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New online estimation algorithm of lateral tire-road coefficients based
on Inertial Navigation System

Laëtitia Li1, Brigitte d’Andréa-Novel2,3 and Sylvain Thorel4

Abstract— For the sake of simplicity, control laws for au-
tonomous vehicle mainly use linear tire models, but this
modeling is only valid for small slip angles. Hence, to keep this
hypothesis valid, tire’s behavior has to lie within the limits of
handling, i.e. there is a threshold the slip angle cannot surpass.
This paper develops a new estimator for the cornering stiffness
and maximum lateral friction coefficients. These parameters
provide important information on the ground conditions and
are beneficial for improving the stability of the vehicle. The
algorithm is based on estimated lateral tire forces and on a 3
zones adaptive algorithm, including a Dugoff theoretical tire
model. It will allow to set up a model not only for the linear
part but for the whole range of slip angles, providing the trend
of the tire behavior at each time and informing about the future
evolution of lateral forces. The advantage of the algorithm
is that no measurement of lateral tire forces is needed and
few parameters are required such as yaw rate, longitudinal
and lateral velocities obtained through an effective Inertial
Navigation System, wheel rotational speeds and steering angles.
Simulations conducted on realistic dynamical situation validate
the algorithm efficiency.

I. INTRODUCTION

Control laws are mainly based on the assumption of linear
tire model. Such an assumption is only valid for small slip
angle and tire’s behavior becomes highly nonlinear for severe
manoeuvers, slippery road or at high-speed. To keep this
assumption valid, tires slip angle must remain within the
limits of linear tire’s behavior which brings us to estimate
the slip angle threshold βth (see Fig.1). This information
can be obtained through the knowledge of maximum lateral
friction coefficient. The cornering stiffness Cβ is necessary
in the context of closed loop in order to use the linear tire
model. They are both important parameters of the tire/road
interaction which depend mainly on the road conditions and
are closely related to the tire efforts. Knowing precisely and
in real-time these parameters allows to incorporate them in
the control law and thus significantly impact the performance
of the controller. As many factors affect the lateral friction
coefficient and cornering stiffness, such as road surface
conditions, tire types, temperature, tire pressure and so on,
the identification of these parameters is still a challenging
issue.
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Most of the approaches estimating the cornering stiffness
use a linear adaptive tire model. For example, [1] and [2]
estimate the cornering stiffness based on a gradient search
algorithm and [3] uses a Kalman filter. Concerning tire-road
friction coefficient, many researches have been done. Some
of them try to estimate the parameters that affect the tire-
road friction coefficient and try to predict the maximum
friction coefficient µmax by using friction models. These
methods require specific sensors (such as tire tread, optical
or acoustic sensors) ([4], [5], [6]). In other approaches,
researchers measure the effects of friction change on the tire
behavior and developped slip-based µmax estimators [8]. The
idea of slip-based estimator is to use the friction vs. slip data
curve to identify µmax. The slip-slope of this curve is related
to a type of road and allows to establish a friction classifier.
Some of the slip based µmax estimators work during braking
[7], while other work during traction ([9],[10]). Slip-based
approaches require a minimum of slip for the tire through
acceleration, deceleration or steering maneuvers and have
problem with calibration. In fact, the slip-slope used to
classify the type of roads are sensitive to tire characteristics.
Researchers also developed estimators based on theoretical
model forces such as Burckhardt ([11],[12]) and LuGre
([13],[14]) models. These models are complex and the two
parameters to be estimated are not clearly expressed. [15]
and [16] use a brush tire model in which the two parameters
clearly appear but only the friction coefficient is estimated.
All these methods are based on a curve fitting approach and
parametric identification to minimize the error between the
developed force and the model-based force. To the best of our
knowledge, [17] is the only paper estimating both the friction
coefficient and the cornering stiffness. It uses a lateral tire
model and the estimation is based on a parametric model
and an adaptive law.

This paper concentrates on developing and demonstrating
a reliable online algorithm for maximum lateral tire-road
friction µymax and cornering stiffness Cβ estimation based
on Inertial Navigation System measurements such as yaw
rate, longitudinal and lateral velocities, as well as rotational
speeds and steering angles. We also need a measure of wheel
torque which could be given by an additional sensor or by
the computed control law itself in a control loop context. The
algorithm takes into account the linear and nonlinear part of
tire characteristics by using a 3 zones adaptive algorithm. The
inputs are the differences between estimated lateral forces
and forces calculated with theoretical models: affine, Dugoff
and constant. This algorithm includes a Levenberg Marquardt
optimization method and a least squares fitting technique



Fig. 1. Lateral force function of slip angle for various friction coefficients
from experiments based on Pacejka model [30] (lin mod = linear model;
β∗
th is obtained with (16))

with a sliding window as input.
The paper is organised as follows. In section II, the two

parameters to be estimated and the Dugoff tire model are pre-
sented. In section III, all the inputs parameters for tire-road
friction and cornering stiffness estimation are introduced and
estimated, then the cornering stiffness and maximum lateral
friction coefficient estimation algorithm is detailed in section
IV. Section V shows the performance results of the estimator.

II. MAXIMUM LATERAL FRICTION
COEFFICIENT, CORNERING STIFFNESS AND

DUGOFF MODEL

The lateral force Fy is mainly influenced by the slip
angle β. This latter is defined as the angle between the
direction of the wheel and the wheel speed vector. Fig.
1 shows this function Fy(β). The slope at the origin is
the so-called cornering stiffness Cβ . As can be seen from
Fig. 1, for small values of β, Fy is proportional to β. For
greater values of β, Fy saturates. Vehicle dynamics depend
on cornering stiffness Cβ and maximum friction coefficient
µymax

which are necessary to model the characteristics of
tire/ground interaction. The limits of handling are defined
from the maximum available lateral force

Fymax
= µymax

Fz (1)

where Fz is the vertical tire force. Table I shows some typical
value for µymax for different type of roads. The closer µymax

is to 1, the bigger Fymax
.

TABLE I
SOME TYPICAL µ VALUES

Road conditions Asphalt dry Asphalt wet Snow Ice
Approximated µ 0.9-1.0 0.5-0.8 0.2-0.3 0.15-0.2

A. Dugoff model

There are many tire models that reflect the highly nonlin-
ear relation between the lateral tire forces and slip angles.

These models range from a simple linear proportional model
depending only on Cβ and β to a nonlinear model such as
the well-known Pacejka model, characterized by numerous
empirical parameters [30]. The linear model has been widely
used in many applications. This model is suitable for vehicles
in normal driving situations where β is low. However, as
soon as the vehicle is subjected to severe maneuvers, β
becomes large and Fy has a nonlinear behavior. So, a
Dugoff model is chosen to describe the non linearities of
tire’s behavior with minimum complexity and qualitative
correspondence with experimental behavior. It provides a
simple formulation that can describe the forces under pure
cornering, pure acceleration/braking and combined acceler-
ation (braking)/cornering maneuvers. It assumes a uniform
vertical pressure distribution on the tire contact patch.

Longitudinal force is expressed as Fx = Cσ
σx

1+σx
f(λ) (see

[33]) and lateral force as:

Fy = Cβ
tan(β)

1 + σx
f(λ)

where f(λ) is given by:

f(λ) =

{
(2− λ)λ if λ < 1

1 if λ ≥ 1

λ =
µmax Fz (1 + σx)

2
√

(Cσ σx)2 + (Cβ tan(β))2

with σx the longitudinal slip ratio. These two equations
depend on 4 important tire’s parameters: the longitudinal
stiffness Cσ , cornering stiffness Cβ , normal force Fz and
maximum tire road friction coefficient µmax.

Assuming pure slip conditions with negligible longitudinal
slip, the simplified Dugoff model becomes:

Fyij dug
=

{
Cβij tan(βij) if λ ≥ 1
Cβij

tan(βij) (2− λ)λ if λ < 1
(2)

and λ is given by:

λ =
µyijmax Fzij

2Cβij | tan(βij) |
(3)

The subscripts ij here and in the sequel stand for fl, fr, rl
and rr which respectively refer to front left, front right, rear
left and rear right wheels. The tire force equations clearly
show the two unknown parameters to estimate, the cornering
stiffness Cβij and the friction coefficient µyijmax. This model
synthesizes all the properties of the tire within these two
parameters and this is the advantage compared to the Pacejka
model, known as the reference model for the wheel/ground
interaction modelling.

However, the accuracy decreases for large slip angles,
compared to Pacejka’s model. Indeed, when slip angles
become large and enter into the nonlinear part, the forces
obtained by the Dugoff model become larger than those
computed by the Pacejka model. To briefly illustrate this, let
us consider a vehicle moving on the trajectory illustrated in
Fig. 6. Under normal driving conditions (lateral acceleration
below 0.4g) as shown Fig. 2, on adherent ground like dry
asphalt at 14m/s (full red and blue lines), Pacejka and Dugoff



Fig. 2. Comparison of lateral forces with Dugoff and Pacejka tire model
on dry asphalt for v = 19 m/s (dotted line) and v = 14 m/s (full line)

models fit very well. For 19m/s (dotted red and blue lines), as
expected, we note that Dugoff’s model slightly overestimates
the lateral force when the lateral acceleration is high (0.47g).
Despite that, Dugoff model can fit correctly Pacejka model.
Additionnaly, as already mentioned in the introduction, the
algorithm for the estimation of µyijmax and Cβij

is separated
into 3 zones and when Dugoff model becomes incorrect, a
constant model is used, as it will be detailed in section IV.

III. PARAMETERS ESTIMATION

In our estimation algorithm, in order to use Dugoff model,
slip angle, vertical forces, longitudinal and lateral forces have
to be estimated. This is the subject of this section.

A. Slip angles estimation

Tire slip angle can be calculated as:

βfl = δfl − arctan

 Vy + lf ψ̇

Vx −
ef
2
ψ̇


βfr = δfr − arctan

 Vy + lf ψ̇

Vx +
ef
2
ψ̇


βrl = δrl − arctan

 Vy − lrψ̇
Vx −

er
2
ψ̇


βrr = δrr − arctan

 Vy − lrψ̇
Vx +

er
2
ψ̇


where lf and lr are respectively the distance between the
center of gravity and the front axle and the center of gravity
and the rear axle, ef and er are the front and rear tracks, Vx
and Vy are the longitudinal and lateral speed of the center
of gravity, ψ̇ the yaw rate and δij the steering angles.

B. Normal tire force estimation

One way to estimate the vertical forces Fzij is based
on wheel suspension dynamics [18], but it needs sensors

like suspension deflection sensors which are expensive and
not present on our vehicle. Thus, we will estimate the
static vertical forces, i.e. ignoring suspensions dynamics,
based on vehicle weight, center of gravity position, vehicle
longitudinal and lateral acceleration.

Under normal driving conditions, the vertical forces are
mainly due to the gravity. During acceleration, braking or
bending phases, vertical forces vary due to inertial forces
(load transfer). By neglecting the coupling between pitch and
roll dynamics, the vertical forces are [18]:

Fzfl
= m

lr
2 l
g −mhax

2 l
−mhay lr

ef l
(4)

Fzfr
= m

lf
2 l
g −mhax

2 l
+m

hay lr
ef l

(5)

Fzrl = m
lf
2 l
g +m

hax
2 l
−mhay lf

ef l
(6)

Fzrr = m
lf
2 l
g +m

hax
2 l

+m
hay lf
ef l

(7)

where m is the vehicle mass, g the gravity acceleration, h
the height of the center of gravity, ax and ay the longitudinal
and lateral acceleration at the center of gravity.

C. Longitudinal tire force estimation

Longitudinal tire forces in tire frame Fxpij can be calcu-
lated from the wheel rotation dynamics:

Fxpij =
Tωij

− Ir ω̇ij
rij

(8)

where Tωij
is the wheel torque, Ir the wheel moment of

inertia, ω̇ij the angular velocity and rij the effective radius
of the wheel. Wheel torques are the control variables which
are computed if the estimation is integrated into a control
loop otherwise torque sensors are needed.

D. Lateral tire force estimation

The problem of estimating lateral tire forces Fy has
been extensively studied in the dynamic vehicle commu-
nity. Some methods use tire models to estimate axle per
axle lateral forces by neglecting rear longitudinal forces
([19],[20]). Other methods are also based on tire models but
use a 4 wheels model and estimate the forces via an EKF
([21],[22],[23]) or UKF [24].

In our case, we do not want to use a force model to
estimate Fy because a force model is already used to estimate
Cβij

and µyijmax. In addition, not using a complex force
model can save computing time and increase robustness
compared to variations in road conditions. For example,
([25],[26],[27],[28]) do not use a tire model but neglect rear
longitudinal tire forces and estimate lateral tire force per axle
thanks to an observer. [29] estimates the lateral tire forces
witout using tire model but based on yaw moment calculation
MG at the center of gravity G and MGij

at the center of each
wheel Gij , leading to the following equations :{

MG = Izψ̈ = Tx0 + Ty0
MGij

= MG +m (−→aG ∧
−−−→
GGij).

−→zG = Txij
+ Tyij

(9)



where −→aG is the acceleration vector at G, −→zG the vertical axis
attached to the vehicle frame and Tx• and Ty• respectively
include the terms depending on longitudinal and lateral tires
forces (see [29]). By adapting [29] to four steering wheels
vehicle and lumping (9) as a matrix form gives :

F̂Y = H−1 TY (10)

where



TY =
(
Ty0

(Tyrl
−Tyfl

)+(Tyrr−Tyfr
)

2

)T
F̂Y =

(
F̂ypf F̂ypr

)T
Ty• = M• − Tx•

H =

(
lf cos(δf ) −lr cos(δr)

(lf + lr cos(δf )) (lf + lr cos(δr))

)
where Fypf and Fypr stands for the front and rear total

lateral force in the tire frame. (10) gives the estimation of
front and rear lateral forces per axle and then lateral forces at
each wheel are calculated from a vertical force distribution:

F̂ypfl =
Fzfl

Fzfl+Fzfr
F̂ypf F̂ypfr =

Fzfr

Fzfl+Fzfr
F̂ypf

F̂yprl = Fzrl

Fzrl+Fzrr
F̂ypr F̂yprr = Fzrr

Fzrl+Fzrr
F̂ypr

(11)

In what follows, we call the measured lateral force, the
force obtained in simulation with the Pacejka model and
the estimated lateral tire forces the ones obtained with (8)-
(11). For a lane-change trajectory such as the one depicted
in Fig. 6 at 18m/s, Fig. 3 and Fig. 4 respectively show
the estimated and measured front axle lateral force and the
estimated and measured lateral tire force for the front left
wheel. As depicted Fig. 3, the error is low but reaches 20%
when the vehicle takes the corner with a lateral acceleration
of 0.4g. Concerning the case shown in Fig. 4 the error
reaches 35% during the turn. Thus, it can be noted that the
estimation is quite relevant even for high lateral acceleration.

IV. ESTIMATION ALGORITHM OF MAXIMUM LATERAL
FRICTION AND CORNERING STIFFNESS

By studying Fy(β) curve in Fig. 5, we divide the curve
into 3 zones : linear, transitional and nonlinear regimes
as depicted in red. For the estimation purpose, we also
distinguish 3 others areas of estimation :

Fig. 3. Front axle total lateral forces

Fig. 4. Front left lateral tire force

• an affine zone belonging to the linear regime where
F ∗
yij = a1 βij + b1;

• a Dugoff model zone overlapping the transitional regime
and a part of the linear and nonlinear regime, where
F ∗
yij = Fyij dug

(see (2)) ;
• a constant zone belonging to the nonlinear regime where
F ∗
yij = b2

The delimitation of these estimation areas differs from the
one usually defined for the tire model regions as depicted
in green in Fig. 5. The aim is to find Cβij

and µyijmax that
minimize the error between the lateral force F ∗

yij provided by
the 3 different theoretical models mentioned above and the
one estimated with (8)-(11), F̂ypij . For the affine zone, the
linear least squares fitting technique is applied, for the Dugoff
model zone, the Levenberg Marquardt (LM) algorithm is
used and for the constant zone, the constant b2 is chosen
equal to the maximum lateral tire force of the window.

Splitting the estimation into several zones allows us to
limit the range where the Dugoff model is applied to prevent
from possible errors and wrong convergence due to the
LM algorithm. When β is very small, lateral forces can be
approximated by an affine model. This area is framed by the
y-intercept values b1. In the nonlinear region, the constant
model is applied. The transition between the different zones
is function of the slope a1 and the y-intercept values b1.

As input for the algorithm, a sliding window is used. It
contains a set of {F̂yij (k), βij(k), t(k)} data, with 1 ≤ k ≤
N . t is the time and N the empirically determined window’s
maximum length. Accumulating values over time will avoid
to obtain aberrations in the estimation. Trade-off must be
made since a large data set causes delays and increases the
computational load but it achieves better performance. This
window, with variable length, will depends on spatial and
temporal factors. With ε1, ε2, τ1 and τ2 which are thresholds
fixed by the user, the window is constructed as follows :

• a data is added to the window if :
– the difference between the last slip angle β(k) of

the window and the current one β(k+1) is greater
than ε1: |β(k + 1)− β(k)| ≥ ε1 → add data

– there was no data added for a long time :



Fig. 5. Tires different regimes and zones for estimation

Fig. 6. Lane-change trajectory

|t(k + 1)− t(k)| ≥ τ1 → add data

• the window is refreshed if :
– the difference between the first slip angle β(1) of

the window and the last one β(k) is greater than
ε2 : |β(1)− β(k)| ≥ ε2 → delete first data

– a data is in the window for a long time :
|t(1)− t(k)| ≥ τ2 → delete first data

– the window is full : delete one out of two

data

A. Affine zone

Why not using the Dugoff in the entire linear regime?
The LM algorithm takes as input partial derivatives w.r.t the
parameters we want to estimate (12). One may note that if
the λ parameter in the Dugoff model (2) is such as λ ≥ 1,
i.e the tire is in the linear part, µyijmax cannot be estimated
because the partial derivative is zero. This can be seen Fig.
1: for small β, µyijmax does not have a significant effect on
the lateral force value. This is not critical because µyijmax

is only needed in the transient and nonlinear area of the
tire model. In the linear region, only Cβij

is essential. Thus,

µyijmax keeps the previous value as long as the data are in
the linear part.

if λ ≥ 1 :
∂Fyij
∂µymax

= 0

∂Fyij
∂Cβij

= tan(βij)

if λ < 1 :
∂Fyij
∂Cβij

=
µ2
ymax

F 2
zij

4C2
βij

tan(βij)

∂Fyij
∂µymax

= Fzijsign(Cβij
tan(βij))−

F 2
zijµymax

2Cβij

(12)

Therefore, for small β, it is not necessary to use the LM
algorithm to estimate the parameters. Since this method does
not allow to calculate µyijmax, one can simply calculate Cβij

as the slope a1 at the origin of F ∗
yij = a1 βij+b1 with linear

least squares fitting technique. In addition, the Pacejka model
does not necessarily pass through the origin unlike Dugoff
model, so LM algorithm may have a lower convergence or
a larger error than the affine model. This will lead to save
computing time and it will allow a good initialization of Cβij

before the entrance into the transient regime.

B. Dugoff model zone

The optimization is performed using LM method. Let
us recall that this iterative algorithm provides a solution
to the problem of minimizing a multivariate function. This
function is expressed as the sum of squared errors J =∑k
n=1(F̂y(n) − F ∗

y (n))2, with k the number of element in
the window. The LM algorithm can be seen as a combination
of the steepest descent method and Gauss Newton method
[34]. As output, the LM algorithm provides the cornering
stiffness and maximum lateral friction coefficient.

C. Constant zone

In the nonlinear zone, since the Pacejka model decreases
whereas Dugoff model remains constant or slightly growing,
the data will not follow the model we want to fit which
can cause the algorithm to converge to wrong values. In
addition, updating Cβij in the nonlinear zone is also risky
because several values of Cβij

can correspond to a given
µyijmax. The use of LM algorithm will not be necessary and
a constant model will be sufficient to calculate µyijmax. As
previously said, this will lead to save computing time and
good initialization when entering in the transient zone. Once
the constant zone identified, the constant is chosen as the
mean of the lateral forces data included in the window.

D. Determination of βth
The purpose of estimating maximum lateral friction coef-

ficient µyijmax is to calculate the slip angle threshold value
βth for which the linear tire model is no longer valid.

The way we choose is to consider the error between the
Dugoff model Fy dug (2) for λ < 1, that we call Fy dugNL

and the linear model Flin = Cβij
βij . When the tire is in the

linear region, the two models approximately coincide and
the ratio p = Flin

Fy dug NL
is almost equal to 1. Thus, when p



becomes bigger than 1, the linear model is no longer true. As
the two models not exactly coincide, we consider that the slip
angle threshold βthij

is reached when the ratio is higher than
p = 1.05 (experimentally determined). Thus, βth is defined
as the angle such as Flin(βth) = 1.05Fy dug(βth). βthij is
obtained as following:

p =
Cβij

βij

(2− λ)λCβij
tan(βij)

≈ 1

(2− λ)λ
(13)

with λ depending on βij (see (3)). Solving this 2nd order
equation in βthij gives:

βthij =
4 p µyijmax FzijCβij

±
√

∆

8C2
βij

where ∆ = 16µ2
yijmaxF

2
zijC

2
βij

(p2 − p), ∆ ≥ 0

(14)

To be sure to maintain the tire in the linear part, we choose
the smallest as the threshold :

βthij =
4 p µyijmax Fzij Cβij

−
√

∆

8C2
βij

(15)

Remark: We could have use the definition of µyijmax (see
(1)) to calculate the slip angle threshold with Fyijmax =
Cβij

β∗
thij

, which gives

β∗
thij

=
µymax Fzij
Cβij

(16)

but this lead to a slip angle threshold bigger than by using
(15) and the tire will already be in the nonlinear part.

V. SIMULATIONS RESULTS

To evaluate the performance of the proposed algorithm, a
10 DoF vehicle model, simulated in Matlab/Simulink soft-
ware is used in order to simulate the vehicle dynamics. The
model takes into account both the coupling of longitudinal
and lateral slip. The simulation integrates a Pacejka model
for the tire described by [30]. The external disturbances
such as road-bank angle, slope, and aerodynamic forces are
neglected. The estimation was processed for each wheel but
the results shown here will only concern the front left wheel.
Simulations were performed under two different conditions,
wet asphalt and snowy road. Random noise has been added
to the measured and estimated lateral forces.

A. Wet asphalt road

The vehicle is moving on a lane-change trajectory as
depicted in Fig. 6 at 18m/s on a wet asphalt such as µ = 0.5.

Fig. 7 shows the estimated cornering stiffness using the
estimated lateral force (red) and the measured lateral force
(blue). We assume that the ”measured” cornering stiffness
(yellow line) is the value obtained from Pacejka model under
pure side slip as described in [30] and it gives us an idea
of the order of magnitude. One observes that the cornering
stiffness is well estimated when the measured lateral force is
used, the error is globally less than 10%. With the estimated
lateral force, the estimation error is bigger, around 25%, but

it could be compensated by a robust closed loop control law.
The cornering stiffness estimated with the estimated lateral
force was impacted by the estimation of lateral tire force. Fig.
8 shows the error between estimated and measured left wheel
lateral force. It may be noted that, the error in the estimation
of lateral force occurs when the vehicle enters the left and
right turn for respectively x = 0m and x = 100m (see Fig.
6) and it occurs in a short period of time as shown Fig. 9.

Fig. 10 illustrates the estimated maximum lateral friction
coefficient with the measured lateral force (blue) and with
the estimated lateral force (red). At the beginning of the
trajectory, the vehicle is moving on a straight road, as
depicted Fig. 6 and the lateral force is proportionnal to the
slip angle. It corresponds, for the slip angle, to the range
between 0 and 0.03 rad in Fig. 8. In this situation, the
maximum lateral friction coefficient cannot be estimated and
the value is fixed to 1. Then, the vehicle turns left, the lateral
force reaches the transitional region and the estimation of
µymax is processed. When the vehicle starts the right turn, the
lateral force is negative. In this part of Fig. 8, the measured
force has a higher magnitude than the estimated force and
for −0.05rad the tire is in the linear region that is why at
t=11s, µymax

= 1 when it is estimated with the measured
lateral force. However, as the estimated lateral force has a
lower magnitude, µymax is around 0.4 with the estimated
lateral force. The difference between the 2 estimated µymax

after t = 12s is due to the gap between estimated and
measured lateral force and since the tire returns to the linear
part the µymax

value is hold. Hence, the proposed estimation
algorithm works well during the lane change maneuver when
the lateral force is well estimated. The estimation seems to
be good even if the maximum lateral friction coefficient is
not precisely known (assuming it is around 0.5).

B. Snowy road

The vehicle is moving on the same trajectory as the pre-
vious simulation but at 14m/s on a snowy road such as µ =
0.3. Fig. 11 and Fig. 12 show respectively the results of the
maximum lateral friction coefficient and cornering stiffness
estimations using the estimated and measured lateral forces.
Previous remarks can also be made in this situation. µymax

is well estimated in both case and the error of cornering
stiffness estimation is bigger with the estimated lateral force
but they are both close to the expected values. Finally, Fig.
13 shows the result of slip angle threshold estimation using
(15). When the affine model of the estimation algorithm can
be applied (see Fig. 5), the threshold is hold at a constant
value: it can be assumed that 3 deg. is generally observed for
the limit of the linear region. Then, when the linear model
is no longer valid, i.e. the ratio p is higher than 1.05, the
slip angle threshold is updated with (15) and this value is
hold when p < 1.05. We notice in Fig. 13 (magenta dotted
line) that by using (16), the slip angle threshold estimation
is bigger and the tire is already in the nonlinear part while
with (15) the tire has not yet reached the maximum lateral
tire force available (see Fig. 14).



Fig. 7. Estimated and measured front left cornering stiffness for wet road

Fig. 8. Measured and estimated lateral force function of slip angle.

Fig. 9. Measured and estimated lateral force function of slip angle and
time (black lines delimitate the short period for which the estimation error
is important)

All the simulations carried out also revealed that estimat-
ing high lateral friction coefficient needs larger slip angles. In
contrast, smaller slip angles are needed to have an accurate
estimate of lower friction coefficient. Since the slip angle is
directly related to lateral maneuvers, larger maneuvers are
required to estimate high friction coefficients.

Fig. 10. Estimated µmax for wet road

Fig. 11. Estimated µmax for snowy road

Fig. 12. Estimated and measured front left cornering stiffness for snowy
road

VI. CONCLUSION

This paper developed and investigated a new estimation
method for the maximum lateral friction coefficient and the
cornering stiffness which will be used in closed loop context
in future developments (see [32]). For those estimations a few
parameters are needed which are available through Inertial
Navigation Systems. It also needs a reliable estimation of
lateral tires forces. Detailed experimental results show the
performance of the estimation algorithm on different road



Fig. 13. Estimated slip angle threshold for snowy road

Fig. 14. Estimated slip angle threshold for snowy road : a with (15), b
with (16)

conditions. Future works would also consider the comparison
of this proposed algorithm to the one developped in [17].
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