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ABSTRACT 

Adding flexibility to the demand may rationalize 

energy production. Indeed, it should be possible to 

maximize the use of low CO2 and low-cost energy 

production systems by managing the demand at the 

city scale. In this context, numerical simulation may 

be a great help for setting up various demand 

response (DR) strategies in a short-term. For that 

purpose, a simulation environment called Smart-E 

which focuses on the thermal and electrical uses of 

energy in dwellings and commercial buildings has 

been developed. This library of algorithms is 

specially designed to simulate hypothetical or real 

cities and it uses techno-explicit bottom-up models 

fed with public databases and the specific users’ data. 

First the paper presents the Smart-E tool architecture. 

Then, a case study is conducted on a French typical 

medium city to show how Smart-E may help the 

aggregator to predict the impact of specific DR 

strategies. For this purpose two load shedding 

strategies are tested at the city scale with indoor 

temperature comfort criteria. Strategies reduce 

maximum electric power for heating by 25% for 24h. 

INTRODUCTION 

Since the building sector is responsible for 40 % of 

the total European energy consumption (IEA, 2014) 

managing the energy consumption in buildings at the 

city scale may help to rationalize the energy 

production and to optimize the electricity grid. 

Indeed, intermittent renewable energies should 

represent 17% to 20% of the total electricity 

production in Europe by 2020 (EREC, 2010). To 

guarantee the electric grid balance and limit the use 

of peaking power plants, the intermittent energy 

plants should be complemented with demand 

response (DR) strategies and the use of smart 

appliances in a smart grid territory. The objective is 

to propose an energy simulation tool at the city scale 

with realistic bottom-up systems’ models adapted to 

intensive calculation and the diversity of information 

on buildings. Simulating the energy demand of 

building stocks should help energy actors in several 

ways: 

- Help standards design and investment decisions by 

simulating and comparing the possible scenarios in a 

specific territory (e.g. stimulus to renovation, 

standards for new buildings). 

- Anticipate the energy network long-term evolution 

by simulating new uses of energy (e.g. electric cars) 

- Help the short-term networks balance by proposing 

demand response strategies and avoiding the 

discomfort created by network failure and limiting 

the use of polluting peak load production. 

- Optimize smart grids in real-time by sending the 

best orders to the connected appliances (consumption 

at best time). 

Eventually, the Smart-E tool is designed to answer 

these four issues, but this paper only focuses on 

realistic demand response strategies implemented on 

residential buildings in a smart grid context to help 

short-term grid balance.  

After a short review this paper presents the databases 

used for simulation, then the bottom-up models used 

in Smart-E. Finally a case study on short time DR 

strategies is conducted on an existing medium sized 

French city.  The strategies control the set-points of 

heating electricity systems at the city scale to meet 

the need in terms of aggregated power reduction 

during 24 hours. Figure 1 shows the Smart-E 

architecture and introduces the following sections. 

State of the art on bottom up energy city modeling 

The bottom-up approach is described as “built up 

from data” (Kavgic, et al., 2010). Indeed a strong 

connection between the degree of model details, the 

data availability and the scale of simulation (i.e. 

street, district, city or territory) is observed. We aim 

to simulate hundreds of buildings simultaneously at 

the city or territory scale. At this scale of simulation, 

an existing building database is needed and it is not 

realistic to fill in specific information on the building 

such as shape, orientation, household information 

manually. Therefore the physical and stochastic 

models must be adapted to the diversity of building 

information and design to reduce uncertainties.  

Tools for energy simulation in cities exist but are not 

totally adapted to our needs or not publicly available.  

Two families of tools can be distinguished: detailed 

models which are constrained by data availability and 
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are more adapted to the street or district simulation 

scale. Then, the simplified physical and stochastic 

models which need less detailed data but are only 

accurate on an aggregated level. 

UMI (Reinhart, et al., 2013) and CitySim (Robinson, 

et al., 2009) are detailed multi-energy modeling 

environments, with 3D representation of buildings. 

Since these tools are easily connected to existing 

geometrical information databases like BIM 

(Building Information Modeling) standard or 

OpenStreetMaps they can access detailed building 

shapes and orientations. Despite this, they are more 

adapted for medium scale simulation (street or 

district) in which all the building thermal 

characteristics and HVAC systems’ information can 

be manually documented. Fonseca and Schlueter 

(2015) connect both approaches and propose a 4D 

representation of a city district with bottom-up 

energy models. It might be the most advanced tool 

for city simulation however remains very dependent 

on data availability. SynPRO (Ficher, et al., 2015) 

and the tool of Richardson et al. (2010) focus on the 

electricity consumption of dwellings and have been 

validated with a complete monitoring program. The 

needed data are mostly stochastic so the platform is 

well adapted to city scale simulation. EnergGis 

(Girardin, et al., 2010), SYNCITY (Keirstead, et al., 

2009) and Artelys Crystal City (Page, et al., 2013) 

are designed to plan energy infrastructure (networks 

and power plants) in new territories. The energy 

demand information does not originate from bottom-

up models of specific uses. Good et al. (2015) and 

Shimoda et al. (2004) propose energy models for 

domestic demand profiles and use stochastic and 

simple physical models to simulate electricity, gas 

and heat consumption. These tools are especially 

adapted to short time DR strategies for network 

balance and smart grid optimization and have many 

similarities with Smart-E. Table 1 summarizes 

information about bottom-up city energy simulation 

tools. 

DATABASE PRESENTATION 

Time of use survey (ToU) 

French ToU survey is used to simulate occupants’ 

activities (INSEE, 2009). The database is composed 

of 19000 record sheets of 24 hours with more than 

100 possible activities which last 10 minutes at least. 

Wilke et al. (2013) create a global probabilistic 

model of household activities with the same survey 

conducted 10 years earlier from which household 

electric power profiles are deduced. In this paper a 

similar but simpler approach is used. Instead of using 

a specific model, one week time table from the 

concatenation of 24 hours record sheets is built for 

each occupant. Working days and weekends are 

respected; workers, pensioners and students are set 

apart from other individuals. At an aggregated level 

the results are very similar to Wilke’s probabilistic 

model. The survey activities are sorted out in 9 

classes presented in the “Model description” section. 

Table 1  

Urban energy simulation tools comparison 

Name Main objective 
Scale of 

simulation 

UMI 
Highly detailed building 

energy simulation 

Street to 

district 

CitySim Urban planning 
Street to 

district 

Fonseca et al 
Education and urban 

planning 

Street to 

district 

SynPRO 
Residential electricity 

simulation 

City to 

territory 

Richardson et 

al. 

Residential electricity 

simulation 

City to 

territory 

EnerGis 
Energy system 

integration 
Territory 

Syncity 
Energy Network 

integration 
Territory 

Artelys 

Crystal City 
Infrastructure planning Territory 

Good et al. 
Detailed energy demand 

simulation 

City to 

territory 

Shimoda et al. 
Stochastic residential 

electricity simulation 

City to 

territory 

Smart-E 
Implementation of DR 

strategies in Cities 

City to 

territory 

National housing census 

The French national census on housing and 

household description is used for dwelling 

description (INSEE, 2011). The census information 

and the interaction with models’ parameters are 

described in table 2. Information is available for 

100% of dwellings in small cities (less than 10k 

inhabitants) and only 40% for medium and large 

cities (more than 10k inhabitants). 

Table 2 

National census information used by Smart-E 

Census information Models Used 

Dwelling construction 

year 

Envelope performance, retrofit 

probability 

Dwelling area Inertia, heated area 

Energy for heating Type of HVAC system 

Household composition 

(age, activities) 

Appliances used, hot water 

system, internal heat gain 

Number of occurrence in 

city 
Weight of dwelling in city 

Single or multi-housing Heat loss surface 

Localization Weather data 

Data availability issues 

Smart-E is designed to simulate any city, yet 

available data vary a lot from a city to another. A 

specific method is used for the data availability 

problem. Several levels of data information are used, 

from very detailed to aggregated information. High 

detailed information at the building level is used in 

priority. When they are not available in the studied 

territory, probabilistic functions or even average or 

median values are used. Table 3 describes the four 

levels of information existing in Smart-E. In the case 
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study, data from level 1 to 4 are used. During the 

models’ adjustment process, levels of information 1 

and 2 are optimized using a heuristic method (see 

model adjustment section). 

Table 3 

City database level information 

Level Description 
Generation 

of diversity 

Example 

from the case 

study 

1 
Median or 

average value  
Low 

Installed 

lighting power 

2 

Probabilistic 

function at 

territory scale 

Medium 
Efficiency of 

appliances 

3 

Probabilistic 

function at city 

scale 

High Retirees ratio 

4 

Information 

known for each 

housing 

Very high 

Floor area, 

Energy for 

heating 

MODELS DESCRIPTION 

In this section, each model is described and some 

arguments are given to show how they meet the 

needs in terms of data availability and computing 

time. In Smart-E, the models’ complexity is driven 

by DR strategies design and not by uncertainties 

reduction concerns. Indeed a sensibility analysis for 

energy in city simulation shows three parameters 

which highly impact city energy consumption 

(Booth, et al., 2012): 

- Fraction of space heated 

- Internal heating set-point temperature 

- Coefficient of performance for the heating 

system 

Since these parameters are coming from stochastic 

models where the values are highly uncertain it 

seems worthless to use detailed envelope or system 

models for city simulation to reduce energy 

calculation uncertainties. Therefore the complexity of 

the models should be adapted to DR strategies 

design, for example a multi-zone dwelling model 

should be used only if the simulated DR strategy 

optimizes distinctly each zone. In this paper the DR 

strategy aims to optimize systems by modifying the 

indoor temperature set-point. A specific model for 

systems’ control should thus be used. 

Heating systems and envelope models 

A second order differential equation is used for the 

envelope modeling. This mono-zone model has been 

validated for electric consumption and indoor 

temperature prediction in tertiary buildings (Berthou, 

et al., 2013), (Berthou, et al., 2014). With only 10 

parameters the model is configurable from easy to 

find information on dwellings (e.g. floor area, built 

year) and could be optimized to reach a specific 

consumption value. The window’s opening can be 

simulated by changing a specific parameter value and 

the solar protection closing effect by reducing the 

solar flux power on the windows. 

Solar radiations on buildings are calculated from the 

Meteonorm database. Dwellings are simulated as 

north-south oriented. For gas, domestic fuel and 

electric heating systems, constant efficiency ratios 

are used. For thermodynamic systems, a linear 

correlation with outdoor temperature is used. Heating 

systems are sized with a realistic static method used 

by installers. A proportional gain is used for heating 

systems control model with a 0.5 °C dead band. 

Domestic hot water (DHW) 

ToU data are used to simulate hot water consumption 

associated with activities presented in table 5. A hot 

water volume associated with an electric water 

heating system is simulated as a homogeneous water 

volume at 60°C depending on the area of dwellings.  

Electric DHW systems can receive orders from the 

grid to force heating start-up depending on the city 

localization. In this paper we assume that 75% of the 

storage electric water heaters are controlled between 

10 a.m. and midnight and the other 25% can start at 

any time during the day when the internal tank 

temperature becomes too low. Non electric DHW 

systems are considered as instantaneous hot water 

production systems and are directly linked to hot 

water use. 

Lighting 

Lighting consumption is based on an in-situ 

campaign (Alessandrini, et al., 2006) and is 

calculated from the French standard model (CSTB, 

2010). The first step is to calculate the dwelling 

indoor illumination from weather and geometrical 

information then a piecewise linear function gives the 

light surface ratio from the illumination value. Table 

4 shows examples of function outputs. It is assumed 

that all the lights are turned-off when the dwelling is 

empty or when everyone is asleep. The surface power 

probability of light is calculated from the adjustment 

process. 

Table 4 

Inflexion points of light function calculation 
Light surface ratio Indoor illumination (lux) 

100% < 100 

30% 700 

0% >2800 

Other electric and gas appliances 

ToU data are used to describe occupants’ activities 

and generate weekly time tables. Each occupant who 

might have an interaction with the energy 

consumption in the dwelling is simulated during one 

week (i.e. occupant older than 11). Then the same 

week is repeated all the year (a weekly organization 

of the households is assumed). Occupants have 9 

possible activities (table 5) and can do up to 2 

activities at a time with exceptions (no possibility to 

sleep and eat for instance). For each activity and each 

household an electrical power is calculated from a 

statistical distribution. The powers of systems are 

taken from the Enertech database (Enertech, 2010). 
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Figure 1 : Smart-E architecture with DR strategies representation 

 
Figure 2: One day electric consumption of a single housing during winter (140 m², 4 occupants), 10 min time step simulation 

 
Figure 3: One day electric consumption for 12 000 dwellings during winter in Palaiseau, only 19% of dwellings use electric 

heating systems, 10 min simulation time step 
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We assume people from a same household don’t 

have any interaction with each other but if two 

occupants from a same household accomplish the 

same activity at the same time the power 

consumption associated with this particular activity 

remains the same.  

“Wash the dishes” and “laundry” activities are 

differentiated from the others because occupants can 

do other activities when those are not handmade. The 

refrigeration electric consumption is calculated with 

a stochastic model from the Enertech database. No 

interaction between refrigeration systems and 

occupants or other exogenous parameters are 

simulated for instance. Stand-by consumption for 

electric appliances is added to each dwelling and is 

picked from a probabilistic function. 

Figure 2 presents the electric consumption of a 

medium size dwelling during a working day in winter 

simulated with Smart-E. This house is equipped with 

electric convectors and a storage electric water 

heater. These results come from a poorly insulated 

single-house which explains the high electric 

consumption for heating. This figure illustrates how 

Smart-E overlaps consumption from different types 

of models (simple physic model and stochastic 

model) to reconstruct global electric load of a 

specific dwelling. Each dwelling load is different and 

recreates a realistic diversity of consumption profiles.    

Figure 3 presents the aggregated electric 

consumption of dwellings for a medium French city. 

This shows the weight of each energy usage in the 

total infra-day electric consumption during winter. 

This figure helps to realize a visual validation of 

Smart-E aggregated power: 

- Day and night distinction for human activity 

consumption types 

- 3 peaks for cooking activities: breakfast, lunch 

and diner 

- Use of dishwasher after meal time 

- High use ratio of digital appliances during lunch 

time and during the evening 

- High consumption for DHW during the night 

(French specificities) 

- High consumption for heating during cold days 

Table 5 

Merge activities of the ToU survey 

Activity 

Name 
details 

Type of 

consumption 

Digital 

TV, computer, video 

game, DVD player, 

phone 

Electricity  

Cooking 

Cooking plate, 

microwave, oven, 

cook top 

Hot water, gas and 

electricity 

consumption 

Meal Action of eating None 

Rest Nap and sleep Lighting turn off 

Personal car 
Bath, shower, body 

care, 

Hot water 

consumption 

Other 

leisure 

Game, homework, 

reading…, 
None 

Other 

housework 
Hoover, iron Electricity  

Wash the 

dishes 

Hand washing or 

dishwasher 

Hot water and 

electricity 

Laundry 

Hand washing or 

with a washing 

machine and dryer 

Hot water and 

electricity 

Model adjustment and aggregation 

The total annual consumptions database of each 

energy usage serves for smart-E validation (CEREN, 

2013), (Almeida, et al., 2011). The power probability 

density function associated to each type of appliance 

is adjusted with a heuristic method to match the 

annual energy objective. For example the 

refrigeration appliances should represent 28% of 

dwelling electric consumption excluding electric 

space and water heating. After optimization, a 

probability function for power refrigeration systems 

is proposed (table 6).  The ToU model is considered 

to be sufficiently detailed and validated so we 

decided not to optimize it during the adjustment 

process.  

As a result, the simulations are validated at an 

aggregated level and in annual energy consumption 

only. Compared to the measured consumption at the 

dwelling level an important bias can be observed 

(Ficher, et al., 2015). Grandjean (2013) suggests that 

aggregation phenomena in simulated domestic 

appliances converged from 1000 individuals. 

Accordingly special attention will be paid to use 

Smart-E with over 1000 dwellings simulation 

problems. Limitations in Smart-E validation process 

must be considered in DR strategies design by 

proposing aggregated optimization problems only. 

Table 6 

Power distribution of the refrigeration systems 
Power (W) Probability (%) 

0 (no refrigeration) 1.0 

240 20.3 

300 20.7 

480 14.5 

540 29.5 

600 14.0 

CASE STUDY 

Balance problems between electricity production and 

demand might happen during cold periods in France 

(RTE, 2012). Indeed a cold period can create high 

electricity consumption for heating associated with 

low wind plants production and low solar plants 

production. If no substitute power plants are 

available or remain too polluting and expensive, a 

need for 24 hours DR strategies on electricity 

demand at the city scale can occur. Since heating 

represents a large part of the electricity consumption 

during cold periods and can be easily controllable, 

the proposed strategies modify the electric heating 

systems’ set-points. Furthermore the inertia 

phenomenon reduces discomfort effects on 
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household by limiting the indoor temperature speed 

variation.  

For the need of the study all the electric heating 

systems are assumed to be operated by an aggregator:  

- Heating Systems can receive instantaneous indoor 

temperature set-point orders from the aggregator.  

- An order not compatible with the comfort condition 

can be rejected by the system, in such cases the set-

point remains constant. In the case study the order is 

rejected when the indoor temperature is below 18°C. 

- The aggregator can’t know in advance the energy 

state of the dwellings; that is why the DR strategies 

must be simulated before being carried out for real. 

Presentation of the case study 

The DR strategies are conducted on a common 

medium size French city named Palaiseau which is 

composed of 12 241 dwellings among which 19.4% 

use an electric system for heating. This represents 

more than 50% of the total electric power during cold 

periods. Table 7 gives general information about 

dwellings in Palaiseau. 

Table 7 

Summary of the case study 
Inhabitants 29281 

Average Elevation 100 m 

Climate Oceanic 

Dwellings 12241 

Median floor area 59 m² 

Investigated dwellings in 

census 
40% 

Single dwelling 38% 

Energy for heating 

City gas: 58% 

Electricity: 19% 

District heating: 5% 

Other (fuel, wood, …): 18% 

Design of two DR strategies 

Two DR strategies are compared in this paper using 

simulation during a cold day with Palaiseau data. The 

first strategy (strategy 1) sends the same indoor 

temperature set-point (18°C) to all the electric 

heating systems during 24 hours. No objective on the 

total electric consumption is set. For the second 

strategy (strategy 2) we aim to reduce the maximal 

electric power for heating by 25% which represent a 

1.7 MW load shedding at the peak time. To reach this 

objective, every 10 minutes 20% of dwellings 

selected randomly receive an optimized indoor 

temperature set-point which is maintained during two 

hours. A same dwelling set-point can be optimized 

several times in two hours. 

Results and discussion 

Both strategies are simulated with Smart-E on the 

same winter day. Figure 4 shows 3 days of the total 

heating electric consumption. The DR strategies take 

place during the second day and the baseline is a 

simulation without DR strategies.  

Results of strategy 1 can be decomposed into 3 steps: 

Step 1 (0 p.m. to 6 p.m.): All the heating systems 

stop at 0 p.m. when they receive the new set-point 

except the one with an indoor temperature below 

18°C (figure 5). After the indoor temperature reaches 

the new set-point, the heating systems restart. The 

restart time depends mostly on the envelope’s 

characteristics. 

Step 2 (6 p.m. to 24 a.m.):  The new set-point reduces 

the power by almost 25%.  Even if the power seems 

to be constant, the outdoor temperature and other 

exogenous phenomena still have an impact. 

Step 3 (after 24 a.m.): All dwellings resume their 

former set-point values which increase the power in a 

very short time. Due to dwelling inertia, the 

consumption of strategy 1 is above the baseline for 

almost a day to compensate the load shedding. 

Strategy 1 succeeds to reduce the total heating power 

by 25% from the maximum baseline. But short time 

power variation at the beginning and the end of the 

strategy can be damaging for grid balance. The 

indoor temperatures are constant for all dwellings 

during all the day which limits the discomfort. 

Results of strategy 2 can be decomposed into 2 steps: 

Step 1 (0 p.m. to 24 a.m.): Every 10 minutes the 

strategy optimizes the set-point order of 20% of 

dwellings to reach the objective of aggregated power 

value (figure 6). The objective is not reached at each 

step but the consumption is nearly constant and the 

power variations are smoother during the first hours. 

Furthermore, the orders are corrected from the 

exogenous phenomena thanks to the optimization 

process. A set-point of a same dwelling can change 

several times during 24 hours. 

Step 2 (after 24 a.m.): The dwellings resume their old 

set point values randomly staggered over two hours 

(figure 5). As a result the power rise is smoother than 

for strategy 1. Once again the consumption after the 

DR strategy is above the baseline due to inertia 

effects. 

Strategy 2 succeeds to reduce the total heating power 

by 25% from the maximum baseline and proposes 

controlled short time power variation which is more 

acceptable for the grid. On the other hand the indoor 

temperature may change several times in 24h for a 

same dwelling which can be less comfortable for 

occupants.  

From an energy point of view both DR strategies do 

not have a notable impact due to energy recovery 

phenomena.  

CONCLUSION 

The paper describes a new tool named Smart-E 

which aims to simulate the energy demand at the city 

scale. After a description of its architecture, Smart-E 

is used to compare two DR strategies on their impact 

on the comfort and the aggregated electric load 

curve. Both strategies reduce the maximum total 

electric power by 25%. 
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Figure 4: Impact of DR strategies on total electric consumption of heating systems (3 days), outdoor temperature (--) 

 
Figure 5: Impact of the first DR strategy on indoor temperature (top) and set point (bottom), average curve of all dwellings 

(black), examples of specific dwellings curves (not-black) 

 
Figure 6: Impact of the second DR strategy on indoor temperature (top) and set point (bottom), average curve of all 

dwellings (black), examples of specific dwellings curves (not-black) 
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The first strategy uses all the potential for shaving 

but creates short time electric demand variation 

which is damaging for the grid. The second strategy 

shaves 20% of dwellings for 2 hours every 10 

minutes with an optimized set-point. As a result the 

total electric power is better controlled and smoother. 

The study shows that Smart-E allows to design and to 

test various DR strategies at the city scale and could 

be used to optimize energy networks in a smart grid 

context. 

Further works on Smart-E will contribute to 

validating the platform at several scales including the 

intra-day power of each appliance. To meet this need 

a measurement campaign could be realized by 

monitoring each appliance of hundreds of dwellings. 

The next step is to simulate the energy consumption 

of commercial buildings. 
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