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Abstract

The heating of a polymer in a liquefier of a material extrusion 3D printer is numeri-
cally studied. The problem is investigated by solving the mass, momentum, and energy
conservation equations. The polymer is taken as a generalized Newtonian fluid with a
dynamical viscosity function of shear rate and temperature. The system of equations is
solved using a finite element method. The boundary conditions are adapted by compar-
ison with the previous work of Peng et al. [5] showing that the thermal contact between
the polymer and the liquefier is very well established. The limiting printing conditions
are studied by determining the length over which the polymer temperature is below the
glass transition temperature. This provides a simple relation for the inlet velocity as a
function of the working parameters and the polymer properties.

Key words: Polymer; 3D printing; material extrusion; heat transfer; finite element
analysis

1. Introduction

One of the most recent manufacturing technologies is additive manufacturing (AM)
which emerged in the 1990s [1]. Contrary to the subtractive techniques, the product
is built by adding a tiny amount of material step by step. AM offers a new “design
freedom” to create products impossible to make with a classical process [2]. Recently,
Lee et al. [3] detailed the perspectives of AM in biology. For plastic products, different
technologies exist. In powder bed fusion, a laser provides energy to selectively melt a
fine granular material. Selective laser melting (SLM) or selective laser sintering (SLS)
belong to this kind of process [2]. In material extrusion (ME), an extruder is used to
melt the material which is deposited on a substrate [1, 2]. The fused filament fabrication
(FFF) belongs to this category.

In material extrusion, three steps are required. A small amount of polymer is melted,
added on the ongoing product and finally cooled. This process is presented in detail in
the recent review of Goh et al. [4] in which the printing parameters are provided. FFF is
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an unsteady and nonisothermal process [5]. The overall thermal behavior of a deposited
material has been studied by Costa et al. [6] using a numerical method. The mechanical
properties are also studied in this reference.

In the current contribution, investigations will be focused on the fused filament fabri-
cation technology using amorphous polymers melted in an extrusion chamber also called
liquefier before the deposition on the build surface. The working parameters of the
process are extruder and build surface temperatures, the feeding velocity of polymer
filament, the velocity of the print head and the gap between head and substrate.

In FFF, the liquefier is a furnace in which the solid polymer rod is introduced and
melted by heat transfer and then forced into a small nozzle. Bellini et al. [7] studied the
force required to push the polymer through the extruder by determining the pressure
drop. They found the transfer function corresponding to the ratio of the output to the
input signals [8, Chap. 20] of the liquefier. More recently, Mackay et al. [9] determined
the maximum feed velocity of a FFF 3D printer to have a homogeneous temperature
field at the nozzle exit for three polymers. Assuming a plug flow in the liquefier, they
investigated the thermal behavior with a dimensionless function representing the temper-
ature. Peng et al. [5] studied experimentally the heating of bisphenol-A polycarbonate
using a thermocouple introduced in the polymer rod. They recorded the thermal history
of the polymer in the liquefier. By introducing dye markers in the solid polymer rod,
the hydrodynamics through the extruder is also investigated. They concluded that the
velocity profile is far from the isothermal power-law solution.

To explain the recent contribution of Peng et al. [5], heat and mass transfer are solved
numerically inside the extruder. The polymer behaves as a generalized Newtonian fluid.
Particular attention will be paid on the thermal resistance between polymer and liquefier.
In the present work, two major questions are addressed. What is the temperature history
within the hot part of the extruder? How does the inlet velocity impact temperature
history?

The problem statement is presented in section 2. Results are detailed and discussed
in section 3 with two subsections. The first, § 3.1, is devoted to heating and kinematic
behaviors of the polymer. The second, § 3.2, focuses on the traveling distance in the
liquefier to reach the glass transition temperature. A short conclusion is given in section
4. Appendix A provides the main properties of two amorphous polymers used to perform
the numerical computations.

2. Problem statement

The geometry of the liquefier is taken from the previous work of Peng et al. [5]
corresponding to the liquefier of the Cartesio 3D printer, model W09. Figure 1 depicts
the interior geometry of the liquefier composed of a cylinder with a diameter close to the
polymer rod diameter and a nozzle with a conical geometry that connects the cylinder to
a small capillary die. The boundary of the liquefier is composed of the inlet section ∂Ωin,
the surface of the cylinder ∂Ωcyl, the cone and the capillary die surfaces of the nozzle
∂Ωnoz and the outlet section ∂Ωout. The framework has been also represented in Figure 1
with z the axial coordinate and r the radial coordinate. The polymer is introduced from
the left side and exits at the other extremity after the convergent.

The fluid motion considered in this work is assumed in steady-state regime. Moreover,
the geometry is mainly a uniform conduit apart from the convergent at the end of the
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Figure 1: Geometry of the liquefier used for the numerical computations. Dimensions are given in mm.

extruder. As it is very well detailed in the textbook of Bird et al. [10, Chap. 4 & 9],
the use of a generalized Newtonian fluid is justified in the fluid domain above Tg. The
same behavior is considered below the glass transition temperature. Recently, a similar
approach has been used by Xia et al. [11] to study the formation of a filament in FFF.
The temperature dependence of the viscosity leads to very high values which mimics a
solid behavior. This simplifies the numerical resolution for a multiphase material. The
dynamic viscosity is given by the Carreau-Yasuda’s law [12, 10] as follows

η(γ̇, T ) =
η0aT

[1 + (λaT γ̇)
a
]
(1−n)/a

, (1)

in which η0 is the Newtonian plateau viscosity, n the power law index, λ a time constant
depending on the nature of the polymer and a a parameter to describe the transition
between the Newtonian plateau and the power-law regime, T the absolute temperature,
γ̇ the generalized shear rate defined by

γ̇ =
√
2D : D, (2)

and D the rate-of-strain tensor given by

D =
1

2

(

∇u+ t
∇u

)

, (3)

in which u is the fluid velocity. The symbol “:” in eq. (2) is the double dot product
operator defined in [14].

The shift factor aT follows an Arrhenius’s law given by

aT = exp

[

Ea

R

(

1

T
− 1

Tref

)]

, (4)

with Ea the activation energy, R the ideal gas constant and Tref the reference temper-
ature. A Williams-Landel-Ferry (WLF) law [15] would be more suitable for amorphous
polymer as it is done in [11]. However, the high value of the activation energy Ea induces
a sufficient viscosity increase around Tg to use the Arrhenius’s law in the numerical sim-
ulations. The shift factors for both polymers are approximately equal to 4 ·103 at Tg and
increases exponentially for smaller temperature. In this limit, the fluid moves according
to a “solid body motion” with a rate-of-strain tensor equal to zero.

In the following, numerical simulations have been done for two polymers. To compare
with the previous results published by Peng et al. [5], the first polymer is a bisphenol-
A polycarbonate (Makrolon R© 3208). The second polymer is an acrylonitrile butadiene
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styrene commonly used in the FFF technology. The parameters of equations (1) and (4)
are summarized in Appendix A for both polymers.

The problem is normalized according to Bird et al. [10, Chap. 4]. The spatial
coordinates are normalized by the inlet diameter, D = 2 mm. The velocity is normalized
by the outlet velocity U = 4Q/(πd2) with Q the volumetric flow rate and d the diameter
of the nozzle equal to 0.4 mm. The dynamic viscosity is scaled with the viscosity η0 of the
Newtonian plateau. Since the viscosity forces are more important than the inertial forces,
the pressure is normalized by η0U/D. The shear rate is also reduced using U/D. Since
the range of temperature is between T0, the inlet temperature, and T∞ the temperature
of the liquefier, the dimensionless temperature is written as follows

θ =
T − T0

T∞ − T0
. (5)

The variation of the specific volume of the polymer as a function of temperature is
not taken into account because it is small for amorphous polymers. Consequently, the
polymer is assumed incompressible. In the following, the normalized variables are written
with an overbar. The balance equations are the following [10]:

∇ · ū = 0, (6)

Re
Dū

Dt̄
= −∇P̄ +∇ ·

[

2η̄( ˙̄γ, θ)D̄
]

, (7)

Pe
Dθ

Dt̄
= ∇

2θ +Br η̄( ˙̄γ, θ) ˙̄γ2, (8)

coming from the volume conservation, the momentum conservation in which the gravity
forces are neglected and the energy conservation. In equation (8), the viscous dissipation
is taken into account. The three dimensionless numbers, Re the Reynolds number, Pe
the Péclet number and Br the Brinkman number [16] are defined by

Re =
ρUD

η0
, (9)

Pe =
UD

κ
, (10)

Br =
η0U

2

k(T∞ − T0)
, (11)

with ρ is the density of the polymer, κ the thermal diffusivity equal to k/(ρCp) with
k the thermal conductivity and Cp the heat capacity. The thermal properties for both
polymers are also provided in appendix A. The dimensionless viscosity is given by

η̄( ˙̄γ, θ) =
aT

[

1 + (Wi aT ˙̄γ)
a](1−n)/a

, (12)

with Wi is a Weissenberg number defined by

Wi =
λU

D
. (13)

Using a maximum extrusion velocity at the outlet of the liquefier equal to 0.5 m/s
and the properties of the polycarbonate given in Appendix A, the Reynolds number is
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Boundary Fluid mechanics Heat transfer

∂Ωin ū =
(

d
D

)2
ez θ = 0

∂Ωcyl ū = 0 ∂θ
∂n = Nu(1− θ)

∂Ωnoz ū = 0 θ = 1
∂Ωout σ̄ · n = 0 -

Table 1: Boundary conditions for fluid mechanics and heat transfer equations in the four boundaries of
the liquefier represented in Figure 1.

equal to 2.27 ·10−3. Consequently, the inertia is negligible in the momentum equation in
all situations. The Péclet number is equal to 7.5 · 103. By taking an inlet temperature
equal to 24◦C and the heating temperature equal to 325◦C according to the experimental
data of Peng et al. [5], the Brinkman number is equal to 2.2. So, when the extrusion
velocity is sufficiently high, the heat transfer by advection and the viscous heating could
be important.

Table 1 summarizes the boundary conditions for both the fluid mechanics and heat
transfer equations. At the inlet, ∂Ωin, the normalized velocity is equal to the ratio
of the capillary diameter to the cylinder diameter squared. On the cylinder, ∂Ωcyl, a
Fourier (called also Robin) boundary condition has been chosen. The thermal resistance
is thus taken into account due to the eventual thin air layer between the extruder and
the filament. The Nusselt number, Nu, introduced in Table 1 is defined as follows

Nu =
hD

k
, (14)

with h is the heat transfer coefficient which can be viewed as the inverse of the thermal
contact resistance. The Nusselt number is assumed uniform all along the cylinder. As
it is difficult to evaluate, the Nusselt number will be determined by comparison between
numerical computations and experimental data presented in the next section.

On the convergent and the capillary die surfaces, ∂Ωnoz, a perfect thermal contact
is assumed which means that the reduced surface temperature is equal to one. At the
outlet, ∂Ωout, the normal stress corresponding to the natural boundary conditions of the
Navier-Stokes equations [17] is imposed equal to zero in which σ̄ is the dimensionless
Cauchy stress tensor equal to −P̄I + 2η̄( ˙̄γ, θ)D̄ with I the identity tensor and n the
outward unit normal. This means that the outlet pressure is imposed equal to zero. In
real additive manufacturing conditions, the pressure at nozzle exit should be equal to
the spreading pressure on the substrate [18]. For the temperature, nothing is applied
meaning that θ is unknown right on ∂Ωout.

A continuous Galerkin finite element method is used to solve the Stokes equations,
eqs. (6) and (7) in mixed velocity-pressure formulation using a Taylor-Hood element
P2 − P1 to satisfy the discrete inf − sup condition [17]. For the energy equation (8), a
discontinuous Galerkin finite element method has been chosen with a polynomial degree
equal to P2d to ensure the stabilization of the advection term. For the time integration
a backward differentiation formula at the second-order is taken. At each time step, the
system is solved sequentially by first solving the Stokes equations and then the energy
equation until convergence. Only a 2d-axisymmetric case has been considered. The
numerical solver has been written with the Rheolef C++ library developed by Saramito
[19].
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Uin (mm/min) Pe Br Wi
90 562.5 1.24·10−2 2.24·10−2

180 1125 4.94·10−2 4.47·10−2

270 1687.5 1.11·10−1 6.71·10−2

Table 2: Values of the Péclet, Brinkman and Weissenberg numbers for the three inlet velocities.

3. Results and discussion

3.1. Heating and kinematic behaviors of polymer

To control the accuracy of our numerical solver and to set the value of the Nusselt
number along the cylinder section of the extruder, computations are done with the work-
ing conditions investigated in [5]. In this previous contribution, the authors measured the
polycarbonate temperature during its travel in the liquefier by introducing a thermocou-
ple inside the filament. Three values of the polymer velocity at the entrance have been
tested. The values of the dimensionless numbers are provided in Table 2 for the three
values of the inlet velocity. In the following, even if the three dimensionless numbers
change with the inlet velocity, results will be only referenced as a function of the Péclet
number.

To adjust the Nusselt number, the thermocouple measurements provided in [5] are ex-
ploited. However, the comparison is not so obvious. The experiments are time dependent
(the thermocouple is traveling through the liquefier) while the numerical computations
are in a steady-state regime. Nevertheless, assuming that the thermocouples have a high
temporal resolution, the largest temperature recorded by the thermocouple can be con-
sidered as the real temperature at the liquefier exit. Figure 2-(a) plots the temperature
as a function of the axial coordinate z for the smallest inlet velocity, i.e. for Pe = 562.5.
Four Nusselt numbers are investigated: Nu = 1, 10, 102 and ∞. The last one means that
the polymer temperature in contact with the wall is set equal to the liquefier temperature.
The star corresponds to the maximum of the experimental recording. For the smallest
Nusselt number, the polymer temperature at the nozzle exit is below the experimental
data. Conversely, for Nusselt numbers larger than or equal to 10, the temperature at the
exit obtained numerically is close to the experimental value.

For the second Péclet number, Pe = 1125, the temperature over the axial coordinate
is provided in Figure 2-(b) for the four different Nusselt numbers. For the two smallest
values of Nu, the exit temperature does not reach the measured value. Conversely, when
the Nusselt number is equal to 100 (which corresponds to a nearly perfect contact with
the liquefier) the temperature at the exit agrees with the experimental data.

For the largest velocity, i.e. Pe = 1687.5, the temperature over the axial coordinate
is depicted in Figure 2-(c). Whatever the Nusselt number, the temperature observed
experimentally is never reached. This result is because, for the large Péclet number, the
temperature is not radially uniform. Indeed, as it is shown in Figure 3, the temperature
exhibits a radial gradient at nozzle exit when the Péclet number is equal to 1125 or
1687.5.

For the smallest Péclet number, the temperature given by the thermocouple is very
close to the temperature observed over the radial coordinate since the thermal hetero-
geneity is limited. For the larger Péclet numbers, the thermocouple integrates a temper-
ature in its neighborhood since the polycarbonate polymer is a semi-transparent media.
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(c) Pe = 1687.5
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Figure 2: Temperature T (◦C) as a function of the axial coordinate z (mm) in r = 0 for Nu = 1, 10, 102

and ∞ for (a) Pe = 562.5, (b) Pe = 1125 and (c) Pe = 1687.5.

Nevertheless, the temperature recorded by the thermocouple belongs to the range of the
temperature obtained numerically.

These results permit us to conclude that the thermal contact between the polymer
and the extruder is perfect. Consequently, in the following the temperature of the heating
device is applied everywhere along the border of the extruder. These results confirm that
the polymer rod heating starts at the entrance of the liquefier. Nevertheless, the two
situations investigated experimentally and numerically are not completely equivalent.
In the experimental set-up, the melting of a rod is established in a transient regime.
Indeed, experiments start with a liquefier without polymer. By introducing the polymer,
the liquefier works in an unsteady regime. In the numerical simulation, heating is realized
in a steady-state regime which explains the difference between the two situations.

Figure 4 shows the temperature as a function of time for the three extrusion velocities
(the z coordinate is replaced by the residence time using the axial velocity). These curves
confirm that at small inlet velocity, the temperature of the polymer reaches the heating
device temperature. The residence time of the fluid is around five seconds. For Pe = 1125,
the residence time is reduced roughly by a factor two. It is noteworthy that for the largest
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for Pe = 562.5, 1125 and 1687.5 for a perfect contact on the cylinder section, i.e. Nu = ∞. Stars
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(a) Pe = 562

Liso−Tg

(b) Pe = 1125

(c) Pe = 1687

Figure 5: Temperature field (K) for three Péclet numbers. The solid line is the iso-value of Tg = 423.15
K. The four vertical lines are the locations of the velocity profiles depicted in Figure 6.

Péclet number the residence time is larger than for Pe = 1125. As observed in Figure 4,
for the high Pe value, the temperature in the neighborhood of the inlet stays close to
the inlet temperature. Consequently, the velocity profile is closer than a plug flow with
a smaller average velocity as it will be shown later.

Numerical results show that the rod is at a temperature above Tg during a shorter
range of time when the inlet velocity increases. For Pe = 562.5, 1125 and 1687.5, the
times spend above Tg are 3.36, 1.33 and 1.12 s respectively.

Temperature fields are reported in Figure 5 for the three values of the Péclet num-
ber. In all investigated situations, the viscous dissipation, the last term of eq. (8), is
practically negligible. In the cylinder part, the shear rate is too small to induce viscous
dissipation. In the nozzle, the polymer is too hot and so the viscosity too small to develop
viscous dissipation. The iso-value corresponding to the glass transition temperature of
the bisphenol-A polycarbonate equal to Tg = 150◦C is reported in black solid line. For
the smallest inlet velocity, i.e. Pe = 562.5, the heating of the polymer is efficient since
in a large part of the domain the temperature is close to the liquefier temperature. Nev-
ertheless, a cold-core is observed at the inlet where the heat transfer is a competition
between advection and thermal diffusion. For this Péclet number, the glass transition
temperature is reached on the cylinder axis within 2 mm. The increase of the inlet
velocity enlarges the cold-core. The location of the curve T = Tg right on the axis of
symmetric which will be designated by Liso−Tg

in the following is equal to 3.94 mm for
Pe = 1125 and 5.88 mm for Pe = 1687.5 giving roughly a linear trend of this length with
the Péclet number. The distance Liso−Tg

has been reported in Figure 5-(a) for Pe = 562.
To see the coupling between kinematics and heat transfer, the z-component of the

velocity ū is plotted as a function of r̄ in Figure 6 at four locations downstream and
upstream of the end of the iso-Tg curve for the three Péclet numbers. The first profile
in black is in the cold core at one half of Liso−Tg

, the second in blue is right on the end
of the iso-Tg curve, the third in red is at 1.5 times the Liso−Tg

and the last in green is
localized at two times Liso−Tg

. The positions of these profiles are reported in Figure 5.
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(a) Pe = 562.5 (b) Pe = 1125
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(c) Pe = 1687.5
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Figure 6: z-component of the velocity ū as a function of r̄ in dimensionless units for (a) Pe = 562.5, (b)
Pe = 1125 and (c) Pe = 1687.5.

The velocity profile in the cold core area is characterized by a plug flow. The mag-
nitude is close to the inlet velocity. Whatever the Péclet number, the profiles close to
the entrance exhibit an overshoot close to the liquefier wall where the polymer is already
melted. The occurrence of a local velocity with a magnitude larger than the inlet velocity
can be explained by mass conservation considerations. Since the velocity profiles have
been plotted in locations distributed proportionally to the length of the iso Tg-value, the
profiles are quite similar for all Péclet numbers. Nevertheless, little differences appear
between these three values of the Péclet number indicating that the velocity is strongly
coupled to the thermal behavior. Note that the velocity profiles localized downstream
to Liso−Tg

are closer than usual power-law fluid profiles. However, these profiles confirm
that the flow is not the simple solution of an iso-thermal power-law model as it has been
suspected in [5]. In such material characterized by a large Prandtl number, the ratio of
the kinematic viscosity to the thermal diffusivity, the fluid dynamics is the slave of the
thermal solution mainly due to the viscosity dependence on temperature.
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Figure 7: Liso−Tg
(mm) as a function of Pe for the bisphenol-A polycarbonate and the acrylonitrile

butadiene styrene.

3.2. Behavior of Liso−Tg
vs. Pe

As it has been observed in the previous subsection, the spreading of the domain where
the temperature is below the glass transition one increases with the Péclet number.
It results in the competition of heat transfer by advection and diffusion studied for a
long time [20]. Nevertheless, the quantification of Liso−Tg

as a function of the working
conditions of the 3D printer is an important issue. Indeed as reported in the recent work
of Mackay et al. [9], above a threshold of inlet velocity, the 3D printer fails to provide
an extrudate.

Previously, Liso−Tg
has been reported for three particular Péclet numbers. To go fur-

ther, numerical simulations have been done for a large range of Péclet numbers. Moreover,
two lower temperatures of the liquefier have been investigated equally to 300 to 275◦C.
Finally, numerical simulations have been performed for an acrylonitrile butadiene styrene
which properties are given in Appendix A (the glass transition temperature is equal to
105◦C). The inlet temperature stays the same, i.e. Tin = 24◦C. The liquefier temperature
is set equal to 230◦C.

Figure 7 provides the behavior of Liso−Tg
as a function of Péclet number for the

bisphenol-A polycarbonate at three liquefier temperatures and for the acrylonitrile bu-
tadiene styrene with T∞ = 230◦C. Whatever the heating condition and the polymer,
Liso−Tg

increases linearly with the Péclet number. The result arises directly from the
scaling of the Graetz problem with an imposed temperature on the wall. Indeed, accord-
ing to Bejan [21, sec. 3.5], heat transfer can be written in reduced variables for which the
axial characteristic length is proportional to Pe. Even if this scaling is established for a
Newtonian fluid, it does not change for a generalized Newtonian fluid. Consequently, it
is expected to find a distance to reach the glass transition temperature scaling linearly
with the Péclet number.

For the bisphenol-A polycarbonate, the slope of Liso−Tg
as a function of Pe increases

with the reduction of the liquefier temperature T∞. The decrease of T leads to a larger
distance to reach Tg in the liquefier for the polymer. To see the effect of the heating,
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the inlet temperature and also the nature of the polymer (various Tg), Liso−Tg
divided

by θg = (Tg − T0)/(T∞ − T0) is plotted as function of the Péclet number in Figure 8.
All data merge in a master curve. A linear fitting gives that Liso−Tg

can be written as
follows

Liso−Tg
= 4.16 · 10−3θgDPe . (15)

This result can be exploited to provide the correct working conditions of the 3D
printer liquefier. Indeed, replacing Liso−Tg

by the entire distance of the liquefier L in
equation (15) gives the threshold of the Péclet number above which the polymer is not
completely heated above Tg. From the definitions of the reduced variables, the limit of
the inlet velocity can be written as follows

Uin = 2.41 · 102T∞ − T0

Tg − T0

λ

ρCp

d2L

D4
. (16)

This relation gathers working parameters such as the inlet and heating temperature but
also various characteristics of the polymer and geometry of the liquefier.

4. Conclusion

The present work focuses on the numerical computations of the polymer heating
in the liquefier of a FFF additive manufacturing printer with a finite element method.
The heat and mass transfer equations are solved taking into account the temperature
and shear dependence of the dynamic viscosity in the whole temperature range (above
and below the glass transition temperature). The geometry is chosen according to the
previous contribution of Peng et al. [5]. Only amorphous polymers are considered such
as polycarbonate and acrylonitrile butadiene styrene.

The numerical results confirm the previous observations of Peng et al. [5] of a perfect
thermal contact between the polymer and the wall of the liquefier. The kinematics is
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characterized by the occurrence of a plug flow close to the inlet showing the strong
coupling between temperature and velocity fields. The spatial limit of the iso-Tg curve
is also investigated showing that the spread of the core with a temperature less than Tg

increases linearly with the inlet velocity. A limit in terms of inlet velocity is provided
with a simple relation easy to use as a function of polymer properties and geometrical
data.

This work has to be completed soon by taking into account the viscoelasticity of the
polymer to study more clearly the solid to liquid transition. Moreover, an integrated
computation of the polymer behavior in the liquefier and during the spreading process
on the substrate is on the way. It will especially allow investigating the influence of the
temperature heterogeneity at nozzle exit on the dimensions of the deposited layer.

A. Properties of polycarbonate and acrylonitrile butadiene styrene polymers

A.1. Bisphenol-A PC polymer

According to Peng et al. [5], the bisphenol-A polycarbonate used for experiments is
Makrolon R© 3208 provided by Covestro. From the viscosity data provided by the supplier
at three temperatures [22], the parameters η0, λ, n, a, Ea have been determined in two
steps. First, the shift factors are determined to superimpose the whole data in the plane
(γ̇aT , η/aT ) by taking the reference temperature equal to 320◦C. Using the law given by
Eq. (4), the activation energy is then obtained by a linear regression. The correlation
coefficient is very close to 1. In the second step, parameters η0, λ and n are determined
by a non-linear regression technique using a routine in Python. According to Hieber and
Chiang [13], the parameter a is set equal to one for the bisphenol-A PC polymer. Table 3
summarizes parameters of the Carreau-Yasuda and the Arrhenius laws. The reference
temperature is also given in Table 3.

η0 λ n a Ea Tref

Pa·s s – – kJ/mol K
529.17 1.19·10−3 0.31 1. 100.9 593.15

Table 3: Parameters of the Carreau-Yasuda and Arrhenius laws for the bisphenol-A polycarbonate
(Makrolon R© 3208).

Figure 9 depicts η/aT as a function of γ̇aT according to the data provided in [22]. The
solid line corresponds to the Carreau-Yasuda’s law fitting with the parameters given in
Table 3. The maximum error between the data given by [22] and the Carreau-Yasuda’s
law is equal to 2.3%

ρ Cp k
kg/m3 J/(kg·K) W/(m·K)
1200 1250 0.2

Table 4: Density, heat capacity and thermal conductivity of the bisphenol-A polycarbonate (Makrolon R©

3208) according to [22] and [23].
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Figure 9: η(γ̇ , T )/aT vs. γ̇aT for the bisphenol-A polycarbonate (Makrolon R© 3208) at three tempera-
tures.

For the bisphenol-A polycarbonate polymer, the density, the thermal conductivity,
and the heat capacity are given in Table 4. The values of ρ and k are taken from the
datasheet [22] while the heat capacity comes from the handbook of Mark [23].

A.2. ABS polymer

The acrylonitrile butadiene styrene (ABS) has been bought an Internet platform
dedicated to 3D printer materials (Grossiste.com). A parallel plate rheometer ARES
from TA Instruments is used for the viscosity measurements. The dynamic viscosity has
been determined at 210, 220, 230 and 240◦C. The same procedure detailed above has
been employed for the ABS polymer by setting a = 0.6 and Tref = 220◦C. Table 5 gives
the parameters of the dynamic viscosity defined by (1) and the Arrhenius law, eq. (4).

η0 λ n a Ea Tref

Pa·s s – – kJ/mol K
3.04 · 103 3.2·10−2 0.28 0.6 115.06 493.15

Table 5: Parameters using in the Carreau-Yasuda and Arrhenius laws for the acrylonitrile butadiene
styrene.

Figure 10 presents the experimental data of the reduced dynamic viscosity η(γ̇, T )/aT
as a function of γ̇aT . The maximum of the relative error given by the Carreau-Yasuda’s
law is equal to 4.4%. It is noteworthy that for the ABS polymer the transition between
the Newtonian plateau and the power-law regime is wider than for the bisphenol-A PC
polymer.

The thermal properties are gathered in Table 6 according to the data provided by
Mackay et al. [9]. It is noteworthy to underline that the heat capacity of the acry-
lonitrile butadiene styrene is two times larger than the heat capacity of the bisphenol-A
polycarbonate.
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Figure 10: η(γ̇ , T )/aT vs. γ̇aT for the ABS polymer at four temperatures and solution obtained from
the Carreau-Yasuda’s law.

ρ Cp k
kg/m3 J/(kg·K) W/(m·K)
1150 2100 0.21

Table 6: Density, heat capacity and thermal conductivity of the acrylonitrile butadiene styrene according
to [9].
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