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Abstract

We propose in this work an adaptive Eulerian framework for the simulation of both boiling and evaporation

phenomena occurring at the interface of a heated 3D solid immersed in a liquid tank. It simultaneously takes

into account the gas-liquid phase changes, the vapor formation and their dynamics, and consequently the 3D

quenching or cooling of a heated solid. It uses a Level Set method to separate and to track each phase. The

phase change is performed using the balance of heat fluxes at the interface without the use of conforming

mesh. Instead, the use of an a posteriori error estimate leading to highly stretched anisotropic elements

at the interface enables to drastically reduce errors on computed jumps. This avoids the need of interface

reconstruction or interpolation procedure. Finally, a Variational Multiscale solver for the Navier-Stokes

equations is extended with implicit treatment of the surface tension. A series of 2D and 3D problems are

solved to highlight the efficiency and the accuracy of the proposed framework. The cooling of an immersed

solid is also presented and shows good agreement with experimental data. To the best of our knowledge,

direct numerical simulations of quenching using an Eulerian framework with boiling and evaporation have

never been considered.

Keywords: Phase change, Multiphase flows, Immersed method, Level Set, Anisotropic mesh adaptation,

Stefan problem

1. INTRODUCTION1

An accurate and robust simulation of boiling phenomena is still an ongoing challenge. Indeed, the2

complexity of boiling lies in the wide range of scales to consider and in the physics involved. From the3

nucleation of vapor bubbles to film boiling and bath hydrodynamics, one needs to consider scales from4

µm to m. Indeed, in industrial processes, such as quenching of a solid hot metallic part, the variety of5

configurations and the complexity of the surrounding flow must also be taken into account as they have6

direct impacts on gradients of mechanical properties, microstructure and residual stresses.7
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The classical well known methods for thermal treatment during the cooling of a solid generally refer8

to the use of experimentally deduced heat transfer coefficients. However, these latter are only useful for9

a particular configuration in term of geometry, orientation of the surface, range of temperature and flow10

motion. Therefore, heat transfer coefficients are not suitable to analyze different industrial processes and11

cannot be generalized to all configurations. Only a direct numerical simulation can take into account all the12

physics and all the scales involved in boiling.13

An abundant research has been devoted to the modeling of the boiling and the evaporation phenomena.14

The approaches to simulate these phenomena can be summarized into two categories that depend on the15

thickness of the interface: sharp interface and diffuse interface. The sharp interface approach considers16

the presence of different phases that interact through the interface using boundary conditions. Within this17

approach, two methods are commonly used. First, in interface tracking methods, the interface is represented18

by a set of nodes. This set of nodes moves accordingly to the interface. This requires particular mesh move-19

ments at each iteration and also requires a special treatment of complex topological configurations [1–5].20

Alternatively, interface capturing methods consist in a implicit definition of the interface. A volume fraction21

(Volume-Of-Fluid) or a signed distance function (Level Set) is convected using a transport equation [6–18].22

These methods are popular due to the simplicity of implementation and the fact that complex topology23

changes such as the coalescence of bubbles are handled naturally. A literature review of these methods24

applied to boiling is given by Kharangate and Mudawar in [19]. Other approaches in the literature can25

be mentioned. Phase-field approaches seem promising [20–22]. An order parameter is used to distinguish26

different phases and its evolution gives access to the interface location. The interface is assumed to have a27

thickness of a few nanometers. However, an equation of state is required for the fluid which introduces com-28

plexity from a mathematical and numerical point of view. Furthermore, this approach introduces high-order29

differential terms that may be stiff and require innovative discretization techniques. We can also mention30

the fluid mixtures approaches [23, 24] considering two compressible phases, where a complete hyperbolic31

system is derived using conservation equations for each phase. An equation of state that reproduces the32

phase diagram is usually required to close the system.33

We propose in this work an adaptive Eulerian framework for the simulation of both boiling and evapora-34

tion phenomena occurring at the interface of a heated 3D solid immersed in a liquid tank. It was shown that35

an adaptive Eulerian framework is very efficient for the simulation multiphase flows [25–28], compressible36

and incompressible flows [29] and yield stress fluids [30]. This framework takes into account the gas-liquid37

phase changes, the vapor formation and their dynamics, and enables consequently the simulation of 3D38

quenching or cooling of a heated solid. A level set method is used to separate and track the different phases.39

The phase change is performed using the balance of heat fluxes at the interface without the use of conform-40

ing mesh. Instead, the use of an a posteriori error estimate [31–33] leading to highly stretched anisotropic41

elements at the interface enables to drastically reduce errors on computed jumps. This avoids the need42
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of interface reconstruction or interpolation procedure. We derive the Navier-Stokes equations taking into43

account the mass and energy transfer between phases at the interface. A series of 2D and 3D problems are44

solved to highlight the efficiency and the accuracy of the proposed framework. The cooling of an immersed45

solid is also presented and shows good agreement with experimental data. To the best of our knowledge,46

direct numerical simulations of quenching using an Eulerian framework with boiling and evaporation have47

never been considered.48

The paper is structured as follows. In Section 2, we present the governing equations for the fluid motion49

and the level set transport equation. In Section 3, we recall the main steps of the anisotropic mesh adaptation50

procedure governed by the length distribution tensor. In Section 4, we provide some numerical results and51

examples to assess the capability of the proposed method.52

2. Eulerian framework53

This section is devoted to the presentation of the Eulerian framework. First, the interface capturing54

method is presented. It enables to follow the evolution of the interface between phases and to distribute in55

space the respective physical properties by defining a mixing law. From this mixing law, a phase change56

model will be derived and the Navier-Stokes equations will be consequently modified to take into account57

the phase change model.58

2.1. Level Set approach59

In this section, we describe the level set method used to locate the interface between the liquid phase60

and the vapor phase. It is a signed distance function and it is a widely used tool in different fields such as61

crystal growth, image restoration or surface reconstruction [34]. Let Ω be the whole domain, Ωl the liquid62

domain and Ωv the vapor domain. The level set function is a signed distance function from the interface63

Γ = Ωl ∩ Ωv defined at each node X of Ω as follows:64

α(X) =


−dist(X,Γ) if X ∈ Ωl,

0 if X ∈ Γ,

dist(X,Γ) if X ∈ Ωv.

(1)

The evolution of the level set function is described by the following transport equation [35]65

∂α

∂t
+ u · ∇α = 0, (2)

where u is a velocity. The level set, as a distance function, verifies ‖∇α‖ = 1. However, when the interface66

is convected by u, the level set can lose this property, which may cause numerical instabilities, and needs67

to be reinitialized to recover it. A common way to reinitialize it, is to solve the following Hamilton-Jacobi68

equation [35]69
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∂α

∂τ
+ s(α)(‖∇α‖ − 1) = 0, (3)

where τ is a pseudo-time and s(α) is the sign function of α. The steady state solution of this non-linear70

hyperbolic equation will be a distance function from the interface while keeping unchanged its zero isovalue.71

Once the level set function is computed, we can distribute in space the corresponding physical properties72

(for example ρv and ρl, respectively vapor and liquid densities) using a mixing law as follows:73

ρ = H(α)ρv + (1−H(α))ρl, (4)

where H is a smoothed Heaviside function used to obtain a better continuity at the interface and given by74

H(α) =



1 if α > ε,

1

2

(
1 +

α

ε
+

1

π
sin
(πα
ε

))
if |α| ≤ ε,

0 if α < −ε.

(5)

Here ε is a small parameter such that ε = O(him), known as the interface thickness, and him is the mesh75

size in the normal direction to the interface. In the vicinity of the interface, it can be computed using76

him = max
j,l∈K

∇α · xjl, (6)

where K is the mesh element under consideration and xjl = xl − xj represents the edge connecting the77

nodes xj and xl of K.78

2.2. Phase change model79

In this section, we derive a pseudo-compressible model accounting for mass transfer at the interface.80

From the mass conservation equation, we will quantify the exchange of mass between the vapor and the81

liquid phases. To take into account this exchange of mass, the Navier-Stokes equations and the level set82

equation will be modified. Such derivation has already be done in the previous work of Denis [36], in the83

context of finite difference method.84

2.2.1. Derivation of the governing equations for the phase change85

We recall the Navier-Stokes equations:86

ρ(∂tu+ u · ∇u)−∇ · (2µε(u)) +∇p = fST + f, (7)87

∂ρ

∂t
+∇ · (ρu) = 0, (8)88
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where u, p, ρ, µ, fST and f are the velocity, the pressure, the density, the viscosity, the surface tension force89

and additional source term of the momentum equation respectively.90

The derivation of the model relies on the mixing law used to distribute the density in space. Therefore,91

we first define a mixing law for the density92

ρ = (ρv − ρl)H(α) + ρl, (9)

where H is a Heaviside function. The mass conservation in the domain Ω reads93

∂ρ

∂t
+∇ · (ρu) = 0. (10)

We define a surface mass transfer rate ṁ[kg.m−2.s−1] to quantify the exchange of mass between the liquid94

and vapor phases:95

∂

∂t
(ρvH(α)) +∇ · (ρvH(α)u) = ṁ|∇α|δ(α), (11)96

∂

∂t
((1−H(α))ρl) +∇ · (ρl(1−H(α))u) = −ṁ|∇α|δ(α), (12)97

where δ is a Dirac function. Expanding (11) and (12) leads to98

ρv
∂H(α)

∂t
+ ρvH(α)∇ · u+ ρvu · ∇H(α) = ṁ|∇α|δ(α), (13)99

−ρl
∂H(α)

∂t
+ ρl(1−H(α))∇ · u− ρlu · ∇H(α) = −ṁ|∇α|δ(α). (14)100

By dividing (13) and (14) by their respective density and summing, we obtain the new mass conservation101

equation102

∇ · u = ṁ

(
1

ρv
− 1

ρl

)
|∇α|δ(α). (15)

The velocity is not divergence free since a mass transfer occurs at the interface between the vapor and the103

liquid.104

Since a transfer of mass occurs, the level set equation will be modified to advect the level set not only105

from the velocity obtained through the resolution of the Navier-Stokes equations but also the velocity of the106

vapor front. This is obtained by summing (13) and (14) and dividing by (ρv − ρl):107

∂H(α)

∂t
+ u · ∇H(α) =

ρ

ρl − ρv
∇ · u. (16)

Considering the derivative in time and in space of the Heaviside function, ∂H(α)
∂t = ∂H(α)

∂α
∂α
∂t = δ(α)∂α∂t and108

∇H(α) = δ(α)∇α, we obtain109

δ(α)
∂α

∂t
+ δ(α)u · ∇α =

ρ

ρl − ρv
∇ · u. (17)
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In the case of a divergence free velocity fields, Eq (17) resumes to the standard level set equation. Replacing110

∇ · u by (15) leads to111

δ(α)
∂α

∂t
+ δ(α)u · ∇α =

ρ

ρl − ρv
ṁ

(
1

ρv
− 1

ρl

)
|∇α|δ(α). (18)

Extending to the whole domain and simplifying leads to112

∂α

∂t
+ u · ∇α =

ρ

ρlρv
ṁ|∇α|. (19)

The level set equation now reads113

∂α

∂t
+

[
u− ρ

ρlρv
ṁ
∇α
|∇α|

]
· ∇α = 0. (20)

The level set is now advected by the velocity u obtained from the resolution of the Navier-Stokes and by114

a velocity representing the vaporization of the water.115

Similarly, one can use the same derivation for the energy equation. Neglecting the heat generated by116

viscosity forces and capillary forces, the energy equation reads117

ρcp

(
∂T

∂t
+ u · ∇T

)
−∇ · (k∇T ) = −

(
L+ (cvp − clp)(T − Tsat)

)
ṁδ(α)|∇α| ρ

2

ρvρl
. (21)

where T is the temperature, Tsat is the sturation temperature, cp is the specific heat, cvp (resp. cpl) is the118

specific heat in the vapor (resp. in the liquid) and k is the thermal conductivity. The formulation accounts119

naturally for the thickness of the interface. It is a generic formulation that requires the definition of the120

mass transfer rate ṁ.121

Remark 1. The smoothing of the sharp mass flux presented in [37], using an averaged density is automatically122

obtained in (19). The origin of the smoothing is due to the smoothing of the distribution of the density123

across the interface.124

2.2.2. Derivation of the surface mass transfer rate125

The mass transfer rate is resolved using the heat released by an elementary volume dV of liquid that has126

vaporized between the time t and t+dt. We consider a domain composed of water and vapor (see Figure 1).127

The position of the interface at the time t is given by α(t), dS and n being respectively the corresponding128

elementary surface and its normal pointing in the vapor direction.129

The heat released dQ by a volume dV of liquid that has vaporized during the elapsed time between t130

and t+ dt is:131

dQ = ρlLdV (22)
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Figure 1: Volume dV that has vaporized between t and t + dt.

where L is the enthalpy of vaporization [J.kg−1]. The heat fluxes are defined respectively in the vapor and132

the liquid by φv = −kv∇Tv and φl = −kl∇Tl where kv and kl are the thermal conductivity in the vapor133

and the liquid respectively. Vaporization (resp. condensation) occurs when the jump of fluxes across the134

interface [[φ]] = [φv − φl]|α=0.n is positive (resp. negative). Then dQ reads:135

dQ =

t+dt∫
t′=t

[[φ]]dSdt′. (23)

Differentiating and taking the limit for dt→ 0 leads to136

lim
dt→0

ρlL
α(t+ dt)− α(t)

dt
= lim
dt→0

1

dt

t+dt∫
t′=t

(−kv∇Tv + kl∇Tl)|α=0 .ndt
′ . (24)

We obtain the surface mass transfer rate, the so-called Stefan condition,137

ṁ = ρlL
dα

dt
= (−kv∇Tv + kl∇Tl)|α=0 .n . (25)

Eq. (25) requires the evaluation of the balance of fluxes at the interface (−kv∇Tv + kl∇Tl)|α=0 .n. This138

evaluation is not straightforward when using an implicit definition of the interface. We therefore choose139

to use a delta formulation. Approximating the surface integral by mean of a delta Dirac function on each140

elementary volume Ωi containing the surface Si leads to141

∫
Si

(−kv∇Tv + kl∇Tl)|α=0 .ndSi =

∫
Ωi

δ(α) (−kv∇Tv + kl∇Tl) .ndΩi . (26)

Then, integrating (25) over Ωi gives an expression for the surface mass transfer ṁ:142

ṁ =

∫
Ωi
δ(α) (−kv∇Tv + kl∇Tl) · ndΩi∫

Ωi
δ(α)dΩi

. (27)
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2.3. Implicit surface tension143

A common way to introduce the surface tension in the Navier-Stokes equations is to use the Continuum144

Surface Force model [38]. It consists first in rewriting the surface force as a volume one as follows:145

fST = −γκδn . (28)

where γ is the surface tension coefficient, δ is a Dirac function locating the interface, κ is the mean curvature146

and n is the normal to the interface. Then (28) is used as a source term in the momentum equation (8).147

However, an explicit implementation imposes the following severe restriction on the time step [38]:148

∆t < (∆x)
3
2

√
ρl + ρv

4πγ
. (29)

If this time step restriction is not respected, spurious oscillations pollute the solution and destabilize the149

interface. However, this time step restriction penalizes the computational cost of numerical simulations since150

it is one or two orders of magnitude lower than the time step restriction of a CFL condition. To alleviate this151

restriction, we use the approach developed in [39] and widely used in [25, 40, 41]. Using differential geometry,152

the surface Laplacian ∆sIΓ of an identity mapping function is −κn. We apply the surface Laplacian operator153

∆S on In+1
Γ = InΓ +un+1∆t which represents the evolution in time of an interface. The surface Laplacian can154

be decomposed into a standard Laplacian ∇2u− ∂2u
∂n2 − κ∂u∂n . Multiplying by the surface tension coefficient155

leads to the new expression for the surface tension:156

fST = −γκδn− γδ∆t
(
∂2u

∂n2
+ κ

∂u

∂n
−∇2un+1

)
. (30)

The usual term −γκδn is now completed by additional terms proportional to the time step. These additional157

terms act as an isotropic diffusion minus a diffusion in the normal direction of the interface. More details158

are provided in [25].159

2.4. Variational MultiScale method for the Navier-Stokes equations160

Following the developments from previous sections, we generalize the Navier-Stokes equations, into:161

Find the velocity u and the pressure p such that:162

ρ(∂tu+ u · ∇u)−∇ · (2µε(u)) +∇p = fST + f, (31)163

∇ · u = fc, (32)164

where ρ, µ, fST , f and fc are the density, the viscosity, the surface tension force, additional source term of165

the momentum equation and the source term of the continuity equation respectively.166

The stability of the discrete formulation of Navier-Stokes depends on appropriate compatibility restric-167

tions on the choice of the finite element spaces for the velocity and the pressure. Standard Galerkin mixed168
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elements with continuous equal order linear/linear interpolation is not a stable discretization and exhibits un-169

controllable oscillations that pollute the solution. The Variational MultiScale method, proposed by Hughes170

[42, 43], offers a general framework that deals with different and new variant of mixed variational formula-171

tions [44–47]. We briefly recall here the main steps.172

First, let us consider a decomposition of the velocity and the pressure fields into resolvable coarse-scale173

and unresolved fine-scale:174

u = uh + ũ, (33)175

p = ph + p̃, (34)176

Likewise, we apply the same decomposition for the weighting functions. The unresolved fine-scales are177

usually modeled using residual based terms that are derived consistently. The static condensation consists178

in substituting the fine-scale solution into the large-scale problem providing additional terms, tuned by179

a local stabilizing parameter. The latter enhances the stability and accuracy of the standard Galerkin180

formulation.181

Second, to derive the stabilized formulation, we solve the fine scale problem, defined on the sum of182

element interiors and written in terms of the time-dependent large-scale variables. Then we substitute in183

the coarse problem, the fine-scale solution approximated within each element by:184

ũ =
∑
Th

τuP̃u(Ru), (35)185

p̃ =
∑
Tc

τcP̃c(Rc), (36)186

where Ru and Rc are the finite element residuals. P̃u and P̃p are projection operators taken as the identity187

in this work. τu and τc are the so called stabilization parameters. Thus, we eliminate the explicit appearance188

of the fine-scale while still modeling their effects. More details are provided in [25, 29].189

To simplify the notation, we use fm and fc as the source terms in (31)-(32), adding the explicit terms190

of (30) into fm. Inserting the expression for the subscales, we finally obtain the stabilized finite element191

problem. The new variational formulation reads for the coarse scale,192


(ρ∂t(uh + ũ), vh) + (ρ(uh + ũ) · ∇(uh + ũ), vh)− (ph + p̃,∇ · vh)

+ (2µε(uh) : ε(vh)) + (γδ∆t∇(uh + ũ) : ∇vh) = (fm, vh) ∀vh ∈ Vh,0,

(∇ · (uh + ũ), qh) = (fc, qh) ∀qh ∈ Qh,

(37)

and for the fine scale,193
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
(ρ∂t(uh + ũ), ṽ) + (ρ(uh + ũ) · ∇(uh + ũ), ṽ)− (ph + p̃,∇ · ṽ)

+ (2µε(ũ) : ε(ṽ)) + (γδ∆t∇(uh + ũ) : ∇ṽ) = (fm, ṽ) ∀ṽ ∈ Ṽ ,

(∇ · (uh + ũ), q̃) = (fc, q̃) ∀q̃ ∈ Q̃.

(38)

At this level, two assumptions can be made to simplify the resolution of the fine scale equation: the subscales194

are considered quasi-static and the convection is approximated by (uh + ũ).∇(uh + ũ) ≈ uch.∇(uh + ũ).195

Therefore, by formulating the expression of ũ and p̃ by substituting them into the large-scales equation, and196

applying integration by parts, the system to solve becomes finally197



(ρ∂tuh, vh) + (ρuch · ∇uh, vh)− (ph,∇ · vh) + (2µε(uh) : ε(vh)) + (γδ∆t∇uh : ∇vh)

− ∑
K∈Th

(τuRu , ρuch · ∇vh)− ∑
K∈Th

(τcRc,∇ · vh) = (fm, vh) ∀vh ∈ Vh,0,

(∇ · uh, qh)− ∑
K∈Th

(τuRu,∇qh) = (fc, qh) ∀qh ∈ Qh,

(39)

where Ru and Rc are the residuals defined by198

Ru = fm − ρ∂tuh − ρuch · ∇uh −∇ph,
Rc = fc −∇ · uh.

(40)

Note that in the case of strongly anisotropic meshes with highly stretched elements, the definition of the199

stabilization parameters is still an open problem and plays a critical role in the design of the stabilizing coef-200

ficients. In [25] the authors propose a particular choice of the stabilizing parameters suitable for anisotropic201

partitions that we adopt here.202

By comparing the standard Galerkin method with the proposed stable formulation, additional integrals203

that are evaluated element-wise are involved. These additional terms, obtained by replacing the approxi-204

mated ũ and p̃ into the large-scale equation, represent the effects of the sub-grid scales and above all take205

into account the modified surface tension terms. They are introduced in a consistent way to the Galerkin for-206

mulation and enable to overcome the instability of the standard formulation arising in convection dominated207

flows and to deal with the pressure instabilities [48].208

3. Edge-based mesh adaptation for multiphase flows209

Anisotropic mesh adaptation on unstructured meshes plays an important role in the efficient numerical210

simulation of multiphase flow problems since it helps keeping high accuracy while reducing the dedicated211

CPU time to these simulations [49, 50]. As it is shown in [25] and more recently in [51], anisotropic mesh212

adaptation outperforms adaptive octree. Small features are captured more easily using anisotropic mesh213
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than using octree. The use of anisotropic mesh adaptation enables to reduce the number of integration points214

by one order of magnitude [51]. The idea is to concentrate elements in regions where the solution exhibits215

a rapid variation of either the solution or its derivatives. In this case, it would be the large temperature216

gradients, the large jumps at the interfaces as well as the change in direction for the velocity fields. The217

objective is then to get the smallest error possible while controlling the number of mesh nodes. A vector or218

a scalar monitor function is used in order to control the size, shape and orientation of the elements of the219

mesh to be generated. This function is usually designed to give an estimate of some measure of the solution220

error which is then equidistributed over each mesh cell. The mesh adaptation algorithm is built in order to221

compute a mesh and a numerical solution. At each stage, we compute a numerical solution on the current222

mesh and we evaluate an estimation of the interpolation error. We set up a minimization problem that aims223

at minimizing the interpolation error in the L1-norm, independently of the problem at hand [32]. To take224

into account the solution development, we derive an optimal metric that minimizes its interpolation error.225

Therefore, a new mesh is generated according to this metric field. The originality in the approach lies also226

in its simplicity to compute the metric and the associated edge-based error estimator developed below.227

3.1. Edge-based error estimation228

Let uh be a P1 finite element approximation obtained by applying the Lagrange interpolation operator229

to a regular function u ∈ C2(Ω). At each vertex i of the mesh, we have Ui = u(xi) = uh(xi) (where xi are230

the coordinates of the vertex i). Let Γ(i) be the ”patch” associated to a vertex xi of the mesh defined as231

the set of nodes which share one edge with xi, and let us denote by xij the edge connecting xi to xj as in232

Figure 2.

Figure 2: Patch associated with node xi

233

The gradient ∇uh · xij on the edge xij is continuous, therefore we can write234

U j = U i +∇uh · xij , (41)235

which leads to236

∇uh · xij = U j − U i . (42)237
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The work performed in [32] allows us to write the following error estimator:238

|| ∇uh · xij −∇u(xi) · xij ||≤ max
y∈|xi,xj |

| xij ·Hu(y) · xij |, (43)239

with Hu the Hessian of u. At the node xi, we seek the recovered gradient gi of uh240

∇gh · xij = gj − gi . (44)241

We want the projection of the Hessian based on the gradient at the extremities of the edge, thus we have242

(∇gh · xij) · xij = (gj − gi) · xij , (45)243

(Hu · xij) · xij = gij · xij , (46)244

with gij = gj − gi. It can be shown [32] that the quantity | gij · xij | gives a second order accurate245

approximation of the second derivative of u along the edge xij . Motivated by the fact that, for P1 finite246

elements on anisotropic meshes, edge residuals dominate a posteriori errors, as proved in [52], it is therefore247

suitable to define an error indicator function associated to the edge xij as248

eij =| gij · xij | . (47)249

And this error, is the exact interpolation error along the edge and allows to evaluate the global L1 error.250

However, the gradient is not know at the vertices, thus a recovery procedure has to be considered.251

3.2. Gradient recovery procedure252

The gradient recovery procedure relies on the following optimization problem:253

Gi = argmin
G

 ∑
j∈Γ(i)

| (G−∇uh) · xij |2
 , (48)254

where Gi is the recovered gradient. Denoting by ⊗ the tensor product between two vectors, let us introduce255

Xi the length distribution tensor at node i256

Xi =
1

| Γ(i) |

 ∑
j∈Γ(i)

xij ⊗ xij
 , (49)257

whose purpose is to give an average representation of the distribution of edges in the patch. Let us express258

the recovered gradient Gi in terms of the length distribution tensor259

Gi = (Xi)−1
∑
j∈Γ(i)

U ijxij . (50)260

Therefore, the estimated error eij is thus written as261

eij = Gij .xij . (51)262
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3.3. Metric construction263

In order to relate the error indicator defined in (51) to a metric suitable for a mesh adaptation procedure,264

we introduce the concept of stretching factor sij defined as the ratio between the length of the edges xij265

after the adaptation procedure and after the adaptation procedure, [32]. The metric takes the following266

expression:267

M̃ i = (X̃i)−1, (52)268

where X̃i is defined as:269

X̃i =
1

| Γ(i) |

 ∑
j∈Γ(i)

sij ⊗ sij
 . (53)270

The stretching factor sij of the edge ij is chosen so that the total number of nodes in the mesh is kept fixed271

and is defined as272

sij =

(
eij
e(N)

)
, (54)273

where e(N) is the total error .274

3.4. Mesh adaption criteria275

In multiphase applications, the material interface between liquid and gas need to be modeled accurately.276

Two strategies are commonly used; we refer to them in this work as explicit and implicit adaptation. In277

the first one, we design and pre-adapt the mesh around the boundaries and in some regions of interest. The278

obtained adapted mesh will be used all along the simulation, provided that the flow exhibits a bounded level279

of unsteadiness. The criteria for the mesh adaptation are geometric and do not depend on the solution.280

Whereas, the implicit strategy imposes a dynamic mesh adaptation that changes the mesh frequently and281

minimizes as possible the prescribed error. Consequently, it requires a criterion based solely on the solution.282

The common way to adapt a mesh to several variables, such as the velocity and the level set function, is283

to compute the metrics corresponding to each of them and then to produce a unique metric by an operation284

known as the intersection of metrics. In this work, we simplify this operation and we use one metric that285

account for different variables. Therefore, based on the theory proposed in the previous section, it is possible286

to extend definition (47) to account for several sources of error. In the following numerical experiments,287

the adaptivity accounts for the velocity components Vk, its magnitude |V |, the level set function α and the288

temperature T , by defining the following vector of sources of error:289

v(xi) =

 V ik
|V i| ,

|V i|
max
j
|V j | ,

αi

max(α)
,

T i

max(T )

 . (55)
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Because all fields are normalized (the velocity components Vx, Vy and Vz by the local velocity norm,290

the velocity norm |V |, the temperature and the level set function α by their respective global maximum), a291

field that is much larger in absolute value does not dominate the error estimator, and the variations of all292

variables are fairly taken into account.293

3.5. High-fidelity anisotropic meshing294

We aim to show the flexibility of the proposed mesh adaptation technique to deal with multiphase flows.295

Therefore we consider three fixed objects defined by level set functions inside a squared domain (see Figure 3).296

The circle of radius 0.1m is centered at (0.15;0.15). The square of 0.20m size is centered at (0.85;0.15). The297

regular pentagram is centered at (0.5;0.75) and the radius of the circumcircle is 0.2m. We choose to position298

them close to the wall to assess the capacity of the method to capture the features of the geometry close to299

a boundary.300

In multiphase simulations, we use the level set function to define the properties in each phase. The301

physical properties are usually discontinuous across the interface. To avoid discontinuities which lead to302

numerical errors, we use a smooth Heaviside function computed from the level set function. This creates303

an interface transition with a thickness of few elements. The use of mesh adaptation techniques enables to304

reduce this thickness. As it is depicted in Figure 3, for a given number of elements (10,000), the transition305

is finer with an anisotropic adaptive mesh.

1 m

1 m

Figure 3: Three immersed objects inside a squared cavity (left). Filtered level set function for 10,000 elements in a structured

mesh (middle) and in an adaptive mesh (right). The use of an adaptive mesh enables a finer interface transition. Respective

meshes are shown in Figure 5.

306

Figure 4 shows the obtained zero isovalue of the level set functions using different number of nodes. The307

comparison with structured meshes using the same number of nodes shows that anisotropic mesh adaptation308

allows easily to keep very good accuracy of the geometry, even for a low number of nodes. Figure 5 shows309

the correct orientation and deformation of the mesh elements (longest edges parallel to the boundary).310

This yields a great reduction of the number of triangles. These results give confidence that the proposed311

framework allows to deal with different shapes, with angles, singular point and curvatures.312
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Finally, in Figure 6, we measure the accuracy of the mesh adaptation technique. We compute the total313

perimeter and the total area of the three immersed objects and we plot the error between the analytical314

and the numerical solutions. We also plot the error for a structured mesh. Figure 6 confirms the advantage315

of using anisotropic adaptive meshes for multiphase flows. For a given accuracy, at least ten times more316

elements are required in a structured mesh.

Figure 4: Zero isovalue of the level set function for 1,000, 2,000, 5,000 and 10,000 elements. First line: result with adaptive

meshing. Second line: result with structured meshes.

317

Figure 5: The obtained mesh for 1,000, 2,000, 5,000 and 10,000 elements.
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Figure 6: Percentage of error for the computation of the perimeter (left) and the area (right).

4. Numerical examples318

The proposed adaptive Eulerian framework for the simulation of both boiling and evaporation phenomena319

is verified and validated in this section through a variety of test problems. Throughout this section, all the320

obtained results will be compared to either analytical or numerical available solutions. In the last test case,321

we bring forward a new problem with the experimental data on the cooling of a 3D heated solid inside a322

water tank.323

4.1. Stefan problem324

First, we consider the one-dimensional Stefan benchmark. It is a well known problem and serves as a325

benchmark to assess the accuracy of phase change models [8, 11, 53]. It is defined schematically in Figure 7.326

The domain is initially filled with water. The wall temperature is set constant and larger than the saturation327

temperature. The water is at saturation temperature. At t > 0, a phase change occurs and induces a motion328

of the interface between the vapor and the water. The convective term in the energy conservation equation329

is neglected in both phases.330

The position of the interface is given by331

s(t) = 2χ
√
αvt, (56)

where αv is the thermal diffusivity defined by α = kv/(ρvc
v
p) and χ is the solution of the transcendental332

equation333

Tsat − Twall√
πL

cvp = χ erf(χ) exp
(
χ2
)
, (57)
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Figure 7: Initial setup for the classic Stefan problem.

derived in the case of a constant temperature in the liquid. The temperature in the vapor at a given time t334

is given by335

T (x, t) = Twall +
Tsat − Twall

erf (χ)
erf

(
x

2
√
αvt

)
, (58)

We consider the physical properties for the water and the vapor given in Table 1 and we consider Twall−Tsat =336

10K. We solve the transcendental equation using a Newton algorithm to find the value of χ.

Table 1: Density, dynamic viscosity, specific heat and thermal conductivity for the vapor and the water at atmospheric pressure

ρ [kg/m3] µ [Pa·s] cp [J/(kg·K)] k [W/(m·K)] Lsat [J/kg]

Vapor 0.597 1.26× 10−5 2030 0.025

Water 958.4 2.8× 10−4 4216 0.679 2.26× 106

337

Figure 8 shows the evolution of the position of the interface for both the analytical and the numerical338

solution having good agreement. Figure 9 shows that the use of a delta Dirac function to compute the mass339

transfer rate results in a better convergence. This comparison was done by prescribing a maximum number340

of iterations (3000) to reach a residual (10−7) using the GMRES method for the resolution of the linear341

system.342
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Figure 8: Evolution of the interface position for the Stefan problem.
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4.2. 2D Film boiling343

This test case serves as a validation for the phase change model in several articles [1, 8, 14, 54]. Indeed,344

when the temperature at the wall is much larger than the saturation temperature, a persistent layer of345

vapor forms and remains between the wall and the water. This regime is known as film boiling. In the346

configuration depicted in Figure 10, a Rayleigh-Taylor instability is triggered due to the low density fluid347

below the high density fluid. Furthermore, the phase change will induce a growth of the film, amplifying348

the instability.349

For a Rayleigh Taylor instability, the most unstable Taylor wavelength is, in 2D,

λ0 = 2π

(
3γ

(ρl − ρg)g

)1/2

, (59)

where γ is the surface tension.350

The physical parameters taken from [8] are given in Table 2. For this set of parameters, the most unstable351

wavelength is about λ0 ≈ 0.078m. Figure 10 shows the initial profile of the interface, defined by the following352

function:353

y = 0.5 + 0.4 cos(2πx/λ0) . (60)

g

λ0

5 λ0

x
y

Wall

Vapor

Liquid

Figure 10: Setup for the 2D film boiling

Two cases will be studied. For the first case, the temperature at the wall is maintained constant at a354

temperature of 5K above the saturation temperature and for the second, 10K. To assess the accuracy of the355

computations, the authors in [1, 8, 54] used space-averaged Nusselt number obtained from the numerical356
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simulation and compare it to correlation found in the literature. The local Nusselt number defined as the357

dimensionless heat flux through the wall is358

Nu =
λ0

Tw − Tsat

∂T

∂y

∣∣∣∣
y=0

. (61)

Regarding the correlation of the Nusselt number in the literature, we use the correlation of Berenson [55]359

and Klimenko [56] given by360

NuB = 0.425(GrPr/Ja)1/4, (62)

and361

NuK = 0.1691(GrPr/Ja)1/3 for Ja < 0.71 . (63)

where the Grashof number Gr = ρv(ρl − ρv)gλ0/µ
2
v represents the ratio of the buoyancy force over the362

viscous force, the Prandtl number Pr = µvc
v
p/kv represents the ratio of the momentum diffusivity over the363

thermal diffusivity and the Jakob number Ja = cvp(Tw − Tsat) the ratio of sensible heat over latent heat.364

Table 2: Density, dynamic viscosity, specific heat and thermal conductivity for the vapor and the water at atmospheric pressure

ρ [kg/m3] µ [Pa·s] cp [J/(kg·K)] k [W/(m·K)] Lsat [J/kg]

Vapor 5.0 0.005 200 1.0

Water 200 0.1 400 40 104

Figure 11 shows the evolution of the temperature field and the interface for ∆T = 10K. The vapor film365

grows to a mushroom shape due to the Rayleigh-Taylor instability. Since we performed 2D computations,366

no break up occurs due to surface tension. Therefore the mushroom cap rises along the channel followed367

by a long and thin filament. Notice that due to the width of the channel, there is clearly an effect of the368

lateral confinement on the shape of the vapor mushroom. Figure 12 shows the evolution of the mesh. The369

mesh is adapted using the anisotropic mesh adaptation procedure presented in this paper, using only 25,000370

elements. Therefore the mesh is very fine at the vapor/water interface and at the bottom when the thermal371

gradient is the largest. The mesh remains coarse far from the interface, where the thermal gradient is null372

and the velocity field is still 0.373

The evolution of the space-averaged Nusselt number is depicted in Figure 13. The comparison with the374

correlation of Berenson and Klimenko shows a good agreement for both cases.375
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Figure 11: 2D Film boiling for ∆T = 10K. Temperature field and interface location at t=0.01, 0.2, 0.3, 0.4, 0.7 and 1.0s. The

interface is represented by the white line.

Figure 12: 2D Film boiling for ∆T = 10K. Evolution of the mesh and the interface location at t=0.01, 0.2, 0.3, 0.4, 0.7 and

1.0s. The interface is represented by the white line.
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Figure 13: Evolution of the space-averaged Nusselt number for ∆T = 5K (left) and ∆T = 10K (right).
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4.3. 3D boiling - sensivitity analysis376

Several studies show that quench severity is dependent on different parameters: orientation, position,377

shape and size, agitation rate, fluid viscosity, and other variables. In this section, we will analyze at least378

the first three parameters. The objective is to show that the physical phenomena taking place are rich and379

that the experimental investigation remains generally limited. Indeed, the latter suffers from systematic380

revalidation of heat transfer coefficients when dealing with each parameter.381

We consider then a water tank of dimension L × L × L (see Figure 14), filled to three quarters. Two382

geometries are proposed; a hot metallic cylinder of length 0.5m and diameter 0.1m with L=1m and a hot383

hollow cylinder (see Figure 18) of inner radius 3cm and outer radius of 6cm with L=0.40m.384

1 m

1
m

1
m

w
at
er

ai
r

Figure 14: Set-up for the 3D film boiling

For the first geometry, three different configurations are considered. The cylinder is immersed horizontally385

at mid-height (see Figure 15), at a quarter of the height of the tank (see Figure 16) or vertically (see Figure386

17).387

Figure 11 shows a persistent vapor film surrounds the cylinder. As expected, the position of the cylinder388

has an important effect on the film evolution and thus on the cooling velocity of the cylinder. Furthermore,389

such distance from the cylinder to the free surface has a direct impact on the overall flow inside the quenching390

bath. The higher the distance, the higher the velocity of the vapor phase breaking up at the surface.391

Whereas, when the cylinder is immersed vertically inside the water tank, the shape of the film is totally392

different. Indeed, we can notice in Figure 12 a periodic release of the film all along the surface. Thus, the393

distribution of the flow is more concentrated at the top of the cylinder. This induces lower cooling velocity394

when compared to the previous case.395
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Figure 15: Cylinder at mid-height. Results at t=0.1, 0.5, 1 and 2 s. Perspective view (left), front view (right).

Figure 16: Cylinder at a quarter of the height. Results at t=0.1, 0.5, 1 and 2 s. Perspective view (left), front view (right).

Finally, Figure 19 shows this time that both the size of the hollow cylinder and its geometrical features396

seem to affect completely the flow. The boiling is well guided by the top surface with additional concentration397
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Figure 17: Vertical cylinder. Results at t=0.1, 0.5, 1 and 2 s. Perspective view (left), front view (right).

along the extremity. This again confirms the important role of this adaptive Eulerian framework to predict398

several liquid-vapor phase changes during boiling as well as to handle easily optimal combination of quench399

parameters.400
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Figure 18: Hollow cylinder : Full domain with the ring (in red) and the gas-liquid interface in blue(left). Zoom on the ring

(right)

Figure 19: Hollow cylinder. Results at t=0.13, 1.09, 5.44 and 10.75 s. Perspective view (left), front view (right).
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4.4. Quenching of a solid, comparison with experimental data401

We consider a domain of size 0.60 × 0.60 × 0.40 m3, three-quarters full of water, in which a metallic402

sample of dimension 0.075 × 0.075 × 0.0015 m3 is immersed (see Figure 20). The temperature of the sample403

is Tsolid = 880◦C and the temperature of the water is Twater = 25◦C. A thermocouple is placed at the core of404

the metallic sample. From a practical point of view, due to the small thickness of the part, the temperature405

at the core reflects the behavior of the temperature field at the interface.406

A free slip boundary condition is prescribed on all the walls. The motion of the vapor film is due to the407

buoyancy force and the surface tension force. The simulations are performed using the proposed adaptive408

meshing technique with 200, 000 tetrahedra. The time step is set to ∆t = 0.002s.409

All the physical parameters related to each phase are presented in Table 3.410
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Figure 20: Set-up for the 3D industrial quenching

Table 3: Physical parameters defining the test case for the 3D industrial quenching

ρ [kg/m3] µ [Pa·s] cp [J/(kg·K)] k [W/(m·K)] Lsat [J/kg]

Vapor 1.0 1.2× 10−5 2010 0.025 2.26× 106

Water 1000 1.0× 10−3 4185 0.6

Solid 8000 435 11.4

The evolution of the liquid-vapor phase is depicted in Figure 21 and shows again the ability of the411

proposed Eulerian framework with adaptive meshing to deal with such challenging test case.412
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Figure 21: Industrial quenching. Results at t=2, 3.70 et 6.25 s. Perspective view (left), front view (right). The zero isovalue

of the level set is represented in blue.

Figure 22 represents a clip of the quenching tank. Water is depicted in blue and the solid in red. A slice413

enables to visualize the adaptive mesh over time. At the top left corner, the picture shows the initial mesh,414

mostly concentrated around the part and the free surface. As the simulation starts and bubbles form, the415

mesh is adapted automatically at the level set interface. Under the constraint of a fixed number of elements,416

one can notice that the mesh is coarsened automatically at the bottom of the tank, where the variation of417

the solutions is small.418

Finally, Figure 23 shows a good agreement for the temperature evolution between the experimental data419
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Figure 22: Industrial quenching: results at different instants. The solid is represented in red. A clip of the quenching tank,

with visible adapted mesh.

and the numerical simulation. The strong coupling between the solid, the water and the vapor enables to420

perform such simulation without the use of a heat transfer coefficient at the solid boundaries. The anisotropic421

mesh adaptation enables to capture the large thermal gradient, the large jump at the interfaces as well as422

the complexity of the flow. Simulations are performed using 100,000 to 400,000 elements.423
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Figure 23: Evolution of the computed temperature at the core of the sample, sensitivity to the number of elements, comparison

to experiments.
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5. Conclusion424

We proposed an adaptive Eulerian framework for the numerical simulation of the phase change and the425

evaporation that occurs at the interface between a heated solid surrounded by cooled liquid. We showed426

that in order to model efficiently these phenomena, the gas-liquid phase changes, the vapor formation and427

their dynamics, and the conjugate heat transfer must be solved simultaneously. Therefore, it replaces the428

use of classical assumptions and ad-hoc transfer coefficients. We have demonstrated the efficiency of this429

framework by performing challenging cases in 2D and 3D with comparisons including experimental data.430

For the first time, the direct numerical simulation of the solid-liquid-gas interaction for industrial quenching431

can be performed accurately.432
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