, G., 2012. Large-scale laboratory tests on artificial ground freezing

under seepage-flow conditions. Geotechnique 62 (3), 227.

[29] Qinguo, M., Yuanming, L., Mingyi, Z., 2017. Freezing-thawing behaviour of saline soil with various

anti-saline measures. European Journal of Environmental and Civil Engineering, 1–25.

[30] Rouabhi, A., Jahangir, E., Tounsi, H., 2018. Modeling heat and mass transfer during ground freezing

taking into account the salinity of the saturating fluid. International Journal of Heat and Mass Transfer

120, 523–533.

[31] Rouabhi, A., Tijani, M., 2017. Modélisation thermo-hydraulique de la congélation artificielle des terrains
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(Eds.), Manuel de mécanique des roches. Thermomécanique des roches. Tome V. Presses des Mines,

Collection sciences de la terre et de l’environnement, Paris, pp. 305–316.

[32] Russo, G., Corbo, A., Cavuoto, F., Autuori, S., 2015. Artificial ground freezing to excavate a tunnel

in sandy soil. measurements and back analysis. Tunnelling and Underground Space Technology 50,

226–238.

[33] Schmall, P., Dawson, A., 2017. Ground-freezing experience on the east side access northern boulevard

crossing, new york. Proceedings of the Institution of Civil Engineers-Ground Improvement 170 (3),

159–172.

[34] Schmall, P. C., Maishman, D., 2007. Ground freezing a proven technology in mine shaft sinking. Tunnels

and Underground Construction Magazine 59 (6), 25–30.

[35] Shen, C., McKinzie, B., Arbabi, S., et al., 2010. A reservoir simulation model for ground freezing

process. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

[36] Spaans, E. J., Baker, J. M., 1996. The soil freezing characteristic: Its measurement and similarity to

the soil moisture characteristic. Soil Science Society of America Journal 60 (1), 13–19.

[37] Taber, S., 1930. The mechanics of frost heaving. The Journal of Geology 38 (4), 303–317.

[38] Thomas, H. R., Cleall, P. J., Li, Y., Harris, C., Kern-Luetschg, M., 2009. Modelling of cryogenic

processes in permafrost and seasonally frozen soils. Geotechnique 59 (3), 173–184.

[39] Tian, H., Wei, C., Wei, H., Zhou, J., 2014. Freezing and thawing characteristics of frozen soils: Bound

water content and hysteresis phenomenon. Cold Regions Science and Technology 103, 74–81.
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