Direct shape optimization through deep reinforcement learning - Mines Paris
Pré-Publication, Document De Travail Année : 2021

Direct shape optimization through deep reinforcement learning

Mines Paristech
  • Fonction : Auteur
Jean Rabault
  • Fonction : Auteur
Alexander Kuhnle
  • Fonction : Auteur
  • PersonId : 1060348
Hassan Ghraieb
  • Fonction : Auteur
  • PersonId : 1060349
Elie Hachem

Résumé

Deep Reinforcement Learning (DRL) has recently spread into a range of domains within physics and engineering, with multiple remarkable achievements. Still, much remains to be explored before the capabilities of these methods are well understood. In this paper, we present the first application of DRL to direct shape optimization. We show that, given adequate reward, an artificial neural network trained through DRL is able to generate optimal shapes on its own, without any prior knowledge and in a constrained time. While we choose here to apply this methodology to aerodynamics, the optimization process itself is agnostic to details of the use case, and thus our work paves the way to new generic shape * Corresponding author optimization strategies both in fluid mechanics, and more generally in any domain where a relevant reward function can be defined.
Fichier principal
Vignette du fichier
nn_flow_2d.pdf (2.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02401468 , version 1 (10-12-2019)
hal-02401468 , version 2 (07-01-2021)

Identifiants

  • HAL Id : hal-02401468 , version 2

Citer

Jonathan Viquerat, Mines Paristech, Jean Rabault, Alexander Kuhnle, Hassan Ghraieb, et al.. Direct shape optimization through deep reinforcement learning. 2021. ⟨hal-02401468v2⟩
277 Consultations
653 Téléchargements

Partager

More