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Non-thermal plasma is an emerging alternative for removing VOC from polluted air streams. This technique has been studied in laboratory for more than twenty years and experimental data is abundant. However, mostly qualitative information has been obtained from that data and no model has been developed for predicting the treatment performance from a given set of parameters. In this paper, we establish such a model, based on experimental data extracted from 69 scientific publications. This model, obtained through a linear regression, uses both quantitative and qualitative variables to predict the energy yield of the treatment. In 80 % of the data points, the measured energy yield lies between 0.6 and 1.75 times the predicted value. We also used the model to evaluate quantitatively the impact of several parameters of the treatment, such as the initial concentration, the presence of a catalyst or the reactor type. Being so, the model presented here is an invaluable tool for both scientists and engineers interested in the treatment of VOC by non-thermal plasma.

Introduction

An emerging alternative for removing hazardous or odorous volatile organic compounds (VOC) from polluted air streams is the use of non-thermal plasma.

It consists of using the reactive species produced in the plasma, such as O and OH radicals, to oxidize volatile organic compounds, mainly forming CO 2 and H 2 O. It is a flexible, compact and relatively cheap technique, which can be suitable for the treatment of low pollutant concentrations [START_REF] Preis | Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry[END_REF][START_REF] Ma | Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma[END_REF].

The treatment of VOC by non-thermal plasma has been studied in laboratory for more than twenty years [START_REF] Oda | Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing-SPCP[END_REF][START_REF] Mok | Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes[END_REF][START_REF] Vandenbroucke | Non-thermal plasmas for non-catalytic and catalytic VOC abatement[END_REF] and has been the object of some pilot experiments [START_REF] Andersen | Non-thermal plasma for odour reduction from pig houses A pilot scale investigation[END_REF][START_REF] Mizuno | Industrial applications of atmospheric non-thermal plasma in environmental remediation[END_REF][START_REF] Almarcha | Treatment Efficiency by means of a Nonthermal Plasma Combined with Heterogeneous Catalysis of Odoriferous Volatile Organic Compounds Emissions from the Thermal Drying of Landfill Leachates[END_REF][START_REF] Assadi | Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma[END_REF][START_REF] Mericam-Bourdet | Recherche d'optimisation énergétique d'un réacteur plasma froid de traitement d'effluents gazeux chargés en composés organiques volatils à pression atmosphérique[END_REF][START_REF] Holub | Plasma Supported Odour Removal from Waste Air in Water Treatment Plants : An Industrial Case Study[END_REF]. Most published works follow the same approach: for a given set of experimental conditions, researchers vary the power dissipated in the plasma and measure the amount of VOC removed. Most often, results are presented in the form of plots of the VOC residual fraction as a function of the specific energy input. The residual fraction is given by the ratio between outlet concentration C out and inlet concentrations C in :

Residual fraction = C out C in (1) 
the specific energy input (SEI) is the ratio between the power dissipated in the plasma P and the inlet flow rate Q:

SEI = P Q (2) 
Researchers then repeat the same experiment while changing a given experimental parameter in order to isolate its impact on the residual fraction versus SEI curve. From those kinds of experiments, which have been repeated extensively for a wide range of experimental conditions, some review papers have extracted qualitative information on the impact of certain parameters, such as inlet gas temperature, humidity level, VOC concentration, flow rate and oxygen content [START_REF] Vandenbroucke | Non-thermal plasmas for non-catalytic and catalytic VOC abatement[END_REF]12].

But in spite of the significant amount of experimental data produced in the last two decades, it is still difficult to say in a quantitative manner what is the impact of a given parameter. Further, no attempt has been done to predict the treatment performance under a given set of conditions based on the available data. For instance, if faced with the question "how much energy should I expect to spend to treat an air flow of 1000 m 3 /h containing 200 mg/m 3 of ethanol?", one must look for available data with experimental conditions as close as possible to those considered. But this is no easy task, given the number of published studies and the variety of experimental parameters that could impact the treatment performance. In this paper, we try to address that lacuna.

As far as we know, no previous work has attempted to establish a predictive model based on the vast amount of experimental data available. Recent works even tried to extract quantitative information from available experimental data. For instance, Veeranpandian et al. [START_REF] Veerapandian | Abatement of VOCs Using Packed Bed Non-Thermal Plasma Reactors : A Review[END_REF] present an excellent review of experimental work using non-thermal plasma packed-bed reactors, but values of removal efficiency and specific energy input are presented in a table form and correspond to different values of flow rate, inlet concentration or packing characteristics, which hinders comparison. Ye et al. [START_REF] Ye | The Design of MnO x Based Catalyst in Post-Plasma Catalysis Configuration for Toluene Abatement[END_REF] use scatter plots to compare the performance of different experiments, but the scope of the review is limited to the treatment of toluene with post-plasma catalysis (PPC) configurations.

In this work, for the first time, we attempt to translate experimental data into a model consisting of a single formula predicting the performance of any VOC treatment by non-thermal plasma. The goal of this model is to use some readily available treatment parameters, such as the SEI, the inlet VOC concentration, the inlet gas temperature or the VOC type in order to obtain quantitative information on the expected performance of the treatment. Such information can be useful in a range of use cases:

• Preliminary design of a new non-thermal plasma reactor for VOC treatment: given a set of parameters, how much power should I expect to need?

• Benchmark of different non-thermal plasma reactors for VOC treatment: how efficient is my reactor compared to experimental data available in the literature?

• Analysis of the impact of a treatment parameter: given the experimental data available in the literature, what is the real effect of a given parameter on the treatment performance?

The two first use cases require the model to be straightforward and to use only readily available treatment parameters. For instance, a parameter such as the OH radical concentration in the discharge zone does impact treatment performance, but obtaining it requires complicated experimental means that are not available to many researchers and to most engineers. Using that parameter as input would certainly limit the model's use.

Simplicity also requires the model to have as few inputs as possible. This is a challenge because non-thermal plasma reactors for VOC treatment use a wide variety of configurations, geometries, materials and catalysts. In this work we attempted to carefully select input variables, keeping the description of reactor characteristics and experimental conditions as general as possible, in order to avoid an over-complicated model.

To obtain a single formula predicting the performance of VOC treatment by non-thermal plasma, we decided to use a linear regression model. The main reasons for this choice are that such models are simple, make it easy to interpret how inputs affect the output and can deal with both quantitative and qualitative variables. Further, numerical implementation is straightforward, since linear regression analysis methods are included in a number of computational packages and libraries.

In the following sections, we begin by describing the methods we used for collecting experimental data and describing experimental parameters and for building a linear regression model. We then present the obtained results and discuss them, from the selection of input variables and the estimation of regression coefficients to the establishment of a predictive formula and the analysis of its performance in the prediction of the treatment efficiency. We finally use the obtained formula to analyze the impact of different experimental parameters, just before concluding with some final remarks.

Methods

We analyzed 69 scientific papers and PhD thesis published between 1999 and 2018 [START_REF] Assadi | Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma[END_REF][START_REF] Mericam-Bourdet | Recherche d'optimisation énergétique d'un réacteur plasma froid de traitement d'effluents gazeux chargés en composés organiques volatils à pression atmosphérique[END_REF]. From each study, we extracted series of measurements of VOC outlet concentration as a function of the specific energy input. Further, we built a relational database to store the experimental conditions corresponding to each data series. Then, we developed a linear regression model in order to predict the value of the specific energy input of the treatment from several independent variables, both qualitative and quantitative, defined from those experimental conditions. In the following, we describe how we collected data and how we used it to build a linear regression model.

Data collection

We looked for scientific papers or PhD thesis where experimental work on the treatment of VOC by non-thermal plasma is reported, and where VOC outlet concentrations are given as a function of the specific energy input or any equivalent parameter that could be converted to it, such as dissipated power or pulse repetition frequency 1 . We did not consider works where VOC mixtures are treated, but those constitute only a tiny part of the literature. After verifying that the description of the experimental set up was complete enough, we extracted measurements of outlet concentration as a function of the SEI manually, for a total amount of 1826 measurements. For that, we used a web application that allows one to retrieve coordinates of a point from the image of a plot [START_REF] Rohatgi | WebPlotDigitizer[END_REF]. We stored those measurements in parts per million (ppm) and J/L units, respectively, converting units whenever needed. Finally, we built a database record with parameters describing the experimental conditions. Those parameters are listed on table 1.

Inlet conditions

Inlet conditions included the treated VOC and its inlet concentration, the background gas composition, as well as the gas temperature, flow rate and pressure. The background gas composition included the absolute humidity.

When not mentioned by the authors, we assumed the following conditions :

• Dry air composition : 80 % N 2 + 20 % O 2

• Gas temperature : 20 • C

• Gas pressure : 101 325 Pa

Reactor characteristics

Reactor characteristics included essentially the reactor type, the reactor volume and, if any, the catalyst used and its configuration. The reactor types were :

• surface DBD ;

• volume DBD ; The reactor volume used was either the one given explicitly by the authors or calculated from the reactor dimensions provided. This volume correspond to the active part of the reactor where discharges take place. In our calculations, we considered this active part to be the section of the reactor covered by the external electrode. We classified the catalyst configuration as either in-plasma catalysis (IPC) or post-plasma catalysis (PPC).

Electric parameters

The only electrical parameter considered was the signal type : either alternate (AC), nanosecond pulse (NS)2 or microsecond pulse (µS).

VOC characteristics

VOC characteristics include properties such as molar mass, boiling point and rate of the rate of its gas-phase reaction with the hydroxyl radical (OH) and with ozone (O 3 ). Molar mass is an indicator of the molecule size, whereas the boiling point is related to its volatility. The rates of reaction with OH indicate how easily the VOC can be oxidized. These rates were taken from the NIST kinetics database [START_REF][END_REF].

Linear regression model

Our linear regression model has the form:

y = β 0 + i β i x i + ( 3 
)
where y is the independent variable, x i are the dependent variables, which can be either quantitative or qualitative, β i are the corresponding linear coefficients, and is a residual term. For the quantitative variables, we use a logarithmic base, as they may vary over several orders of magnitude.

As dependent variable, we take the logarithm of the energy yield in g/kWh:

y = log 10 EY (4) 
The energy yield is defined for each data point as the mass of VOC removed per energy unit dissipated in the plasma:

EY = C in -C out SEI (5) 
It is calculated for each data point and has been chosen because it is directly related to the sizing of a non-thermal plasma treatment : the mass of VOC emitted per unity time divided by the energy yield gives the plasma power needed.

Independent variables were defined from experimental conditions and listed in tables 2 and 3. Qualitative variables have a unity value if the data point belong to the corresponding category or a zero value otherwise. For instance, if the inlet air is humid, x 9 = 1.

We used a least squares method to obtain the values of β i corresponding to each independent variable. We then proceeded with a backward selection of independent variables where, at each step, the least significant variable is removed from the model. The significance of the i-th independent variable is given by a statistical test whose null hypothesis is β i = 0. We stop the selection when all the variables have a p-value3 lower than 0.05 (an arbritary criterium typically used for statistical tests). Both the least squares and the backward selection methods used are discribed in detail in [START_REF] Hastie | The Elements of Statistical Learning[END_REF].

The implementation of the least squares model used the OLS module of the StatsModels library for Python [START_REF] Perktold | About Statsmodels[END_REF]. This module provides methods for computing regression coefficients and their standard errors, confidence intervals and p-values used in this work.

It should be noted that the result of the linear regression model can be seen as the conditional expected value of the independent variable given the set of dependent variables. In our case, the model can be seen as the conditional expected value of the (logarithm of) the energy yield given the quantitative and qualitative variables describing the experimental conditions. This conditional expected value does say anything about the variability of the energy yield, which is related to the residual term in equation 3. This variability can be related used. An analysis of those residual terms will be performed in section 3.4.

Results and discussion

Backward selection

The Humid air 0.066

Regression coefficients

Tables 5 and6 give the coefficients β i obtained for the remaining variables, the corresponding standard errors and 95 % confidence intervals. Interpretation of the obtained coefficients differs between quantitative and qualitative variables.

For a quantitative variable x i , the energy yield predicted by the model will be multiplied by 10 βi when x i is multiplied by 10. Therefore, a value of β i greater (lower) than zero implies that an increase of x i has a positive (negative) effect on the energy yield. For a qualitative variable, the energy yield will be multiplied by 10 βi if the corresponding category applies. For instance, if the VOC is an alcohol (x 13 ), the energy yield is multiplied by 10 0.17 = 1.48. On the other hand, if the VOC is a ketone, the energy yield is multiplied by 10 -0.18 = 0.66. 

Predictive formula

Since we used a logarithmic transform, to obtain those coefficients, the model could be rewritten under the form:

EY model = 5 C 0.76 in W 0.22 k 0.05 OH T 0.70 SEI 0.70 Q 0.026 V 0.023 R (6)
Equation 6 takes as input (right-hand side) the numerical values of the corresponding quantitative variables when they are expressed in the units given in table 2 and returns the numerical value of the predicted energy yield EY model in A correction factor greater than unity implies that the corresponding category has a positive effect on the predicted energy yield. For instance, the use of nanosecond pulses the energy yield is multiplied by 1.10. If an AC signal is used, no correction factor is applied. Therefore the use of nanosecond pulses is expected to be 10 % more efficient than the use of an AC signal. On the other hand, a correction factor lower than unity implies a lower predicted energy yield.

Prediction performance

Figure 1 shows the comparison between the values of the energy yield calculated for each data point with equation 5 and predicted by the model with equation 6. We can see that the points follow quite closely the EY = EY model .

A more objective comparison is shown in figure 2, where a histogram of the logarithm of the ratio between EY and EY model is given. It should be noticed that the logarithm of the ratio between EY and EY model is also the residual term of equation 3, since log(A/B) = log A -log B. We can see that most of the points have residuals between -0.5 and 0.5, which correspond to ratios of 0.32 and 3.2. However, we notice some asymmetry, with a tendency of the model to overestimate EY, as indicated by the larger tail around -0.5. This tendency may be observed visually in figure 1 too.

In figure 3, we show the percentiles of the ratio EY/EY model . We can see that percentiles 10 % and 90 % are equal to 0.6 and 1.75, respectively. That means that in 80% of the cases, the true value of the energy yield EY lies between 0.6 and 1.75 times the value predicted by the model, EY model . Therefore, we can say that the model performs very well in predicting the order of magnitude of the energy yield calculated for experimental data points, which can vary from values as low as 0.1 g/kWh to 1000 g/kWh, i.e. across four orders of magnitude.

However, even though the model is able to predict the order of magnitude of the energy yield, it is hard to exclude the occurrence of significant disparities between its true value and the predicted value, in other words, of high values of the residual term . For instance, the 90 % percentile indicates that for 10 % of the occurrences the true value is 1.75 times higher than the predicted value.

Such a disparity could be linked to experimental parameters which have not been taken into account in our model, such as catalyst nature or discharge characteristics.

But the disparity between true and predicted energy yield values can be useful. Indeed, it can be used to benchmark the treatment efficiency of a given reactor. If the true energy yield is higher (lower) than the predicted one, it means that some of the experimental parameters which are not taken into account in the model may increase (decrease) the treatment efficiency. That increase or decrease could be due, for instance, to a given type of catalyst or a particular electrode configuration.

To sum up, the linear regression model is able to predict an order of magnitude of the energy yield. As mentioned in section 2.2, the output of the model can be seen as a conditional expected value for this energy yield, given the experimental conditions used as input. However, the model does not exclude the occurrence of disparities between true and predicted values, which can be linked to aspects not taken into account in the model for the sake of simplicity.

Impact of experimental parameters

The coefficients obtained for both quantitative and qualitative variables give us a quantitative evaluation of the impact of each of those variables. We describe those impacts in the following.

Initial concentration

The energy yield increases with the initial concentration, more precisely with

C 0.76
in . That means that if we double the inlet concentration, we should expect an increase of 70 % in the energy yield. This result is in agreement with previous experimental work, which identified an increase of the energy yield with the initial concentration [START_REF] Mericam-Bourdet | Recherche d'optimisation énergétique d'un réacteur plasma froid de traitement d'effluents gazeux chargés en composés organiques volatils à pression atmosphérique[END_REF][START_REF] Xu | Benzene Removal Using Non-thermal Plasma with CuO/AC Catalyst: Reaction Condition Optimization and Decomposition Mechanism[END_REF][START_REF] Takaki | Decomposition of Ethylene Using Dual-Polarities Pulsed Dielectric Barrier Discharge[END_REF][START_REF] Jarrige | Decomposition of gaseous sulfide compounds in air by pulsed corona discharge[END_REF][START_REF] Mericam-Bourdet | Eco-efficient electrical and innovative technology development for indoor air and gas exhaust treatment in industry[END_REF].

Temperature

The energy yield increases with the inlet temperature following T 0.70 . This is related to a better process efficiency at high temperatures, as oxidation reaction rates increase and ozone formation, responsible for a significant loss of oxygen radicals, decreases. The increase of the treatment efficiency with temperature has been identified by several authors [START_REF] Ogata | Performance of an ozone decomposition catalyst in hybrid plasma reactors for volatile organic compound removal[END_REF][START_REF] Lock | Methanol and Dimethyl Sulfide Removal by Pulsed Corona Part I: Experiment[END_REF][START_REF] Blin-Simiand | Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 • C to 300 • C temperature range[END_REF][START_REF] Blin-Simiand | Removal of formaldehyde in nitrogen and in dry air by a DBD: importance of temper-ature and role of nitrogen metastable states[END_REF][START_REF] Blin-Simiand | Influence of Temperature on the Removal of Toluene by Dielectric Barrier Discharge[END_REF][START_REF] Koeta | Decomposition of acetaldehyde in atmospheric pressure filamentary nitrogen plasma[END_REF].

Humidity

We notice that humidity has not been included in the model, the qualitative variable humid air (x 9 ) having been removed with a p-value higher than 0.05.

Statistically, that means that there is not enough data evidence to support the hypothesis of a positive or negative impact of the presence of humidity. Indeed, experimental results vary, with some authors indicating that an optimum humidity levels exist [START_REF] Xu | Benzene Removal Using Non-thermal Plasma with CuO/AC Catalyst: Reaction Condition Optimization and Decomposition Mechanism[END_REF][START_REF] Lock | Methanol and Dimethyl Sulfide Removal by Pulsed Corona Part I: Experiment[END_REF][START_REF] Costa | Study of butyraldehyde degradation and by-products formation by using a surface plasma discharge in pilot scale : Process modeling and simulation of relative humidity effect[END_REF][START_REF] Assadi | Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination -Synergetic effect and byproducts identification[END_REF], while others indicate that humidity increases [START_REF] Lovascio | Experimental Study and Kinetic Modeling for Ethanol Treatment by Air Dielectric Barrier Discharges[END_REF][START_REF] Jarrige | Decomposition of gaseous sulfide compounds in air by pulsed corona discharge[END_REF] or decreases [START_REF] Schmidt | Studies on the electrical behaviour and removal of toluene with a dielectric barrier discharge[END_REF][START_REF] Mao | Plasma-catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 for benzene decomposition with synergetic effect and nano particle by-product reduction[END_REF] the treatment efficiency.

Flow rate and reactor volume

Our model indicates that significant changes in the inlet flow rate and in the reactor volume may impact the performance of the treatment. Indeed, exponents for those parameters are respectively -0.026 and -0.023. That means that multiplying the flow rate by 10, the energy yield is reduced by 6 %. Similarly, multiplying the volume of the reactor by 10 implies a 5 % reduction in the energy yield. Although these effects are small, they can play an important role in the process scale-up: increasing both the flow rate and the volume by a factor ×100 implies a reduction of 20 % in the energy yield.

Organic compound

The treatment efficiency varies with the VOC being destroyed. Our model indicates that VOCs with higher rates of oxidation reaction by the radical OH tend to be treated with higher energy yields. This behavior is quite logical, since the treatment is based on the action of oxidant species such as O and OH produced in the plasma. But the energy yield varies also with the VOC family.

From the coefficients for qualitative variables ( into account, for the sake of simplicity. Those aspects can be responsible for disparities between the true value of the energy yield and the one predicted by the model, as discussed in section 3.4.

Signal type

The energy yield must be multiplied by 1.10 when nanosecond pulses are used. This 10 % increase with respect to when an AC signal is used corroborates the findings of Chiper et al. [START_REF] Chiper | Detailed Characterization of 2-Heptanone Conversion by Dielectric Barrier Discharge in N 2 and N 2 /O 2 Mixtures[END_REF], who show that 160 ppm of 2-heptanone are more efficiently converted by a DBD with nanosecond pulses rather than with an alternative signal.

Interestingly, the use of microsecond pulses (pulse width superior to 10 µs) seems to be very efficient, with a coefficient of 1.70. However, only three papers in our review use this kind of signal [START_REF] Yao | Mechanism of Decane Decomposition in a Pulsed Dielectric Barrier Discharge Reactor[END_REF][START_REF] Wu | Naphthalene Decomposition by Dielectric Barrier Discharges at Atmospheric Pressure[END_REF][START_REF] Takaki | Decomposition of Ethylene Using Dual-Polarities Pulsed Dielectric Barrier Discharge[END_REF]. More data would be needed to confirm this trend.

Catalysis

In accord with the litterature [START_REF] Kim | A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review[END_REF], the coupling with plasma and catalysts improves the energy yield. However, we found coefficients of 1.15 for in-plasma catalysis and 1.74 for post-plasma catalysis, which indicate that the latter con-figuration is generally more efficient. This result should be considered cautiously as we didn't take into account the catalyst used, but only whether a catalyst was used or not. Indeed, catalyst performance is directly impacted not only by the catalyst composition, but also by the fabrication process which impact the catalyst structure and the amount of catalyst used, related to the gas-hourly space velocity. Therefore, those parameters certainly impact VOC removal.

However, taking them into account would increase considerably the complexity of the model and of data collection. Being so, we decided not to include those parameters in the scope of this work. The particular performance of a given catalyst can be reflected in the disparity between true and predicted values for the energy yield, as discussed in section 3.4.

Conclusion

In We believe that the model presented here will be of great value for anyone in-terested in the treatment of VOC by non-thermal plasma. Scientists performing experimental work will find it useful as a benchmark to which compare its own results. Engineers looking for a preliminary estimate of a non-thermal plasma treatment will also be able to use it.

In the future, we hope to keep our database up to date, including new experimental results to update the model's coefficients and/or to further validate the model. We also hope to extend the model to other aspects of non-thermal plasma treatment, such as ozone production or CO 2 selectivity. Finally, we believe that the approach used here could be applied to other environmental applications of non-thermal plasmas, such as plasma-assisted reforming or CO 2 conversion.
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  this paper, we have established a regression model for predicting the performance of the non-thermal plasma treatment of VOC. This model is based on series of measurements of VOC outlet concentration as a function of the specific energy input, extracted from 69 scientific publications. It takes as input variables such as the initial VOC concentration, the flow rate, the volume of the reactor, the VOC type or the use of a catalyst and return the expected energy yield, a measure of the treatment efficiency. In 80 % of the data points, the calculated energy yield for the experimental data lies between 0.6 and 1.75 times the value predicted by the model. The model also allowed us to evaluate quantitatively the impact of several parameters of the treatment.

Table 1 :

 1 List of parameters stored in the database. These parameters describe the experimental conditions of the VOC treatment by non-thermal plasma.

	Inlet conditions
	Treated VOC
	Inlet concentration
	Background gas composition
	Inlet temperature
	Flow rate
	Pressure
	Reactor characteristics
	Reactor type
	Reactor volume
	Catalyst
	Catalyst configuration
	Electric parameters
	Signal type
	VOC characteristics
	Name
	Family
	Molar mass
	Boiling point
	Rate of reaction with OH at 298 K

Reactor types classified as other include a photo-triggered discharge reactor used by Faider et al.

[START_REF] Faider | Role of quenching of metastable states in acetaldehyde decomposition by a non-equilibrium nitrogen plasma at sub-atmospheric pressure[END_REF] 

and hybrid surface/packed-bed reactors used by Jiang et al.

[START_REF] Jiang | Plasma-catalytic degradation of benzene over AgCe bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas[END_REF][START_REF] Jiang | Enhanced Degradation of Benzene in Surface/Packed-Bed Hybrid Discharge System: Optimization of the Reactor Structure and Electrical Parameters[END_REF][START_REF] Jiang | Effect of Grounded Electrode's Width on Electrical Characteristics of Nanosecond-pulse Surface DBD[END_REF][START_REF] Hu | Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO 2 TiO 2 /zeolite catalyst[END_REF]

.

Table 2 :

 2 Independent quantitative variables.

	Variable	Description	Value	Unity *
	x 1	Initial concentration	log 10 C in	g/m 3
	x 2	Specific energy input	log 10 SEI	J/L
	x 3	Molar mass	log 10 W	g/mol
	x 4	Rate constant -OH	log 10 k OH	cm 3 /s
	x 5	Inlet temperature	log 10 T	K
	x 6	Flow rate	log 10 Q	L/min
	x 7	Reactor volume	log 10 V R	m 3
	x 8	Boiling point	log 10 T	

b K * Before logarithmic transform. to different factors which are not taken into account in the set of dependent variables we use: experimental errors, different reactor geometries and materials, different electrical parameters such as voltage amplitude or pulse frequency, different dielectric materials for dielectric barrier discharges, different catalysts

Table 3 :

 3 table4gives the variables which were removed by backward selection and the respective p-values justifying their removal. The only quantitative variable removed was the VOC boiling point. Qualitative variables removed were the VOC families alkane (x 10 ) and aromatic (x 12 ), reactor types volume (x 19 ) Independent qualitative variables. bed DBD (x 27 ), no catalyst and humid air (x 19 ). The VOC family aromatic and humid air variables were removed with p-values close to the criterium value of 0.05. Whether to include them in the model or not could be subject to discussion. We decided to stick to the 0.05 and not to include them for the sake of simplicity.

	Variable	Description	Category
	x 9		Humid air
	x		Alkane
	x		Alkene/Alkyne
	x		Aromatic
	x	VOC family	Alcohol
	x		Aldehyde
	x		Ketone
	x		Sulphur
	x		Halogen
	x		Ether/Ester
	x		Volume DBD
	x		Surface DBD
	x	Reactor type	Packed-bed DBD
	x		Corona
	x		Other
	x		AC
	x	Signal type	NS pulse
	x		µS pulse
	x		No catalyst
	x	Catalysis	IPC
	x		PPC

Table 4 :

 4 Variables removed by backward selection.

	Variable	Description	p-value
	x 8	Boiling point	0.965
	x 24	AC	0.767
	x 10	Alkane	0.758
	x 19	Volume DBD	0.127
	x 21	Packed-bed DBD	0.867
	x 12	Aromatic	0.087
	x 27	No catalyst	0.889
	x 9		

Table 5 :

 5 Coefficients obtained for independent quantitative variables.

	Variable Description	Value	Std. Error	95 % Confidence Interval
	β 0	Intercept	0.7	0.3	[0.1, 1.4]
	β 1	Initial concentration	0.76	0.01	[0.74, 0.79]
	β 2	Specific energy input	-0.70	0.01	[-0.72, -0.68]
	β 3	Molar mass	0.22	0.07	[0.08, 0.36]
	β 4	Rate constant -OH	0.05	0.01	[0.02, 0.08]
	β 5	Inlet temperature	0.70	0.08	[0.55, 0.85]
	β 6	Inlet flow rate	-0.026	0.008	[-0.032, -0.015]
	β 7	Reactor volume	-0.023	0.004	[-0.042, -0.010]

Table 6 :

 6 Coefficients obtained for independent qualitative variables.

	Variable Description	Value	Std. Error	95 % Confidence Interval
	β 11	Alkene/Alkyne	0.18	0.04	[0.10, 0.26]
	β 13	Alcohol	0.17	0.03	[0.12, 0.22]
	β 14	Aldehyde	0.09	0.03	[0.04, 0.14]
	β 15	Ketone	-0.18	0.02	[-0.22, -0.14]
	β 16	Sulphur	0.22	0.03	[0.16, 0.29]
	β 17	Halogen	0.16	0.04	[0.09, 0.23]
	β 18	Ether/Ester	-0.20	0.03	[-0.26, -0.14]
	β 20	Surface DBD	0.09	0.02	[0.06, 0.13]
	β 22	Corona	0.13	0.02	[0.09, 0.17]
	β 23	Other	0.08	0.02	[0.03, 0.12]
	β 25	NS pulse	0.04	0.02	[0.01, 0.08]
	β 26	µS pulse	0.23	0.04	[0.16, 0.30]
	β 28	IPC	0.06	0.01	[0.04, 0.09]
	β 29	PPC	0.24	0.02	[0.20, 0.29]

Table 7 :

 7 Correction factors for equation 6 corresponding to the qualitative vari-

	ables.		
	Correction	95 % Confidence
		factor	Interval
	If the VOC is an alkene or alkyne:	×1.51	[1.43, 1.59]
	If the VOC is an alcohol:	×1.48	[1.42, 1.52]
	If the VOC is an aldehyde:	×1.23	[1.18, 1.28]
	If the VOC is a ketone:	×0.66	[0.62, 0.70]
	If the VOC is a sulphur compound:	×1.66	[1.62, 1.75]
	If the VOC is a halogen compound:	×1.45	[1.36, 1.51]
	If the VOC is an ether or an ester:	×0.63	[0.58, 0.69]
	If the reactor uses surface DBD:	×1.23	[1.20, 1.27]
	If the reactor uses corona discharges:	×1.35	[1.31, 1.39]
	If the reactor uses another type of discharge:	×1.20	[1.15, 1.23]
	If the reactor uses NS pulses:	×1.10	[1.07, 1.14]
	If the reactor uses µS pulses:	×1.70	[1.62, 1.76]
	If the reactor uses in-plasma catalysis:	×1.15	[1.12, 1.18]
	If the reactor uses post-plasma catalysis:	×1.74	[1.70, 1.79]

table 6

 6 

	3.5.6. Discharge type
	The energy yield is higher for surface DBD and corona discharge reactors.
	Indeed, as we have seen, in those cases the energy yield given by equation 6

), we can say that energy yield decreases in the following order : sulphur > alkene/alkyne > alcohol > halogen > . . . . . . > aldehyde > alkane/aromatic > ketone > ether/ester

The pulse repetition frequency can be converted to the specific energy input if the energy per pulse is known or can be deduced from the available information.

We considered nanonsecond pulses as those pulses having a pulse width inferior to 10 µs. Otherwise, we used the microsecond pulse classification.

The p-value is the probability of observing a given result provided the null hypothesis is true. A small p-value indicates that the evidence that β i is different from zero is strong. Conversely, a large p-value indicates that the evidence that β i is different from zero is weak. β i = 0 means that the corresponding variable has no impact in the model's prediction. Removing variables with p-value above 0.05 implies that we only retain those variables for which we have strong evidence that β i is different from zero.