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Abstract 

Urban energy models (UEM) are useful to evaluate 

energy efficiency policies at district or city scale and to 

make the best decisions in terms of financial and 

environmental impacts. Probabilistic and simple physical 

models coexist in the UEM often with several dozens of 

parameters per building. Parameters coming from 

different databases with no consistency in the levels of 

uncertainty make the necessary validation difficult. This 

article proposes a method as a first attempt to validate 

UEM in a data scarcity context which requires only the 

annual electricity consumption of several carefully 

chosen cities. 

The first step aims to identify one parameter per energy 

end-use which has the largest impact on the energy 

consumption and the highest uncertainty. The second 

step aims to calibrate the model at country scale or at 

large territory scale to set parameters’ values. The third 

step consists in selecting several cities (inside the 

territory previously used for calibration) to evaluate 

particular aspects of the UEM. The last step aims to 

simulate the calibrated model on the selected cities and 

to compare the simulation with the energy consumption 

information.  

The method is illustrated through the case of the 

electricity consumption in the French residential 

building sector with Smart-E, a bottom-up UEM tool. 

Introduction 

The Paris agreement (COP21) shows that most countries 

want to reduce their greenhouse gas emissions to contain 

the climate change. In Europe, the building sector 

represents 40% of the total energy consumption and 36% 

of greenhouse gas emissions
1
, which is why regulations 

strongly encourage countries, regions and cities to set up 

energy efficiency measures in the building sector. To 

evaluate the impact of specific energy efficiency 

measures (e.g. building renovation, new appliances, 

demand side management) new simulation tools are 

needed. These tools exist (Frayssinet et al., 2017) and 

are adapted to different scales, simulation time steps, 

building types and energy efficiency measures. To be 

used in a real territory for energy efficiency strategy 

comparison, these models need to be validated, at least at 
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an aggregated level of simulation. Since the number of 

simplifying assumptions is high they can hardly be 

validated one by one and the impact on the energy 

consumption is difficult to evaluate. Below are several 

examples of assumptions frequently used in bottom-up 

UEM having a significant impact on the simulation 

results: 

 air infiltration rate is chosen from standard 

values 

 temperature set-points are chosen from 

probabilistic distributions 

 buildings or dwellings are represented as a 

reduced number of thermal zones 

 activity profiles follow patterns and come from 

stochastic models or time tables 

 household appliances (washing machines, TV, 

computers,…) are assigned with probabilistic 

distributions 

One solution to validate UEM is to compare results from 

simulation to energy consumption measured on real 

territories. Table 1 presents previous works on bottom-

up simulation frameworks for the simulation of energy 

in cities and the validation methodology used by the 

authors. This literature review shows that annual and 

monthly energy error is commonly used as a criteria for 

validation, even if most UEM are dynamic. 

Yeo et al. (2013), Nouvel et al. (2017) and Sokol et al. 

(2017) have a slightly different approach by using wider 

territory: a complete city (eg. 22 adjacent districts); but 

less data for validation. Indeed, annual or monthly 

consumption values are measured and used for 

performance criteria calculation. These studies show a 

good match between models and real territories but the 

energy end-use models (equations or parameters) that 

should be improved are not known.  

Widen et al. (2009) and Fischer et al. (2015, 2016) go 

further by using criteria which assess daily and intra-day 

performances of the UEM. Data used for validation is 

coming from measurement campaigns on a reduced 

number of buildings or households, all situated in the 

same area. These methods for UEM validation are 

permitted thanks to a large campaign with short time 

step measurement allowing few limitations in the 

validation process. By avoiding compensation of errors 



 

between days or periods in the day, this validation 

method enables a better evaluation of UEM parameters. 

Tanigushi et al. (2016) have an original approach by 

validating their UEM at a regional scale by comparing 

the model outputs with 1237 households electric load 

curve randomly selected among 8.6 million households 

from the simulated region. Once again, this validation 

method is possible only by having access to the results 

of a large monitoring campaign. 

Method 

This study suggests a repeatable method as a first step to 

validate a bottom-up UEM at city scale in a context of 

data scarcity. The required information are the 

aggregated annual energy consumption (e.g. electricity 

bills) for several cities and the annual consumption for 

each energy end-use at larger territory scale (e.g. 

country) which contains the cities. The particularity of 

this approach is to compare the UEM outputs with the 

energy consumption of several real cities carefully 

chosen to represent the national diversity in terms of 

households and dwellings characteristics. The 

comparison is made after a calibration process realized 

at the country scale on each energy use. All necessary 

information needed to realize the validation process 

could be found freely in many territories where open-

data are easily available. 

This article introduces a four steps methodology: 

Step 1 - To identify the model parameters which have 

the largest impact on the energy consumption and the 

highest uncertainties. These parameters will be used for 

calibration. Ideally, one parameter per energy use should 

be selected. This selection may be conducted through a 

screening method or from a review of literature. In this 

article, we chose the review of literature since the range 

of uncertainties is difficult to evaluate for some of the 

UEM parameters in the screening method. 

Step 2 - To calibrate the model at country scale or at 

large territory scale with the selected parameters. Indeed, 

it is often at this scale that statistics on energy 

consumption are known. For example, Almeida et al. 

(2011) give average annual end-use electricity 

consumption for 12 European countries; this type of 

information is thus available at large scale but may not 

be available at the scale of the UEM. In addition, since 

simulating a complete country with tool designed for 

city scale can be a challenge, a method to reduce the 

computation time is suggested. 

Step 3 - To select specific cities (inside the territory used 

for calibration) in order to evaluate particular aspects of 

the city model. Several criteria can be selected 

depending on the modelled end-use and the available 

information for these cities. In our case, we use the 

following characteristics:  

 proportion
2
 of houses or apartments 
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 the proportion are unitary (eg. number of single-family 

houses divided by the total number of dwellings) 

 proportion of rich or poor households 

 proportion of ancient constructions or new 

constructions 

 proportion of heating systems using electricity 

Cities close to national mean values and cities with 

extreme values (e.g. minimum presence of electric 

heating systems in the city) are chosen in this article. 

Note that since these characteristics can be strongly 

correlated among themselves only their combined 

impact is explored here. 

Step 4 - To simulate the calibrated model on the selected 

cities and to compare the simulation with their energy 

consumption information (e.g. electricity bills). The 

errors can be analyzed to identify possible sources and 

thus improvement paths of the UEM. 

This method will be illustrated with Smart-E, a general 

bottom-up UEM framework for the French building 

sector (Berthou et al., 2015). Only the residential electric 

consumption is considered in this work but the same 

method can be used for natural gas consumption, district 

heating and fuel consumption validation in the 

residential or the commercial building sectors. 

Presentation of Smart-E UEM 

Smart-E is a bottom-up simulation platform designed to 

evaluate energy efficiency strategies. Databases and 

simple physical and probabilistic models are used to 

simulate the main energy uses in dwellings. All 

algorithms are written with Python programming 

language and Numpy+Pandas Packages. Figure 1 shows 

the inputs - outputs and the main sub-models of Smart-E. 

Figure 2 presents the electric consumption of a small city 

during two working days in winter. This figure illustrates 

how Smart-E sums consumption from different types of 

models to reconstruct global electric load of dwellings. 

Each dwelling load is different and this leads to a 

realistic diversity of consumption profiles. 

Model description 

Since some parameters come from stochastic models 

where the values are highly uncertain, choice has been 

made to use simple envelope or system physical models 

for city simulation. Therefore the complexities of the 

models are adapted to city or district simulation and not 

to single building or dwelling simulation. 

 Heating systems and envelope models 

Thermal needs of dwellings are calculated with a two 

thermal zones model, one for the living space (living 

room, kitchen, bedrooms) and another one for spare 

rooms where heaters are turned off or temperature set 

point lowered. A second order differential equation (2 

capacities and 6 resistances) is used for each thermal 

zone modeling which has been validated for HVAC 

consumption in buildings (Berthou et al., 2014). With 

only 10 parameters per thermal zone, the model is 

quickly configurable from easy to find information on 

dwellings (e.g. floor area, built year, windows to wall 

ratio, orientation).  



 

Table 1: Comparison of validation methods for UEM 

Authors 
Simulation 

scale 

UEM Time 

step 
Data for validation Criteria for validation 

Widen et al., 2009 
Household to 

country 
1 h 

Hourly electric consumption of each 

appliance (217 households) 

Error on mean daily electricity 

demand per household and per 

appliance 

Yeo et al., 2013 
District to large 

city 
1 h 

Monthly energy consumption of an 

existing city 
Monthly energy error 

Nouvel et al., 2017 
District to large 

city 
1 y 

Annual gas consumption for 22 

districts, 5 years 
Annual energy error for 22 districts 

Fonseca & 

Schlueter, 2015 
Building to city 1 h 

Annual electricity, space cooling 

and heating  consumption 

Annual energy error for 23 buildings 

(electricity, heating and cooling) 

Taniguchi et al., 

2016 

Building to 

district 
1 h 

Hourly electricity consumption 

(1237 households) 
Intra-day  electricity load curve error 

Fischer et al., 2015 

and 2016 

District to 

country 
15 min 

Hourly electricity consumption (430 

households) 

Annual to dayly energy error, load 

profiles 

Sokol et al., 2017 Building to city - 
Monthly electricity and gas 

consumption (2600 homes) 

Energy distribution error (monthly 

to annually comparisons) 

This article 
District to 

country 
10 min 

Annual electricity consumption for 

households in ten cities 
Annual energy error for 10 cities 

 

 
Figure 1: Data flow and model coordination in Smart-E 

 
Figure 2: 2 days electric consumption for 4000 dwellings during winter only 22% of dwellings use electric heating 

systems, 10 min simulation time step (Smart-E) 



 

The window’s opening is simulated by changing the 

airflow rate and the solar protection closing effect by 

reducing the solar flux power on the windows. Heat 

emitters are modelled using a first-order differential 

equation (1 capacity and 1 resistance). Static parameters 

of heat emitters are calculated from reference values for 

each technology. 

 Domestic hot water (DHW) 

Time of use (ToU) data (INSEE, 2009) is used to 

simulate hot water consumption associated with 

activities presented in table 2. A hot water volume 

associated with an electric water heating system is 

simulated as a homogeneous water volume depending on 

the area of dwellings. Electric DHW systems can receive 

orders from the grid to force heating start-up depending 

on the city localization. We assume that 85% of the 

storage electric water heaters are hourly controlled and 

the other 15% can start at any time during the day when 

the internal tank temperature becomes too low. 

 Lighting 

Lighting consumption is calculated from the French 

national building code (CSTB, 2010). Dwelling indoor 

illumination is calculated from weather and geometrical 

information then a piecewise linear function gives the 

light surface ratio from the illumination value. 

 Other electric appliances 

ToU data is used to describe occupants’ activities and 

generate weekly timetables. Each occupant who interacts 

with the energy consumption in the dwelling is 

simulated during one week. Then the same week is 

repeated all the year (a weekly organization of the 

households is assumed). Occupants have eight possible 

activities (table 2) and can do up to two activities at a 

time with exceptions (no possible to sleep and to eat for 

instance). For each activity and each household electrical 

power is calculated from a statistical distribution. The 

mean power of each type of electric appliance is 

calculated during the calibration process. 

“Dishwashing” and “laundry” activities are 

differentiated from the others because occupants can do 

other activities when those are not handmade. The 

refrigeration, stand-by and ventilation electric 

consumption are calculated with a stochastic model from 

field measurements.  

Table 2: Activities of the ToU survey 

Activity 

Name 
Details Type of consumption 

Digital 

TV, computer, 

video game, DVD 

player, phone 

Electricity consumption 

Cooking 
Cooking plate, 

microwave, oven... 

Hot water, gas and 

electricity consumption 

Meal Action of eating None 

Dishwashing Cleaning the dishes 

Hot water, electricity 

consumption (if 

dishwasher) 

Laundry 
Taking care of 

laundry (washing, 

Electricity consumption 

(programmable) 

drying) 

Rest Nap and sleep 

Lighting turn off 

Temperature set point 

reduction 

Personal car 
Bath, shower, body 

care, 
Hot water consumption 

Other 
Game, homework, 

reading… 
Electricity consumption 

Data for model parameterization 

This section outlines the main databases used in Smart-E 

for model parameterization. 

 National housing census 

The French national census on housing and household 

description is used for dwelling description (INSEE, 

2016). The census information and the interaction with 

models’ parameters are described in table 3. Information 

is available for 100% of dwellings in small cities (less 

than 10 000 inhabitants) and only 40% for medium and 

large cities. 

Table 3: Example of national census information used by 

Smart-E 

Census information Models Used 

Dwelling construction 

year 

Envelope performance, retrofit 

probability 

Dwelling area walls surfaces, heated area 

Energy for heating Type of HVAC system 

Household composition 

(age, activities) 

Appliances used, hot water 

system, internal heat gain 

Single or multi-housing Heat losses area 

Localization Weather data 

 Time of use survey (ToU) 

The French ToU survey is used to simulate occupants’ 

activities (INSEE, 2009). The database is composed of 

19000 record sheets of 24 hours with more than 100 

possible activities lasting 10 minutes at least. Wilke et al. 

(2013) created a global probabilistic model of household 

activities with the same survey conducted 10 years 

earlier from which household electric power profiles are 

simulated. In this paper, a similar but simpler approach 

is used. Instead of using a specific model, a one-week 

timetable from the concatenation of 24 hours record 

sheets is built for each occupant. Working days and 

weekends are respected and inhabitant main activity 

(worker, student, unemployed, retired, and other) are 

factored as well. At an aggregated level, the results are 

close to Wilke’s probabilistic model. The survey 

activities are sorted out in eight classes presented in table 

2. The advantage of this approach is to respect a strict 

coherence between activities, for example there is no 

lighting or water consumption when nobody is at home. 

 Geographic information system (GIS) 

GIS database (IGN, 2016) contains the geometrical 

descriptions of cities (e.g. buildings shape and height). In 

Smart-E the GIS data helps to better evaluate all 

parameters linked to geometrical information: shading 



 

coefficient for each building, compactness and external 

surface for heat loss calculation. 

 Weather data 

Outdoor temperature and solar radiation from the 

national weather company are used. One-hour time step 

measurements from more than 500 meteorological 

stations are available in the French territory. 

Model calibration at country scale 

Models are calibrated at country scale because 

information about annual consumption per energy use is 

often only available at this scale. This information is 

coming from statistical studies (eg. sells information, 

survey) and local monitoring campaigns (RTE, 2015). 

Uncertainty values related to these data are not known 

but ideally they should be incorporated to the calibration 

process. Weather data representative of the French 2012 

weather are used for this simulation. 

To keep the computation cost as low as possible only 

10 000 real dwellings representative of national diversity 

are selected to be simulated. This reduced dwelling stock 

(RDS) is created by randomly selecting the dwellings in 

a national census database and verifying with specific 

criteria if the RDS has common statistic characteristics 

with the country scale information. Table 4 compares the 

reduced and the complete dwellings stock with selected 

parameters and shows a good match between both. 

Table 4: Validation result of the RDS 

Parameters Target values 
RE 

(Eq.1)  

Dwellings type 
Collective : 39.8% 

Detached : 59.5% 

<5% 

 
Main energy for heating 

Electricity : 31.2% 

Natural gas : 35.9% 

Fuel : 12.5% 

District heating : 4.6% 

mean occupant per dwelling 2.24 

mean surface of dwelling 95 m² 

     
                        

           

                      

Nine parameters are selected for the calibration process 

(one per energy-end-use). Eight of them are easy to 

choose since there is one candidate per energy use with 

high level of uncertainty: the mean electric power of 

electric appliances (or activities) and the mean hot water 

flow rate for DHW are therefore identified during the 

calibration phase. However, there are several candidates 

for heating need calibration which are highly uncertain 

and have a strong impact on heating needs. Booth et al. 

(2012) present a factorial sampling analysis to rank the 

input parameters from the most dominant to the less 

dominant and from the most uncertain to the less 

uncertain for heating energy consumption at an 

aggregated scale. For each parameter known to have a 

large impact on heating consumption, we verify with 

qualitative analysis if low-uncertainty value is known in 

Smart-E. From table 5, the air leakage seems to be the 

best candidate for the calibration process since only an 

average value is known. Coefficient of performance for 

heating systems could also have been a good candidate 

but in France 95% of electric heating systems are electric 

convectors with a 100% efficiency. 

Table 5: Possible parameters for heating consumption 

calibration 

Selected parameters 

from 

Booth et al. , 2012 

Uncertainty 

level in 

Smart-E 

References 

Fraction of space 

heated 
Low 

Adapted 

correlation (Loga, 

et al., 2004) 

Internal heating 

set−point temperature 
Medium 

Distribution from 

national study 

(ADEME, 2013) 

Coefficient of 

performance for 

heating systems 

Very high 

Only 5% of heat 

pump in France 

(ADEME, 2013) 

Double−glazing 

U−value 
Low 

National building 

code (CSTB, 2010) 

Window−to−wall ratio Medium 
National survey 

(INSEE, 2016) 

Percentage of glazing 

that is double−glazed 
Medium 

National survey 

(INSEE, 2016) 

External wall U−value Medium 
National building 

code (CSTB, 2010) 

Single−glazing 

U−value 
Low 

National building 

code (CSTB, 2010) 

Air leakage and 

ventilation 
Very high 

Average value 

(Dimitroulopoulou, 

2012) 

Once the parameters for the calibration process are 

chosen, a heuristic method is used to identify the values 

satisfying the national annual energy consumption of 

each energy use. It is to be noted that the parameters are 

correlated since the electric appliance consumption 

determine the internal gains, which have an impact on 

heating needs. The result of the calibration process is 

shown in table 6. 

Table 6: Summary of the calibration process: energy 

objectives, tuned parameters and values after calibration 

Energy 

end-use 

Annual 

electric 

consumption 

at country 

scale in 2012 

(TWh) 

(RTE, 2015) 

Parameter 

to tune 

Parameter 

value after 

calibration 

Heating 42.8 
Annual mean 

air leakage 

0.4 

volume/hour 

Domestic 

hot water 
20.6 

Mean  hot 

water 

consumption 

flow when 

used (60°C)  

0.6 l/min 

Lighting 9.5 
Mean surface 

power of 
1.84 W/m² 



 

lighting  

Laundry 

and drying 
 8.5 

Mean power 

of appliances 

when used 

1537 W 

Dishwasher 4.2 436 W 

Digital 

appliances 
20.6 305 W 

Refrigerator 

and freezer 
15.9 256 W 

Other 23.8 128 W 

Cooking 12.7 1352 W 

Model validation at city scale 

Ten cities located in the French Ile-de-France (IdF) 

region (12 million inhabitants) are manually selected for 

the model validation process. They are chosen to 

illustrate the diversity of the French architecture, social 

diversity and heating systems characteristics. For each 

city, the annual electric consumption of dwellings is 

known from 2012 electricity bills. For privacy reasons 

city names are not disclosed and only a proportion or 

average values of city characteristics are given. 

A1, A2 and A3 are classic medium size French cities 

with a historic center and a more recent suburb. They are 

characterized by a large diversity in term of architecture, 

inhabitants, income and heating systems. These 3 cities 

are chosen to be individually representative of the 

national statistics for one or several parameters: 

 A1 in terms of income and proportion of electric 

heater and collective dwellings, 

 A2 in terms of construction year distribution and 

inhabitants activities distribution,  

 A3 to have close values for each indicator except for 

construction year statistics. 

B1 and B2 are cities with a large majority of collective 

dwellings in very densely populated urban area. B1 is 

one of the richest territories in IdF and B2 is one of the 

poorest. By selecting these territories, UEM capability to 

take into account the impact of living standards on 

energy consumption can be assessed. 

C1 has the particularity to be a very recent city with 88% 

of the dwelling built after 1990. By selecting this 

territory we should be able to discuss if the new 

dwellings are well simulated, especially their heating 

needs. 

D1 and D2 are characterized with a high proportion of 

detached dwellings. The difference of thermal behaviors 

between detached and collective dwellings is well 

known and should be represented in the simulation tools 

(eg. compactness, area, heating systems, household 

composition). 

E1 and E2 have the particularity to contain a low rate of 

electric heating system (less than 2%). These two cities 

will help us to validate the electricity consumption from 

electric appliances. 

Table 7 shows that each city has interesting statistical 

characteristics to help us validate one or several aspects 

of the model. Definitive conclusion from the comparison 

between simulated and energy consumption information 

cannot be made since the selected cities do not allow to 

fully separate a specific phenomena. However, this 

comparison helps us to identify weaknesses in the UEM 

and to decide where the development efforts must be 

focused. In the case study all the cities selected for the 

model validation are within a 100 km radius, so, only 4 

well located meteorological stations (in 4 cities) for 

outdoor temperature and 1 for solar flux measurement 

are used for the simulations. 

Results and discussion 

Each city is simulated with Smart-E with the parameters 

calculated from the calibration process, then results from 

simulation are compared with annual electricity bills. 

The simulations are made with an INTEL XEON® CPU 

(3.5 GHz) and 64 Go of RAM, each simulation lasts 

around 5 minutes. From the comparison between 

simulation outputs and annual energy bills, we can see 

that:  

 The absolute error for all cities is below 1% (error 

on the sum of all cities simulated energy).  This 

shows that the errors are compensated at 10 cities 

scale, which is expected since the simulation tool 

has been calibrated at large territory scale.  

 6 cities are well represented for annual electricity 

consumption with a relative error below 10%. 

 4 cities (B2, D2, E1 and E2) have a relative error 

above 10%. Here the model may be perfectible and 

a detailed analysis is realized afterwards.  

To go further in the analysis, the correlation coefficients 

(CC) between the absolute error and cities characteristics 

are calculated (eq. 2) and correlation values above 0.8 

are especially analyzed in this case study to identify end-

use models or parameters to be improved.  

         
             

                 
                 

Table 7 shows one CC value above 0.8, it refers to the 

proportion of council flats. These results give an 

indication to choose which part of the model has to be 

improved first.  

In the case study, the energy consumption of electric 

appliances in council flats might be examined to find 

ways of improvement (there is no electric heating 

systems in the studied council flats). Indeed, the UEM 

tends to overestimate the electric consumption in council 

flats. The first step should be to confirm the initial 

hypothesis that inhabitants of council flat have the same 

energy end-use habits and the same domestic equipment 

level than inhabitants of private flats. 

Other correlation values show no evidence of model 

weakness in dwelling shape representation (collective or 

detached dwellings) or built year representation. 

Moreover household specificities seemed to be well 

taken into account by the UEM since the correlation 

coefficient is low for the “hourly income per occupant” 

or the “proportion of retired people”. 



 

Table 7: Simulation results and statistical description of the 10 cities, comparison with the national average (2012), 

extreme values are in “bold”, CC is the correlation coefficient between simulation error and cities characteristics (eq. 

2) 

City Name ► A1 A2 A3 B1 B2 C1 D1 D2 E1 E2 France CC 

electricity consumption per household (MWh) 

– Energy bills 
5.85 4.96 6.32 4.29 3.91 4.54 7.41 9.42 3.14 2.78 5.33  

electricity consumption per household (MWh) 

after calibration – Simulated (Smart-E) 
5.60 4.80 6.60 4.30 4.50 4.20 7.30 8.10 3.60 3.20 5.30  

energy relative error (eq.1) (%) 4.3 3.2 4.4 0.2 15.1 7.5 1.5 14.0 14.6 15.1 0.6  

share of simulated dwellings (%) 

from 900 to 10000 simulated dwellings per 

city 

40 40 40 32 40 40 100 100 100 40 0.04  

a
v

er
a

g
e 

v
a
lu

e 
o

f occupants per household 2.58 2.14 2.42 1.89 2.79 2.55 2.50 2.16 2.67 2.53 1.91 
-

0.50 

number of rooms per household 3.9 3.6 3.8 2.8 3.0 3.6 4.5 4.9 3.7 3.4 4.0 0.59 

hourly income per household (€) 14.7 27.6 19.0 23.1 10.9 17.2 18.3 16.1 12.6 13.4 14.3 0.46 

p
ro

p
o

rt
io

n
 o

f 
(%

) 

electric heating systems in dwellings 30.6 27.0 40.5 38.8 17.8 28.7 27.0 26.5 1.9 1.9 34.0 0.63 

collective dwellings 44.5 81.6 68.2 97.2 83.9 66.0 6.6 3.7 81.9 91.9 42.9 
-

0.66 

dwellings heated by district heating 3.6 8.7 2.9 26.9 25.5 1.7 0 0 24.8 80.3 2.0 
-

0.73 

rented dwellings 36.8 50.2 34.8 60.5 71.3 41.9 11.4 9.7 48.4 65.2 39.9 
-

0.71 

council flats 18.3 17.5 17.5 18.8 44.2 11.0 1.8 0.0 36.7 52.6 14.6 
-

0.91 

retired people 22.8 21.7 14.4 18.4 14.1 7.7 26.9 20.9 18.0 16.1 26.6 0.26 

employees 69.3 68.8 72.3 72.6 49.8 73.5 68.6 74.3 62.0 63.2 63.2 0.77 

unemployed people 10.8 9.3 7.9 9.9 26.9 9.1 8.8 7.3 16.7 15.5 13.6 
-

0.76 

p
ro

p
o

rt
io

n
 b

y
 c

o
n

st
ru

ct
io

n
 y

ea
r
 

before 1919 0.9 20.5 0.6 16.8 1.6 1.1 1.3 26.5 1.3 0.3 15.6 0.58 

from 1919 to 1945 3.1 8.1 0.2 16.0 14.1 0.6 12.2 8.5 1.7 0.5 9.8 0.11 

from 1946 to 1970 17.3 32.1 3.6 17.2 47.1 1.9 29.7 15.9 57.3 18.3 22.5 
-

0.53 

from 1971 to 1990 45.1 28.7 73.1 22.7 21.6 9.0 39.0 35.0 36.0 73.0 29.4 
-

0.36 

from 1991 to 2005 24.3 8.6 19.2 25.2 8.4 67.9 13.4 9.9 3.5 5.2 16.0 0.44 

after 2006 9.3 2.0 3.3 2.0 7.3 19.6 4.4 4.3 0.2 2.7 6.7 0.37 

 



 

Conclusion 
On-site measurements are necessary to validate UEM 

and since it is time consuming and expensive to monitor 

the energy consumption at city scale, a methodology 

based on aggregated energy bills has been presented to 

validate UEM outputs on an annual basis. After the 

UEM calibration at country scale, simulation results 

have been compared to annual electricity consumption of 

10 chosen cities: 

 classic medium French cities, 

 rich and  poor cities (on average), 

 cities with a majority of collective or detached 

dwellings, 

 cities with little electric heating systems, 

 a recent city. 

The case study shows a good match between Smart-E 

and the energy bills on 6 cities. On the other hand, 4 

cities have an absolute error above 10% on total annual 

electric consumption which shows ways of 

improvement. A correlation between “simulation errors” 

and “proportion of council flats” suggests that the model 

for electric appliance simulation in council flats should 

be improved. 

This method can be adapted according to local energy 

context and UEM specificities. 
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