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Abstract—Microgrid operation scheduling is a widely studied
topic, but the performances of the solution algorithms proposed in
the literature are rarely discussed and, in practice, scheduling is
often only loosely optimized. In this paper, we present a practical
context of coordination between a microgrid and an utility grid
which concerns hundreds of microgrids worldwide. We adapt
three distinct optimization strategies – mixed integer quadratic
programming, simulation-based genetic algorithm and expert-
based heuristic – and empirically compare their strengths. Our
results emphasize the benefit of seeking for optimality, while the
inaccuracies of the system dynamic model are compensated by
periodic recomputation.

Index Terms—microgrids, optimal scheduling, mathematical
programming, genetic algorithms, numerical simulation

I. INTRODUCTION

With the deregulation of power generation and the de-
carbonization targets set by countries worldwide, distributed
generation with grid-connected renewable power plants are
developing rapidly. Ranging from small solar rooftop systems
to large power stations combining several sources, independent
power systems feed power to the utility grid, ideally in a
coordinated way: the independent producer seeks to maximize
profit while respecting the constraints imposed by the grid
operator to ensure network reliability and avoid voltage and
frequency stability issues. Different coordination models exist
to ensure equilibrium between the intermittent and unpre-
dictable nature of renewable sources and the required stability
of the power supply. A two-stage model is considered in
the call for tenders CRE ZNI 2015 [1] launched by the
French Energy Regulatory Commission to promote PV power
generation facilities in small non-interconnected grids, mainly
overseas islands. In this model, the producer first plans its
injection/withdrawal, called its engagement profile, for the
day after, by considering the solar irradiation forecasts. The
producer must then ensure in real-time that the actual produc-
tion meets the engagement to avoid high financial penalties.
Storage devices, like lithium-ion battery banks, are needed to
compensate forecast errors as well as PV unavailability periods
to smooth the production and supply during the evening peak.
Given a dynamic electricity tariff driven by the load forecast
and the possibility to charge the batteries from the utility grid,
the producer must then schedule the battery charge/discharge
and injection/withdrawal operations over the day to maximize
profit and minimize penalties. This involves solving two
related optimization problems – to compute the engagement

and to manage the production – which remain hard even with
reasonable approximations in the system dynamic model.

Microgrid operation scheduling covers a large range of
optimization problems, borrowing from economic dispatch,
power flow and unit commitment, and their algorithmic solu-
tions are widely studied (see e.g. recent surveys [2], [3]). The
algorithms differ according to the specific features of the con-
sidered microgrids (e.g. on/off-grid, with/without storage or
controllable sources) or the optimization paradigm, primarily
chosen among mathematical programming (e.g. [4], [5]), dy-
namic programming (e.g. [6], [7]) or population-based heuris-
tics such as particle swarm and genetic algorithms (e.g. [8]–
[10]). Most of these studies focus on the operability of the
microgrids, and do not discuss the choice of the algorithm, nor
its performance in terms of runtime or optimality. Comparisons
of different algorithms are even rarer, and mostly on variants
of a same algorithm (see e.g. [11]), because simulating these
algorithms in a real or realistic environment can be difficult
to implement. A notable exception is the comparative study
in [12] between a mathematical programming (MP) approach
and a genetic algorithm (GA), but the experimental protocol
is not detailed enough (how do the two models differ ? is
MP solved at optimality ?) to explain the author’s counter-
intuitive observation that the optimal MP solutions have lower
profit than the approximated GA solutions. Finally, in practice,
advanced optimization techniques are scarcely implemented
and real microgrids are often managed with partial awareness
of forecasts and optimality.

However, the financial gains of a microgrid rely on the
scheduling algorithm and its ability to compute optimal or
near-optimal solutions. This ability depends on the optimiza-
tion paradigm, but is also correlated to the model granularity
which impacts, in turn, the runtime performance of the algo-
rithm. When scheduling is made in real-time, it is important
to carefully choose the granularity as a trade-off between high
profit solutions and low computation times.

In this paper, we study the real application context for
microgrid scheduling specified in the CRE ZNI 2015 call for
tenders [1], and which concerns about 150 winner projects of
this and subsequent calls. This application is characterized by
the two-phase engagement/control approach resulting in two
related optimization problems, and by the penalty minimiza-
tion criterion measured as a non-convex piecewise quadratic
distance between two profiles. We then present a coarse-grain



analytic formulation of the scheduling problems, as Mixed-
Integer Quadratic Programs, and conduct experiments, on
a real study-case which is representative of the CRE ZNI
contractors. We compare mathematical programming (MP)
with two distinctive approaches: a business-as-usual expert-
based strategy (BAU) and a genetic algorithm (GA) embedding
a fine-grain numerical simulator of the dynamical system. A
key finding of these experiments is that, compared to the
BAU strategy, the future-aware algorithms achieve substantial
savings, ranging from 50 to 100 euros a day, corresponding
approximately to 10% of the daily profits. This result, while
predictable, should encourage microgrid operators to invest in
optimization-oriented controllers. We also found that the MP
solutions are always more profitable, while computed 70 times
faster, than the simulation-based GA solutions. This suggests
that it is preferable to optimize exactly over a rough model
of the system dynamics than to optimize heuristically over a
precise model. The main reason is that model inaccuracies are
compensated in our experiments by the periodic recomputation
of the production schedule in real-time control.

The paper is organized as follows: Section II defines the
architecture of the microgrid and of the management work-
flow. Section III describes the three distinct optimization
approaches. Section IV presents the experimental protocol,
results and analysis.

II. MICROGRID MANAGEMENT

We illustrate the CRE ZNI 2015 coordination problem on
a 1000 kWp PV/battery power plant installed on a Carribean
island in response to the call for tenders, the same we used in
our experimental protocol.

A. The microgrid and controller architectures

Fig. 1. Architecture of the microgrid

The microgrid illustrated in Figure 1 is made of a PV array
(E) and a battery bank (B) equipped with power converters
and transformers and is connected to the public distribution
power grid (G) of the island. The power flows through the
microgrid and from/to the grid are depicted by red arrows. The
microgrid is operated by a Model Predictive Control (MPC)
implementing an Energy Management System (EMS) coupled
with a Power Management System (PMS). They are made
of precisely three components run at different frequencies on
different discretized time horizons, each denoted as a sequence
of time steps t ∈ {1, . . . , T}. The Predictor determines the

engagement profile d ∈ RT for the day after with a sampling
time of 1 minute (i.e. T = 1440), given: unit electricity tariff
profile ρ ∈ RT

+, PV generation forecast profile E ∈ RT
+, and

the current state x0 of the system (including the battery state
of charge). Engagement dt is defined as the stationary electric
power during time step t, that is injected to the grid if positive,
or drawn from the grid if negative. The predictor is run once at
midnight, and possibly every 6 hours with updated forecasts.
The engagement is sent to the grid operator and as input to the
Tracker. The Tracker computes every 15 minutes, at time t, the
production (i.e. injection or withdrawal) plan u ∈ RT−t until
the end of the day with a sampling time of 1 minute, using the
observed plant state xt and updated forecasts E ∈ RT−t

+ . The
PMS attempts to apply the Tracker command ut for every
minute t. It is in charge of the dispatch and communicates
every second with the plant by observing the current state and
PV generation and returning the real time control for the next
second. The PMS relies on a rule-based system which allows
to change command ut when it is not applicable.

B. The coordination model

The CRE ZNI 2015 coordination model [1] is character-
ized by (1) an incentive for injection in the evening in the
form of higher electricity prices ρt during a fixed 2-hour
peak period, and (2) financial penalties CP

t incurred at any
time t when production ut does not respect engagement dt
within a tolerance range of 5% of the installed power Pinst.
Penalties are computed as follows. Let d− = d − 0.05Pinst

and d+ = d + 0.05Pinst denote the tolerance limits, then
CP

t = 0 when the engagement is satisfied (d−t ≤ ut ≤ d+t ),
CP

t = ρtut in case of overproduction (ut > d+t ), and
CP

t = ρt∆(ut, dt) in case of underproduction (ut ≤ d−t ),
with ∆(u, d) = (u−d+)2−(d−−d+)2

Pinst
. The producer’s benefit at

time t includes electricity sale and purchase and is thus equal
to Jt(ut) = ρtut − CP

t . Note that, for a given engagement
value dt, Jt is a non-concave piecewise quadratic function.

The shape of the engagement profile d is defined by the grid
operator as specified bounds on the ramp rates dt+1 − dt ∈
[α−

t , α
+
t ] or on the power dt ∈ [β−

t , β
+
t ] (see values in [1]) .

These bounds primarily differ during the evening peak period.

III. OPTIMIZATION STRATEGIES

A. Mixed Integer Quadratic Programming (MP)

Linear Programming is widely used for microgrid operation
scheduling for its two main benefits: (1) by using efficient
off-the-shelf solvers, it requires almost no algorithmic devel-
opment, and (2) it converges to optimal solutions and provides
optimality certificates. In return, modelling the system dynam-
ics (the battery operation, for example) as linear constraints
involves deep simplifications. Introducing discrete variables
does not help to improve the physical model accuracy but it
allows to handle logical constraints and binary states. Despite
the higher algorithmic complexity, discrete models of limited
size can efficiently be optimized by the state-of-the-art solvers.

We adapt the standard mathematical programming formu-
lation of the production scheduling problem to our context.



The decision variables are the power flows u between PV
(P ), battery (B) and grid (D) depicted in Figure 1 and the
battery state of charge soc (with initial soc0 fixed to the
currently observed state). They are related by the usual balance
constraints (2), (3). PV curtailment is allowed by (4). The effi-
ciency of inverters and transformers are explicit in this model –
through coefficients η – as well as additional equipment losses
uL (5). Two vectors of binary variables are required here:
by (7)-(8), yBt distinguishes battery charging from discharging,
as the associated efficiencies ηc and ηd are different, given β+

c

and β+
d the maximum charge and discharge values; by (9)-

(10), yGt distinguishes injection (then ut = uMG
t ≥ 0) from

withdrawal (then ut = −uGB
t ≤ 0). However, no additional

binary variables are required to model the piecewise objective
functions Jt in this context, observing that overproduction
is non-optimal as curtailment is allowed (thus (9) enforces
ut ≤ d+t ), and that Jt(ut) = ρt max(ut, ut − ∆(ut, dt)) for
any ut ≤ d+t (which is enforced by (11) and (12) given that
u = uMG − uGB and z = J/ρ). Finally, Constraints (12)
being concave quadratic, modern Mixed Integer Quadratic
Programming solvers can directly solve this model.

max
∑
t

δtρtzt s.t. : (1)

soct − soct−1

δt
= ηc(u

EB
t + uGB

t )− uBG
t

ηd
∀t (2)

uEG
t + ηbtu

BG
t − uLt = uMG

t ∀t (3)

uEB
t + uEG

t ≤ ηptEt ∀t (4)

uLt ≥
1− ηbt
ηL

(uEB
t + uGB

t + uBG
t ) ∀t (5)

yGt ≤ yBt , yGt ∈ {0, 1}, yBt ∈ {0, 1} ∀t (6)

0 ≤ uBG
t ≤ β+

d y
B
t ∀t (7)

0 ≤ uEB
t + uGB

t ≤ β+
c (1− yBt ) ∀t (8)

0 ≤ uMG
t ≤ d+t yGt ∀t (9)

0 ≤ uGB
t ≤ β−

t (yGt − 1) ∀t (10)

zt ≤ uMG
t − uGB

t ∀t (11)

zt ≤ uMG
t − uGB

t −∆(uMG
t − uGB

t , dt) ∀t (12)
0 ≤ soct ≤ 1 ∀t (13)

We optimize the engagement using the same model after
setting vector d as decision variables and adding the ramp and
power bounds α and β (see Section II-B) as linear constraints.

B. Simulation-Based Genetic Algorithm (GA)

A numerical software is best suited to accurately model
dynamical systems like microgrids, but it would only simulate
one production plan at a time. To be used in microgrid
scheduling, it must be combined with an optimization strategy,
guided by an estimate of the profit to generate the sequence
of production plans to evaluate by the simulator. Genetic
Algorithm (GA) is a favorite strategy: (1) the global perfor-
mance of this metaheuristic is widely recognised, (2) it is

population-based and thus can easily be interfaced to a black-
box simulator to evaluate each individual, (3) generic config-
urable implementations exist. Contrarily to the MP approach,
however, the convergence to an optimum is not guaranteed and
it does not compute upper bounds on the objective to estimate
the quality of the returned solutions.

In our implementation on the production control problem,
individuals are potential production plans u ∈ RT

+. During
the optimization, a population of POPSIZE individuals is
generated. At the first iteration, individuals are sampled from a
problem knowledge-based production plan, following a Gaus-
sian distribution. Iteratively, new individuals are generated
by selection, combination and mutation of the individuals of
the previous generation. At this step, only the bounds on
the production variables are enforced to assert the feasibility
of the individuals. Each new generated individual is then
evaluated by the simulator to assert its feasibility regarding the
physical constraints, then the actual profit of the individual is
computed. Individuals with higher profits are used in priority
to generate new individuals, while low profit individuals may
be discarded from the population. After NGEN iterations, an
individual with the maximum profit is returned. We use the
same algorithm to optimize the engagement, by just ignoring
penalties when computing the individual profits.

C. Expert system (BAU)

The third strategy is representative of expert microgrid
management policies which are common in practice. From the
CRE ZNI 2015 specifications and the specified ramp bounds,
we can draw the general shape of a valid production profile
as depicted in Figure 2.

Fig. 2. A valid production profile for the CRE ZNI 2015 model.

The main policy is to fully charge the battery when sun is
available (typically between 6AM and 6PM) in order to satisfy
the peak constraint and get the maximum profit during the
peak period (between 7PM and 9PM). After having charged
the battery, the remaining solar production is used to directly
supply the grid. Using this policy and the knowledge of the
maximum power slope and of the plateau phase start time
(10AM) and end time (2PM), simple arithmetic calculations
are used to derive values for the trapezoid slopes and for the
peak height, thus to fully determine the engagement profile d
for the day. With this strategy, the production control u is set
to d+ 0.05Pinst during peak period and matches engagement
d, elsewhere.



IV. BENCHMARK ANALYSIS

A. Experimental settings

Our benchmark set is built on the real power plant described
in Section II with Pinst =1000kW and a battery nominal
capacity of 1000kWh. For a fair comparison between the dif-
ferent optimization solutions, we use historical solar irradiation
data in place of forecasts to erase stochasticity. Hence we built
a benchmark of 24 instances by considering the irradiation
profiles observed at the plant location for 2 random days each
month of year 2015. Daily profiles E are given from midnight
to midnight with a discretization step of one minute.

Because experiments on sampling data cannot be run on
the real plant, we simulate the system with a numerical
model implemented with MATLAB/Simulink instead. This
reference model has empirically shown to be very accurate.
The PMS thus commands this model in place of the plant.
The same model is implemented as the black-box solver in
the simulation-based GA.

Experiments were performed on an Intel Core i7-6700HQ
OctaCore computer at 2.6 GHz and 16 Go RAM. The genetic
algorithm was implemented using the Python library DEAP
1.0.2 and the mathematical model solved with the Gurobi
7.5.2 MIQCP solver using the default parameter set. The BAU
strategy is implemented in Python 3.5.

B. Evaluating the modeling flaws

Our first experiment evaluates the accuracy of the MP
model regarding the reference model. For that purpose, we
implemented the MP model within the Tracker to optimize the
production plans, and compared the conceptual optimal solu-
tion (u, soc, J) of MP with the “real” solution of the reference
model, observed after applying control u through the PMS. In
the standard setting, denoted P15, the Tracker is run every 15
minutes and the updated production control applied for the
next 15 minutes. The conceptual solution is thus recomposed
by concatenating the sequence of 15-minutes profiles. To
amplify the impact of the MP model approximation, we also
considered a fictional setting PP where the optimal production
control is computed only once at midnight and applied the
entire day. We also evaluated a simpler MP model where the
equipment losses are neglected, by relaxing Constraints (5)
and fixing the inverter and transformer efficiencies to 1. The
settings corresponding to the two execution modes above are
denoted N15 and PN, respectively.

Table I reports, for the 4 settings, the deviation between
the MP conceptual solution and the observed result, evaluated
through 3 numerical indicators computed in average on the 24
instances (avg) and for the worst case (max): the difference
of the daily profits (∆J) and the Mean Absolute Error1 on
the battery state of charge (∆soc) and on the command (∆u).
The last two columns (J) show the observed generated profit
in average (avg) and the standard deviation (stddev).

We first observe that the deviations on the battery state
of charge and on the production control are limited even for

1for two time series u, v ∈ RT , MAE(u, v) = 1
T

∑
t |ut − vt|.

TABLE I
DEVIATION BETWEEN THE MP OPTIMAL SOLUTION AND THE RESULT OF

THE OPTIMAL PRODUCTION CONTROL, AND GENERATED PROFITS.

∆J (e) ∆soc (%) ∆u (kW) J (e)
avg max avg max avg max avg stddev

PP 0.3 1.4 3.33 3.92 0.08 0.13 964.3 156.7
P15 0.8 5.9 0.11 0.147 0.06 0.14 1006.3 158.0
PN 61.6 81.1 5.18 6.54 4.56 5.96 970.9 152.5
N15 0.0 0.2 0.09 0.11 0.06 0.09 1009.3 160.3

the worst-case PN. The approximations of the MP model are
thus reasonably accurate in this context. The deviations are
negligible when MP is solved repeatedly every 15 minutes
(for P15 and N15) since, each time, the production plan
is readjusted according to the real state of the plant at the
beginning of the period. This shows how the periodic run
of the Tracker makes the overall management procedure
robust to the errors on the physical model in the Tracker.
Incidentally, the smallest average deviations are achieved by
N15 when equipment losses are fully neglected, although the
model in P15 seems more realistic. Indeed, both models are
approximations, and one is not theoretically better than the
other. When observing the generated profits J , P15 and N15
achieve the highest profits. This is not surprising, since the
MP solutions were always optimal (for the conceptual model),
thus, given they are nearly feasible in P15 and N15, they are
probably close to the real feasible optima.

Figure 3 illustrates the impact of the model approximation in
setting PP on the day where we observed the highest deviation.
Figure on the left depicts the battery state of charge in the
optimal MP solution socopt (in red) and the observed profile
socreal (in blue). Figure on the right depicts the production
plan u in the MP optimal solution uopt (in red) and the
observed profile ureal (in blue). The engagement d is depicted
in purple and the tolerance range in green.
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Fig. 3. Profiles of state of charge (left) and production plan (right) in the MP
optimal solution (red) and as observed (blue) for setting PP.

The state of charge is under-estimated in the optimal MP
solution (on the left in red) and the battery actually reaches
it maximal capacity more than 1 hour before than expected.
However the error does not exceed 12% of the battery capacity
at any time. Observing the output power u (on the right), the
absolute error oscillates between 0 and 1kW, and is thus clearly
inside the tolerance range [−50kW, 50kW ].

Finally, we also experimented with a higher recomputation
frequency, from 15 to 5 minutes, but we did not observe a
significant improvement of the results.



C. Comparing the optimization techniques

Our second experiment compares the solutions of MP and
GA, in order to evaluate the benefits of a finer model (using
the simulation-based GA) or of a better guided optimization
strategy (using MP). Two implementations of the Tracker, with
MP and with GA, are provided. For a fair comparison, we first
use the same engagement profile, obtained with GA. The MP
Tracker is run in the standard setting P15, i.e. updating the
production control every 15 minutes. We evaluate the solution
in the reference model after applying the control through the
PMS. Because, GA solutions are feasible for the reference
model, since it uses the same simulator, it is not required to
update the solution periodically, thus GA is run only once
at midnight as the engagement. The algorithm parameters
(maximum 10 generations and 400 individuals per generation)
were chosen empirically as the best balance between low
solution time and high profit.

First, the runtime of MP Tracker is about 3.6s in average
with a standard deviation of 3.3s, while the runtime of GA
Tracker is about 251s with a standard deviation of 15.2s. The
MP Tracker is then about 70 times faster than GA Tracker,
but both are eligible for a use on site since 15 minutes are
allowed to the computation.
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Fig. 4. Daily profit over the 24 days.

Comparing the generated profits over the 24 instances, we
see on Figure 4 that the MP Tracker (JGA−MP in blue) is
always more profitable than the GA Tracker (JGA−GA in red)
up to 9.7% higher (about 110e). The average daily profits
are, respectively, 1006 and 975e, with a standard deviation of
156 and 136e. The difference is significant in practice and it
confirms our first analysis that a detailed model of the system
dynamics is not a requirement. This also highlights the benefit
of solving the problem at optimality since GA did not generate
the individuals correponding to the production plans obtained
with MP.

Finally, we observe on Figure 4, that higher profits were
obtained for 21 instances out of 24 when computing the
engagement, in the Predictor, also with an MP solver (see
configuration JMP−MP , in purple), but the difference with
JGA−MP is tight.

D. Worth of optimization

Finally, our third experiment evaluates the worth of applying
advanced optimization techniques compared to simplest BAU

strategies. We thus experimented the BAU strategy described
in Section III-C and observed the real production achieved
when applying this command through PMS. The generated
profits are depicted as JRB−RB (in grey) on Figure 4.

BAU generate profits slightly higher that GA on only 3
instances, where MP was significantly higher. On the 21 other
instances, GA and MP profits were up to 100 euros higher.

V. CONCLUSION

On our study case, the MP-based approach constantly
generated the highest profits – often significantly higher than
the two alternatives – in only few seconds of computation time.
It suggests that seeking for optimality is profitable, even when
considering a loose approximation of the system dynamics,
thanks in particular to the periodic recomputation of the
solutions. Because one main criticism of the MP approach is
to rely on an expensive proprietary solver, we should note that
open-source solvers could be used instead to compute optimal
solutions in much less time than the 15 minutes allowed.
Finally, because mathematical programming is flexible enough
to handle model variants and uncertain data, it could be
interesting to have the confirmation of these observations on
various microgrid study cases and, in the opposite case, to
understand the limits of the approach.
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