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Abstract 

In district energy simulation, new models are developed 

to address the issues arising in the urban-scale. These 

models can be at different levels of detail, which can 

influence the simulation time but also the multiple outputs 

in different ways. In this paper we present the 

development of a new methodology that can tackle the 

issues of parsimonious modelling, namely find a trade-off 

between the available data, the different modelling levels 

of detail, the expected output and the simulation time. 

More particularly, this paper focuses on one specific 

phenomenon, solar shading models at a district scale, and 

aims to analyse its influence on different performance 

indicators, such as the building energy needs, power 

demand or the thermal comfort, following multiple 

district’s morphologies. 

The comparison’s results on 3 types of districts show that 

static models are not always sufficient to assess accurately 

the heating demand or power needs. A more sophisticated 

model can be used without more computational time 

needed for simple districts.  

To choose the adapted models for a given context, a first 

table is given using the criteria D*H (density*height). 

Introduction 

In recent years, there has been an increased interest in 

energy district-simulation following a bottom-up 

approach in order to address the issues relative to energy 

transition and energy supply. Indeed, this large-scale 

modelling is a useful tool for political decision support by 

evaluating urban energy performance and predicting the 

impact of energy saving measures. However, the energy 

simulation at a district level increases the uncertainties 

when modelling hundreds of buildings. Collecting 

exhaustively inputs data for parameterization is nearly 

impossible as well as the use of very detailed models 

becomes too expensive in computational time. 

In district modelling, a current trend consists in 

developing models ever more detailed which increases 

computational time and amount of required data without 

knowing the relevance of such details regarding the 

expected results or simulation objectives. Different 

modellings are often compared in the literature but the 

conclusions are seldom generic since the analysis relies 

on specific districts or buildings. For example, Han, 

Taylor and Pisello (2017) studied the inter-building effect 

on different cities, to draw conclusion on the weather 

effect but not the morphology. Frayssinet et al. (2017) 

compared different building envelope models but at a 

building scale. Martin et al. (2017) used different multi-

zone modelling but also at a building scale, and Dogan 

and Reinhart (2017) at a district scale but to validate the 

use of a specific algorithm and not generic models. 

The aim is then to find a trade-off between availability 

and quality of inputs data and the level of detail of 

phenomenon’s modelling regarding the simulation’s 

objectives. Indeed, the use of such simulator can have 

different outcomes depending on the user, from the 

determination of renewables potential to the indoor 

comfort, or the daily energy consumption. For each output 

the correct level of detail of each model will not be the 

same. The purpose of such methodology is not to identify 

a unique “best” level of modelling at urban scale but to 

choose the most adapted one regarding a given context. 

The latter includes the intrinsic properties, like geometry 

or scale, of the district to be simulated and the objective 

of the study such as energy consumption and thermal 

comfort. 

Therefore, this paper deals with the development of a 

novel methodological approach that considers several 

models with different levels of detail and evaluates their 

relevance according to the expected simulation outcomes. 

An important aspect of the methodology is to define 

indicators of comparison in order to help choosing the 

most appropriate modelling. This methodology is here 

applied on the modelling of buildings obstruction on solar 

radiation at urban scale. These shading masks can deeply 

influence the energy consumption in some densified 

districts, but they can be considered in very different 

manners, from the non-modelling to the calculation of 

shading and inter-reflections on the discretized surface of 

buildings. The simulations are computed over a whole 

year with the district simulator DIMOSIM (Riederer et al. 

2015) but can be extended to other tools. 

In order to highlight this methodology, this paper is 

structured as follows: the first part details the proposed 

methodology, then it is applied in a second part on the 

models of solar shading, and finally the last part draws 

conclusions and perspectives. 

Methodology and its application on solar 

irradiation models and mutual shading 

For purposes of comparing intrinsically the models 

without the influence of others, and thus draw conclusion 



per models, they are gathered in thematic families 

representing the different phenomena or stakeholders 

involved in district simulation, such as the urban micro-

climate, the energy systems or the occupation influence. 

In each family, sub-families are built to compare only one 

type of model. These sub-families must be independent 

blocks, so that different models can be tested without 

modifying the others. Nevertheless, the level of detail of 

one sub-model can influence another, and then change the 

outcome of the latter. Therefore, after considering each 

sub-family, a concatenation must be done in order to 

analyse their mutual influence, according to the previous 

conclusions. For a given sub-family, several steps must be 

followed. 

Step 1 – Literature review and selection of models 

Among the subset of chosen models, a reference for 

comparison is determine as the most validated algorithm 

or the most commonly used in district simulation. 

Step 2 – Definition of key comparison indicators 

These key comparison indicators will be used for the 

models comparison and must be therefore linked and 

consistent to the sub-family of models. 

Step 3 – Selection of districts 

A set of districts is created with different morphologies 

and characteristics adapted to the chosen sub-family. The 

use of virtual districts with parameters based on realistic 

districts allows to simulate in a controlled environment. 

At this step uncertainty on parameters is put aside, and 

only a fixed set of parameters is used for all the districts. 

Step 4 – Definition of model selection criteria 

These criteria, based on the intrinsic districts’ 

characteristics (morphology, proportion of a specific 

system in the district…), should allow to conclude what 

kind of model to use depending on the considerate district 

before any simulation. They will be adapted according to 

the desired comparison. The following analysis will 

confirm the pertinent criterion to use, or will express the 

need to develop new ones. 

Step 5 – Simulation and analysis 

The districts are simulated and the results analysed on 

different spatial scales (building, district) and time 

resolution (annual, monthly, intra-day) as the conclusions 

can be very different depending on it. The model selection 

criteria are then to either find for the relevant simulation 

outputs: 

 Some threshold values that indicate which pertinent 

level of detail have to be used on one district 

 Or some districts classification that are linked to this 

degree of detail.  

The outputs will be compared to the reference using the 

mean total difference (ME), the root mean square error 

                                                           

1 𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (

𝑥𝑖−𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖
)² 𝑁

𝑖 , 𝑀𝐵𝐸 =
1

𝑁
∑

𝑥𝑖−𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖

𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖
 𝑁

𝑖 , 

𝑀𝐸 =
∑ 𝑥𝑖

𝑁
𝑖 −∑ 𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖

𝑁
𝑖

∑ 𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑖
𝑁
𝑖

 

(RMSE)1, the mean bias error (MBE) in order to account 

all positive and negative errors. 

Application on solar irradiation models and 

mutual shading 

To illustrate our approach, we present in this paper an 

analysis of how to deal with models of solar shading 

masks. For a first analysis only the mutual shading of 

buildings is studied, the effects of other shading (solar 

protection, topography, close solar masks, trees) are put 

aside for this paper. 

With the modelling of dozens or hundreds of buildings, 

the concept of the inter-building effect is emerging, 

requiring the development of new models to take into 

account the mutual impact of near buildings’ influence. 

Indeed, considering the surrounding buildings for the 

solar irradiation modelling can strongly impact thermal 

dynamics as well as visual comfort or solar potential. Han 

et al. (Han, Taylor, and Pisello 2017) have demonstrated 

that the non-modelling of shading between buildings can 

lead to more than 60% error in cooling and heating 

consumption and 6% in lighting consumption depending 

on climate zones. Meanwhile, Romero Rodríguez et al. 

(2017) showed that the impact of urban shading and 

reflections can reduce the incoming solar radiation for 

high-density areas by up to 60% for the considering 

facades and 25% for roofs. However, the computational 

time to assess the mutual shading in an urban context 

increases rapidly with the number of buildings and the 

level of detail. Therefore, a simpler model can reduce the 

delay of calculation but it is necessary to know if this gain 

in computational time does not mean an insufficient 

precision. 

To account for mutual solar shading and/or reflections, 

several methods are available, including the ray-tracing 

algorithm (EnergyPlus (UIUC 2015), SimStadt (Romero 

Rodríguez et al. 2017), DIMOSIM, DAYSIM (Reinhart 

and Herkel 2000), the radiosity method (SOLENE 

(Miguet and Groleau 2001)), the use of satellite images 

(Martínez-Durbán et al. 2009) or the calculation of static 

parameters according to the urban context (SMART-E 

(Berthou et al. 2015)). 

Among the abundance of models, eight different models 

were chosen because of their availability and/or their 

potential implementation in DIMOSIM and their 

precision/validation (Table 1). The interest of such 

models is first of all to compare static (models X.1) to 

dynamics (models X.2), and to reduce the computational 

time needed. The more the building is discretized, the 

more calculation points and ray-tracing it needs, surging 

the computation time. 

The models 0.0, 1.1 and 2.1 are statics models with solar 

radiation reduction coefficient and do not take into 

account the geographic position of the district, while the 

with N the number of sample, x the approximation’s value and 

xbaseline the reference’s value 



5 others use dynamic calculation with the sun position 

through the year. Nevertheless, the SMART-E model 

(2.1) is using the 3CL-DPE method from the Direction de 

l’information légale et administrative (2012) (regulatory 

rule for existing buildings audit in France) in order to 

calculate a mean annual reduction factor from height and 

distance of surrounding buildings in a 500 m radius. 

Table 1 : Considered shading mask models 

Model 

Software 
Characteristic 

Represent

ation 

Mask-L 0.0 Without mutual shading - 

Mask-L 1.1 

Constant annual factor of 0.5 on all 

buildings, mean value used when 

no mask model is implemented 

- 

Mask-L 2.1 

SMART-E 

Constant annual factor calculate for 

each building based on urban 

morphology 

- 

Mask-L 3.2 

DIMOSIM 

Dynamic calculation at the centre of 

each building 

 

 

 

Mask-L 4.2 

DIMOSIM 

Dynamic calculation at the centre of 

façade of each building 

 

 

 

Mask-L 5.2 

DIMOSIM 

Dynamic calculation at the centre of 

each building floors facade 

 

 

 

Mask-L 6.2 

DIMOSIM 

Dynamic calculation with simple 

mesh 

 

 

 

Mask-L 7.2 

CEA-DAY 

Dynamic calculation with precise 

mesh and inter- reflections 

 

 

 

The models of DIMOSIM are based on ray-tracing 

algorithm with different discretization levels under the 

1990 Perez sky model. Two discretizations are 

implemented in order to have an effective scan of the built 

environment. First, the nearer the neighbouring building 

is, the more discretized his footprint is, to account of their 

potential influence while reducing calculation time. A 

reduction coefficient for the direct radiation is calculated 

for each time step and each calculation point over 360-

degrees. As for the diffuse radiation, constant sky view 

factors are applied. DIMOSIM solar radiation 

computation was compared to TRNSYS, Transient 

System Simulation Tool, on a single building in order to 

validate the simple calculation under different kinds of 

sky models. These comparisons showed very close results 

on the annual solar irradiation on each facade (under 2.5% 

for the isotropic model and 3.7% for the Perez model). 

CityEnergyAnalyst (Fonseca et al. 2015), an open source 

district simulator, is using DAYSIM software (Reinhart 

and Herkel 2000), which is validated mostly for the visual 

comfort. DAYSIM is based on daylight coefficients like 

RADIANCE (Compagnon 2001) under 1993 Perez sky 

model, but use a method to accelerate the computational 

time. This software is used in several district simulations 

as Strømann-Andersen and Sattrup (2011) did to assess 

energy consumption in a canyon street. This software is 

used as first reference model and is referred as CEA-

DAY. 

Key comparison indicators 

The solar irradiation in a district is a preliminary 

calculation to perform in order to calculate the solar gains, 

the solar potential or the micro-climate, all influencing the 

thermal calculation and the energy supply. Therefore, the 

comparison indicators for this type of models are related 

to the energy demand (heating, cooling, lighting), the 

incoming solar radiation on the roofs or facades, the 

thermal loads and their variations and the indoor comfort. 

Here for the interests of clarity and concision, only the 

annual heating and cooling demand and the MBE and 

RMSE in heating and cooling loads will be discussed.  

Choice of districts 

The following virtual districts are generated on the basis 

of a given density and random heights (Figure 1), and the 

typologies of Bonhomme et al. (Bonhomme, Ait Haddou, 

and Adolphe 2012), extended by Tornay et al. (2017), 

under the GENIUS project.  

Figure 1: Example of a high density canyon (left) and a 

high density grid district (right) 

  

All the buildings are modeled as a solely thermal zone in 

order to be able to take the output of solar irradiation 

calculation from CEA-DAY in DIMOSIM and do not 

then take the thermal transfer between thermal zones into 

account. There are no occupants, as they bring to much 

variability, and the buildings are powered with ideal 

generators and heated by ideal emitters with a 19°C set-

point for heating and 26°C set-point for cooling. For the 

first simulations, a window-to-wall ratio of 0.2, an albedo 

of 0.2 for the ground, 0.3 for the roofs and facades are 

taken, with buildings N-S oriented and with U-values of 

2 W/m²K for the windows and 1 W/m²K for the walls. The 

simulations are launch over a year with a time step of 10 

min for thermal control, and 1 h for solar irradiation to 

match the hourly weather data. 

Model selection criteria 

Some model selection criteria are then created in order to 

detect the global characteristics of a district involving 

these different levels of model. Here, the criterion D*H is 

chosen: 

𝐷∗𝐻 = ℎ𝑚𝑒𝑎𝑛 ∗ 𝑑 

Where hmean is the mean height and d is the district’s 

density (sum of the buildings’ footprints divided by the 

district area). But the road width could be also used. 

Procedure 

The solar radiation of CEA-DAY is injected in 

DIMOSIM to simulate the entire district with the same 

thermal models and systems models. The simulations are 

done with Paris-Montsouris 71560 (Oceanic climate) and 



Athens 167160 (IWEC, Mediterranean climate) 

meteorological data. At the end, the other comparisons are 

performed only with DIMOSIM in order to avoid the 

compensation of errors. 

Results 

This section presents and analyzes the simulations 

previously presented. Several steps were followed: 

 Validation of the detailed DIMOSIM mask model 

compared to DAYSIM in order to use it as baseline: 

- On one single building 

- On five districts with different shapes to see the 

impacts of scale and morphology 

 Comparison of these 5 districts with DIMOSIM as 

baseline 

 Generalization with global typologies of buildings: on 

three types of districts with variable heights and 

densities. 

Comparison on one building with CEA-DAY 

Before simulating a whole district, a simple building was 

considered to identify the intrinsic differences due to the 

calculation of solar radiation on tilted surfaces without 

any reflections while using the same weather data file. If 

the Pearson’s coefficient between DIMOSIM and CEA-

DAY are very good, with the worst on the northern façade 

of 0.971, and the better 0.999 on the roof (Figure 2), the 

MBE and RMSE per orientation reach 20% (Table 2). 

Table 2 : Comparison between DIMOSIM and CEA-

DAY (as baseline) on solar radiation (kWh) for a simple 

building 

Error type East North Roof South West Total 

MBErel [%] 1,5% -3,0% -15,9% -8,5% -7,8% -7,6% 

RMSErel [%] 3,2% 17,4% 19,1% 16,6% 15,5% 9,5% 

Pearson 0.999 0.971 0.997 0.991 0.995 0.999 

Figure 2 : Correlation between DIMOSIM and CEA-

DAY roof solar radiation (kW) with hourly values 

 

Most of these discrepancies are coming from the different 

sky models used in both simulators (Perez 1993 for CEA-

DAY and Perez 1990 for DIMOSIM), mostly for the 

diffuse radiation, as well as the sun position that is 

approximated by only a set a mean values for the entire 

year in CEA-DAY.  

To compare shading models avoiding the bias of the sky 

model, the radiation on shaded facades will be then 

compared only on specific days where the maximal daily 

standard deviation upon global irradiation (direct + 

diffuse) between CEA-DAY and DIMOSIM is the lowest. 

We chose a maximal standard deviation of 10% and 

selected 25 days all around the year with maximal 

irradiation varying between 8.1 kW and 59 kW, with the 

2 best days the 24/01 and 14/06 where the maximal 

standard deviation for all facades are under 8 %. 

Comparison on five districts’ shapes 

Here five types of districts are chosen:  

 CANYON_high and CANYON_low: Two canyon 

street with heights between 6 et 18m, 12 buildings and 

density respectively 0.6 and 0.4 

 GRID_high and GRID_low: two grid districts, 16 

buildings with respectively heights between 21 and 

65m, and 3 and 12m, and density of 0.5 and 0.15 

 ROW: A circle district: heights between 15 and 24m, 

8 buildings 

We now compare the solar radiation arriving on each 

building and facades for entire districts, between CEA-

DAY (as baseline) and the most detailed shading-model 

of DIMOSIM (model 6.2). For each district two 

simulations are done: with and without the reflections 

(including the ground reflections and the inter-reflections 

with building, noted as R). DIMOSIM simulates the 

ground diffuse reflections but not the inter-reflections like 

CEA-DAY. 

- District GRID_low 

The GRID_low district, with his lower heights and 

density, should present a lower influence on the shading 

model, and so is used as a first comparison. The results 

are aggregated per orientation (Table 3). On the 25 

selected days, the MBE for the case with no reflections, 

does not exceed 4%. The RMSE is mildly higher, but is 

still presenting good results under 6%. The solar radiation 

shows good correlation following the calculated 

Pearson’s coefficients varying between 0,989 (south) and 

0,999. 

Table 3 : Comparison between the solar radiation of 

DIMOSIM and CEA-DAY (as baseline) for each 

orientation of the GRID_low district for the 25 days 

Error type East North Roof South West Total 

Without inter-reflections 

MBE -4% -1% 1% -4% -4% -1% 

RMSE 6% 5% 2% 6% 6% 3% 

With inter-reflections 

MBE -7% -4% 1% -6% -6% -3% 

RMSE 7% 4% 1% 7% 7% 3% 

Over the entire year the errors are higher than 4%, ranging 

from 2% on the roof and -15% in the south for the MBE. 

The results were also tested on the 2 best days among the 

25. The Pearson’s coefficients were slightly better but the 

other qualitative comparisons were marginally poorer. 

The 25 days were then preferred for the comparison, in 

order to have more variability. 



With reflections, almost all errors for all facades are 

getting larger, certainly due to the ground diffuse 

reflection, since the inter-reflections aren’t much 

impacting with low heights and high road widths. 

However, the Pearson coefficients are better, with the 

worst value on the south of 0,993. DIMOSIM is then 

slightly over-estimating the lower solar radiation and 

under-estimating the higher ones (Figure 3), but with very 

little differences, and thus validating the use of 

DIMOSIM as baseline. 

Figure 3 : Total solar radiation (KW) duration curve 

with hourly data, for the GRID_low district 

 

- District GRID_high 

In order to consolidate the first validation of DIMOSIM 

as baseline, a second simulation was undertaken with the 

GRID-high district. The high density and heights should 

imply a significant impact of masks on the solar radiation 

calculation. 

Compared to the GRID_low district, the differences are 

higher (Table 4), they achieve 16% for the MBE but with 

good Pearson’s coefficient like the GRID_low. With the 

former results on the GRID_low district, an important part 

of the differences can be attributed to the mask model. 

Table 4 : Comparison between the solar radiation of 

DIMOSIM and CEA-DAY (as baseline) for each 

orientation of the GRID_high district for the 25 days 

Error type East North Roof South West Total 

Without inter-reflections 

MBE 16% 11% 16% 13% 6% 12% 

RMSE 17% 13% 16% 15% 9% 13% 

With inter-reflections 

MBE 14% 13% 14% 12% 10% 12% 

RMSE 16% 14% 14% 14% 12% 13% 

In taking into account the inter-reflections the errors 

decrease, it can be assumed that the error from the inter-

reflections compensate the over-prediction of DIMOSIM. 

When looking at the building level on the two first lower 

rows (Figure 4), it is possible to see that DIMOSIM is 

underpredicting the high solar radiations when the masks 

don’t play a too important role on the edge of the district, 

but is folowwing the same tendency. For the building 

number 5, where the masks have the biggest impact 

(building situated in the middle of the district), DIMOSIM 

overestimates the solar radiation by more than 50% due to 

the shading mask model. 

Figure 4 : Total solar radiation (kW) duration curve for 

four buildings of the GRID_high district for the selected 

25 days with the inter-reflections and hourly data 

The previous results show that DIMOSIM presents good 

agreement with CEA-DAY, even though it presents 

higher differences when the masks impact is important. 

Given the improvement of the results with the modelling 

of the inter-reflections, it is showed that the errors are 

compensating themselves between the mask models 1.1 

to 5.2 and CEA-DAY. Therefore, with the good 

agreement between CEA-DAY and the model 6.2, it 

prompts us to pursue in the idea of taking DIMOSIM as 

baseline to simplify the comparison and avoid the 

compensation of errors between models. 

As for the simulation time, the gain in computational time 

with DIMOSIM allow us to simulate multiple districts 

without considering the time needed for the shading 

masks in DIMOSIM for simple districts (Table 5). 

Obviously, taking real districts with buildings having 

plenty of facades can increase significantly the 

computational time compared to what is simulate here. 

Table 5 : Shading mask simulation times on a i5-6200U 

core computer (8G RAM, CPU 2.30GHz) 

District Grid_high Grid_low 

CEA-DAY without R 2659 s 212 s 

CEA-DAY with R 3116 s 232 s 

DIMOSIM 6.2 4 s < 1 s 

MBE without/with R 12 / 12 % - 1 / - 3 % 

In conclusion, the results in the calculation of solar 

irradiation and the gain in computational time between 

CEA-DAY and DIMOSIM allow us legitimately to take 

the DIMOSIM mask model 6.2 as reference. 

Comparison with DIMOSIM as baseline 

Since the use of the DIMOSIM mask model 6.2 as 

baseline is settled and validated, it is possible to assess the 

differences with the 5 districts created earlier. In the 

selected 25 days, no cooling is necessary, then here only 

the heating demand and the heating loads are presented. 

The differences between heating demands for the 5 

districts are varying from -5 % to 6 % following the mask 

model but also the district’s morphology (ME in Table 7). 

As expected, for the GRID_high district, the non-

modelling of masks has a more significant impact than for 

the GRID_low district. However, the static model 2.1 

presents better results than the dynamic model 3.2 for the 



GRID_high district. The model 5.2 is very close to the 6.2 

with less than 1% difference, showing that the calculation 

here per floor’s facade is sufficient for whatever district. 

When looking at a more instantaneous scale, the heating 

power is far more affected that the heating demand (MBE 

and RMSE Table 7). The use of a completely random 

mask coefficient (model 1.1) with a rule of thumb is for 

the heating power too rough, even though the GRID_high 

district presented better results than the model 0.0 for the 

total heating demand. The latter is presenting good 

agreements even for the power demand for these 25 days 

on all districts. Likewise, when considering the model 2.1, 

its use for the GRID_high or the ROW heating 

consumption is well suited with less than 5% difference, 

but presents a difference of more than 10% when looking 

at the heating power. The use of one model is then 

dependent of the objectives and the shape of the district. 

The results with the Athens’ weather are not presented for 

the 5 districts, but only in the next results’ part. 

Generalization on three types of districts 

When looking at the previous results, the morphology of 

a district is an important matter, as well as the weather. In 

order to draw more generically conclusions, virtual 

districts are here implemented with the typology from 

Bonhomme et al., used previously to build the 5 districts. 

Here, only three types are considered together by their 

shape: the detached low-rise (low-rise), the detached mid-

rise (mid-rise) and the high rise building. These types are 

used in order to stay in the limits of possible existing 

districts, and to avoid creating completely incoherent 

relation between heights, density or road width. For each 

type, 20 districts are randomly built within the range of 

the given parameters (min, max and mean height and road 

width). CEA-DAY is here not considered, in order to be 

able to compute heating and cooling loads all over the 

year. 

For the heating demand (Figure 5), when the districts are 

denser and higher, the differences are less varying, except 

the model 0.0 with the non-modelling of shading masks. 

If it is possible to say that for the heating demand and for 

the dense and high districts, it is sufficient to use static 

models like 1.1 or 2.1, or simple dynamic models like the 

3.2, the use of such models implicates much higher 

differences in cooling demand. In contrast to the latter 

districts, the ones with a small D*H are presenting variable 

differences in a short range of indicators values. The 

choice of the model’s level of detail is very sensible, but 

stay in the reasonable range of the 10% differences for the 

heating demand. Nevertheless, for the cooling demand 

this sensitivity gives very spread results between 0 and 

200 %, even reaching 500% differences for the worst 

cases. This is probably due to the very fast variation in the 

indicator between dense-low districts, and more sparse-

high districts. Nevertheless, by looking at the typology of 

districts, it is possible to distinguish two similar trends for 

low value of D*H, and so be able to choose for a same 

value a specific model. For example, for D*H in the range 

of 5 to 10, the model 3.2 presents a heating demand’s 

MBE between -15 % and -5 %, linked respectively to a 

low rise detached district and mid-rise detached district. 

For this latter the model 3.2 is sufficient to implement. 

With the Athens weather, the results are following the 

same trend (Figure 6), but with a different range of MBE: 

a smaller one for the cooling demand, and a larger one for 

the heating. With this spreading of results, for some high 

and dense districts even the use of the model 4.2 is not 

enough to ensure less than 10% of differences in heating 

demand. 

Depending on the climate and the use of buildings, the 

wanted output will not be the same. For example, for 

residential buildings in Paris, where cooling devices are 

not often implemented, the use of simple mask models is 

possible for good results in heating demand without 

looking at the cooling part. We can then choose the 

adapted models for a given context. For example, if a 

precision of 20% on the heating demand is expected, 

following the criteria D*H different models can be used 

(Table 6). 

Table 6 : Shading mask model selection for a 20% 

wanted accuracy in the thermal heating demand 

following weather and type of district 

Weather 
District’s 

type 

D*H 

≤ 5 [5;7[ [7;15[ [15;30[ ≥ 30 

Paris 

Low-rise All All - - - 

Mid-rise - All 
X.1 - 

X.2 
- - 

High rise - - - 
X.1 - 

X.2 

X.1 - 

X.2 

Athens 

Low-rise 4/5/6.2 4/5/6.2 - - - 

Mid-rise - 
2.1 – 

4/5/6.2 
5/6.2 - - 

High rise - - - 3/5/6.2 X.2 

The same study has to be done with the 5 other types of 

districts proposed in the GENIUS project, and with the 

inclusion of parameters variability in order to have old, 

refurbished or new districts with different thermal 

properties. 

Future works 

In a future work, 3 others steps will be undertaken to 

complete the comparison of models and draw more 

generic conclusion on districts types: 

Step 6 – Sensitivity and uncertainty analysis 

A global sensitivity analysis on multiple parameters will 

be done to select the most important ones involved in the 

analysed model. Then an uncertainty analysis is carried 

out with this selection on a set of representative districts, 

chosen accordingly to the former classification or 

threshold value. This will allow to see if the uncertainties 

are overlapping between the different models or if new 

conclusions must be drawn following other parameters 

and the available data. 

Step 7 – Concatenation of sub-families 

It consists in a sensitivity analysis with the models (their 

different levels of detail) as parameters, on a reduced set 

of representative districts. 



Table 7 : Comparison of the thermal heating demand for the five districts under Paris weather with Mask-L 6.2 as 

baseline, for the 25 selected days, in percent 

DISTRICT CANYON_HIGH CANYON_LOW GRID_HIGH GRID_LOW ROW 

Error type [%]/ 

Model 
ME MBE RMSE ME MBE RMSE ME MBE RMSE ME MBE RMSE ME MBE RMSE 

Mask-L 0.0 0 -3 12 0 -1 6 -5 -12 47 0 0 3 -1 -7 22 

Mask-L 1.1 5 37 173 6 55 269 2 8 107 6 38 198 5 96 1280 

Mask-L 2.1 1 3 14 1 1 5 2 10 119 0 0 3 1 16 241 

Mask-L 3.2 0 0 6 1 2 6 -5 -6 42 0 0 3 0 0 86 

Mask-L 4.2 1 2 11 1 1 6 1 7 90 1 1 2 1 5 52 

Mask-L 5.2 0 0 3 0 0 2 0 1 8 0 0 2 0 -1 5 

Figure 5 : Comparison of the thermal heating (left) and cooling (right) demands under the Paris weather for the 3 types 

of Bonhomme et al. districts 

    

Figure 6 : Comparison of the thermal heating demand under the Athens weather for the 3 types of Bonhomme et al. 

districts 

 

 

Step 8 – Application of the methodology 

Simulations are performed on real districts extracted from 

the french digital cadaster dataset BDTOPO®, compiled 

by the French Geographical Institute “Institut national de 

l'information géographique et forestière” (IGN). This step 

allows to assess the validity of the developed 

methodology on actual district with their morphological 

and parametric diversity. 



Conclusion 

After the choice’s validation of taking the model 6.2 of 

DIMOSIM as a baseline for the comparison, the results 

on 5 districts showed that the simplest static models 

(models 0.0, 1.1) are not sufficient to model the heating 

demand or power needs for most of the districts, but that 

more sophisticated one could be used (model 2.1), 

without more computational time needed. The choice of 

these models is strongly dependent of the shape and the 

indicator studied. When looking at the districts composed 

of detached buildings, it is possible to see trends in the 

MBE variation of buildings on an annual basis, even if for 

low value indicators the trends are more complicated to 

determine. 

As the errors under both weathers of Paris and Athens are 

following globally the same tendency, it is then possible 

to draw conclusions when comparing one model to 

another. However, the different range of percentage 

differences between the two imply to stay careful in the 

choice of models following the maximal acceptable 

difference. 

Nevertheless, the previous results are done with only one 

type of albedo, and above all do not take the variability in 

characteristics of building and envelope performance, 

namely like between renovated and old buildings, or the 

uncertainty of this parameters. Here only the first steps of 

the method are applied, excluding this part of study, that 

can affect strongly the conclusions. The entire application 

with sensitivity analysis and real districts will be 

investigate in a future work, allowing to correlate the 

outcomes related to the district morphology and the 

parameters of buildings. 
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