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ABSTRACT: It has been known for several decades that rubbers exhibit a hydrostatic pressure-temperature
superposition, interpreted by the free-volume theory. Moreover, our experimental results, on a filled rubber,
demonstrate a hydrostatic pressure-temperature superposition which is two orders of magnitude larger than the
one observed in pure rubbers. A new physico-mechanical model is proposed to account for the hydrostatic
pressure effect responsible for a local glass transition temperature shift. It is suggested that it comes from the
change of distances between aggregates. The predicted shift, given by the model, is found to be consistent with
experimental data.

1 INTRODUCTION

The addition of ”active” fillers -carbon black or silica-
in pure rubbers leads to a strong enhancement in me-
chanical properties (Bills & al. 1960). Reinforcement
goes beyond the mere increase in stiffness, showing
improvements in the elongation at break, hysteresis
and abrasion resistance. Hence, filled rubbers are of
prior importance for many industrial applications. In
some specific applications, the material is confined
between stiffer parts resulting in hydrostatic pressure,
generally excluded in modelling.

The hydrostatic pressure effect on mechanical
properties has been widely investigated in pure rub-
bers for the last 70 years. Measurements of stress re-
laxation modulus (Fillers & Tschoegl 1977), Young’s
modulus (Paterson 1964) or even dielectric proper-
ties (Cheng & al. 1999) under superposed hydro-
static pressure and temperature were performed us-
ing high pressure chambers. More recently, hydro-
static pressure effect was investigated through shear-
compression tests (Alkhader & al. 2012). Unani-
mously, experimental results show that glass transi-
tion temperature rises with hydrostatic pressure by
amounts varying from 0.15 to 0.3 K.MPa−1 depend-
ing on the material. These values are consistent with
theoretical predictions based on the free-volume the-
ory (Ferry & Stratton 1960). This effect will be re-
ferred as ”matrix pressure effect” in the following. To
our knowledge, hydrostatic pressure effect has never
been studied on filled rubbers.

In this paper, hydrostatic pressure effect on the
thermo-mechanical behaviour of filled rubbers is
shown to be two orders of magnitude greater than the

one observed in pure rubbers. Observations are de-
scribed under a physical framework allowing to de-
velop a new physico-mechanical model accounting
for local glass transition temperature.

2 MATERIAL AND TEST SAMPLE

The studied material is a poly(dimethylsiloxane-
co-diphenylsiloxane) rubber highly filled with sil-
ica nanoparticles. Based on Nuclear Magnetic Res-
onance (NMR) measurements, the molar proportion
of diphenylsiloxane groups is estimated at 5%. Clas-
sical Thermo-Gravimetric Analysis (TGA) does not
allow to scale the reinforcement due to a ceramic
production from polymer during thermal degrada-
tion. However, the mass proportion of fillers is esti-
mated at 30%. From Differential Scanning Calorime-
try (DSC) and Dynamic Thermo-Mechanical Anal-
ysis (DTMA), the glass transition temperature Tg is
found to be −115 ◦C.

Test samples, also known as poker-chip (Gent &
Lindley 1959), consist of a thin rubber disc bonded
between two alloy (Alumec79 ASTM 7022) cylin-
ders. A macroscopic confinement c is defined by
means of the disc height hd and the disc radius rd:

c =
rd

hd
(1)

3 CONFINED COMPRESSION EFFECT

3.1 Numerical study

Above a critical confinement c∗, stress is essen-
tially hydrostatic in samples under uniaxial loading
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Figure 1: Symmetry and boundary conditions.

(Lindsey 1967). This critical value was investigated
through a parametric study conducted in an in-house
Finite Element Analysis code (Z-set).

The numerical problem was modelled in an axi-
symmetric way [Fig. 1]: uniaxial compression sim-
ulations were performed by controlling the vertical
displacement uz. The material was modelled by a
quasi-incompressible neo-Hookean formalism where
the strain energy potential W (C10,Kv) depends re-
spectively on an elastic and a bulk modulus:

ρ0W (C10,Kv) =C10(I1−3)+KvU(J) (2)

where C10 ∼ 1 MPa, Kv ∼ 1 GPa, I1 is the first strain
invariant and U(J) = 1

2

[1
2(J

2−1)− log(J )
]

takes
into account the incompressibility effect. Besides, to
avoid volumetric locking and pressure oscillations, a
three-field mixed finite element formulation is used
(Al Akhrass & al. 2014).

Simulations were performed on ten numerical sam-
ples for a wide range of macroscopic confinements,
from 1 to 10. To analyse the state of stress, the triax-
iality ratio (Lemaitre & Chaboche 1988), defined by
the hydrostatic pressure pH and the Von Mises equiv-
alent stress σV M

eq , was computed:

χ =
pH

σV M
eq

(3)

with pH = −1
3Tr(σ) and σV M

eq =
(3

2σ
dev : σdev) 1

2 .
The following approximation is made. If the speci-
fied criterion χ > 1 is fulfilled, then the stress tensor
is assumed to be hydrostatic.

3.2 Numerical results

To compare all results, the volumetric fraction of hy-
drostatic state Vχ>1, i.e. the region of the numerical
sample verifying the criterion, is reported [Fig. 2].
The volumetric fraction increases towards 1. A crit-
ical macroscopic confinement c∗ = 4 seems to be a
relevant threshold, implying at least 80% of hydro-
static state in the material. Furthermore, a parabolic
pressure field along the radial direction ρ was seen.
The stress state is not hydrostatic on the free edges
because the material is not constrained in the radial
direction (Dorfmann & al. 2002). Therefore, on a suf-
ficiently confined sample, the total stress has a con-
tribution of more than 80% originating from a hydro-
static state, i.e. a compression load is equivalent to a
hydrostatic pressure test.

hydrostatic state

𝑐∗

Figure 2: Macroscopic confinement effect on the stress state.
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Figure 3: Experimental setup used for shear-compression tests.

4 PRESSURE EFFECT ON THE
THERMO-MECHANICAL BEHAVIOUR

4.1 Experimental setup

A macroscopic confinement of c = 5 was chosen,
such that stress is essentially hydrostatic in the test
sample. Shear tests were carried out at controlled tem-
perature T (−60 to 30 ◦C) and various static compres-
sion loads Fc (0 to 1200 N).

The experimental setup [Fig. 3] was designed to be
adapted in an Instron 8801 testing machine (±50 kN,
±75 mm). For symmetry reasons, two samples are
loaded simultaneously. The hydraulic cylinder dis-
placement, in the perpendicular direction, provides
a sinusoidal shear strain amplitude ∆γ . To limit
heat build-up due to the thermo-mechanical coupling
(Ovalle Rodas & al. 2014), frequency was kept to a
minimal value of 1 Hz. The axial spring ensures the
static compression load, leading to an average hydro-
static pressure:

pH =
Fc

πr2
d

(4)

Thus, the pressure effect on the thermo-mechanical
behaviour can be studied.

4.2 Experimental results

Shear hysteresis loops obtained for different applied
hydrostatic pressures are highlighted [Fig. 4a.]. Test



were performed at the same temperature and shear
amplitude (T = −15 ◦C,∆γ = 16%). It can be seen
that hydrostatic pressure has an increasing effect, even
at low values∼ 1 MPa, on the thermo-mechanical be-
haviour of the material: stiffness and dissipation.

The temperature effect on the shear mechanical
properties, at a constant hydrostatic pressure, is also
investigated. Temperature is seen as an influential pa-
rameter with the ability to soften stiffness and to de-
crease dissipation (Lion 1997).

From these results, both physical parameters, i.e.
hydrostatic pressure and temperature, are found to
have the same effect on the mechanical behaviour,
i.e. two different sets of parameters (p1

H ,T
1), (p2

H ,T
2)

could be found to exhibit an identical mechanical
behaviour [Fig. 4b.]. The existence of a hydrostatic
pressure-temperature equivalence is highlighted. Ac-
cording to the complete set of results, the order of
magnitude of the hydrostatic pressure effect is about
10 K.MPa−1. Besides, in an analogous study on an
pure polyurea (Alkhader & al. 2012), the hydrostatic
pressure effect was found to be much smaller, around
0.24 K.MPa−1, which is consistent with the afore-
mentioned matrix pressure effect existing in pure rub-
bers. Thus, the present study highlights the fillers ma-
jor role in the hydrostatic pressure effect.

5 MICRO-MECHANICAL APPROACH

5.1 Physico-mechanical model for filled rubbers

The next step is to understand, under a physical
framework, the hydrostatic pressure effect which was
experimentally brought to light, in order to integrate
its contribution into a micro-mechanical model, de-
scribed below.

The addition of fillers into a rubber matrix brings
outstanding enhancement in the mechanical proper-
ties. This phenomenon is explained by the filler net-
work in which some polymer regions are confined
between neighbouring aggregates [Fig. 5]: far away
from the filler, the local behaviour is rubbery, simi-
lar to pure matrix; by contrast, in confined polymer
regions, a strong filler-matrix interaction constricting
the polymer to a glassy-like state, i.e. polymer chain
mobility reduction, has been demonstrated (Berriot &
al. 2002, Papon & al. 2012). As the glass transition
is related with an increase of mobility, confined poly-
mer regions, also called ”glassy bridges”, are charac-
terized by a local glass transition temperature T local

g .
The glassy bridges play a major role in the local be-
haviour and lead to high dynamics heterogeneities in
the filled rubber (Montes & al. 2003), represented by
a glass transition temperature distribution.

A local continuum constitutive equation was for-
mulated. Two main features characterize this model.
Firstly, the polymer chain mobility reduction due to
the filler-matrix interaction is modelled by a glass
transition temperature gradient [Fig. 5]. T local

g (h) re-
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Figure 5: Schematic view of dynamics heterogeneities in filled
rubbers.

produces the local glass transition temperature, within
the neighbouring aggregates, according to the bridge
height h (Long & Lequeux 2001):

T local
g (h) = T bulk

g

(
1+

4δ

h

)
(5)

where T bulk
g is the pure matrix glass transition tem-

perature and δ is a characteristic length of filler-
matrix interaction. Locally, the glass transition takes
place at temperatures much higher than in the pure
matrix, which reflects the confinement effect.

Secondly, deformation induces an enhancement of
mobility of the amorphous macromolecules (Loo &
al. 2000). Thus, the stress affects the chain conforma-
tions, modifying the polymer structure from glassy to
rubbery (Robertson 1966). The pressure dependence
commonly follows the aforementioned matrix pres-
sure effect deduced from the free-volume theory:

∂Tg

∂ p
=

α

K
(6)

Besides, shear stress is proven to affect the glassy
polymer dynamic (Lee & Ediger 2010) but no univer-
sal formulation for the deviatoric component has been
proposed yet. In polymers, the yield stress is known
to obey the pressure modified Von Mises expression
(Rottler & Robbins 2001) normalized by the mate-
rial parameter K ∼ 1 MPa.K−1 (Ward 1983). Yield-
ing is related to an increase of the molecular motion,
as well as a decrease of pressure. Thus, in order to
take into account volumetric and deviatoric stress, (6)
is extended to a general stress expression described
with respect to an unstretched state:

T local
g (σ) = T 0

g −
σV M

eq −α p
K

(7)

where T 0
g is the glass transition temperature limit

without solicitation. T local
g (σ) allows to reproduce

a glassy-to-rubbery flow-like transition, i.e. a stress
softening.

These two contributions on the local glass transi-
tion temperature, i.e. the bridge height (5) and the lo-
cal stress (7), are considered as additive (Colombo &
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Figure 4: Shear thermo-mechanical response: a) Pressure influence and b) mechanical superposition obtained for two sets (pH ,T ).

al. 2015). Thus, a unique glass transition temperature
function reflecting the local behaviour is written:

T local
g (h,σ) = T bulk

g

(
1+

4δ

h

)
︸ ︷︷ ︸

confinement

−
σV M

eq (h)−α p(h)
K︸ ︷︷ ︸

stress softening

(8)

5.2 Pressure effect on local behaviour

For the following, it will be assumed that filled rubber
reached the percolation threshold. In this case, the hy-
drostatic pressure is carried out by the filler network
[Fig. 6]. Thus, the bridge height, called h(pH) in the
following, decreases with the hydrostatic pressure.

In order to take into account the hydrostatic pres-
sure dependency, (8) is rewritten as:

T local
g (h(pH),σ) = T bulk

g

(
1+

4δ

h(pH)

)
︸ ︷︷ ︸

T a
g

(9)

−
σV M

eq (h(pH))−α p(h(pH))

K︸ ︷︷ ︸
T b

g

+
α

K
pH︸ ︷︷ ︸

T c
g

Total hydrostatic pressure effect is thus given by
three contributions. Their derivative versus hydro-
static pressure gives the amplitude of the hydrostatic
pressure effect on the local glass transition tempera-
ture for each mechanism:

∂T local
g

∂ pH
=

∂T a
g

∂ pH
−

∂T b
g

∂ pH
+

∂T c
g

∂ pH
(10)

where
∂T a

g
∂ pH

is the contribution on local confinement
caused by the bridge height decreasing due to the

neighbouring aggregates closer approach,
∂T b

g
∂ pH

is the
contribution on the local stress caused by a stress dis-
ruption in the glassy bridge due to high confinement
and

∂T c
g

∂ pH
is the aforementioned matrix pressure effect.

The first two contributions are described in the fol-
lowing subsections. The major contribution will be
identified.

5.2.1 Contribution on local confinement
A theoretical treatment allows to predict the pressure
effect on local confinement. First, the bridge height is
assumed to depend on the initial bridge height h0 and
the local strain:

h(pH) = h0(1− ε
local
zz ) = h0(1−

σ local
zz

Kv
) (11)

where ε local
zz and σ local

zz are respectively the local strain
and stress in the bridge direction.

When the hydrostatic pressure acts on the filler net-
work, the force transmitted through the aggregate Fz
can be expressed at the aggregate scale according to
the percolation hypothesis:

Fz ' πR2
ag pH (12)

and at the bridge scale:

Fz ' πR2
cσ

local
zz with R2

c ' Rph0 (13)

where Rag,Rp,Rc are respectively the aggregate ra-
dius, the filler radius and the size of the aforemen-
tioned Tg gradient.

Combining (9-T a
g , 11, 12) and (13) yields:

T a
g = T bulk

g (1+
4δ

h0
.

1

1− R2
ag

KvRph0
pH

) (14)

Assuming that
R2

ag
KvRph0

pH � 1, one obtains:

∂T a
g

∂ pH
'

4T bulk
g δR2

ag

KvRph2
0

(15)

which is analytically expressed as a decreasing func-
tion of the square of the initial bridge height [Fig. 9].
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Figure 6: Geometrical parameters and simulated part.

5.2.2 Contribution on local stress
On the other side, the pressure effect on local stress is
quantified by means of a Z-set analysis. This contri-
bution is approximated to the rate of change of (9-T b

g )
with respect to the non-pressurized state:

∂T b
g

∂ pH
'

σV M
eq (h(pH))−α p(h(pH))

K pH
(16)

It is computed in the confined region through a para-
metric study on the initial bridge height. It consists
in simulating the closer approach of two aggregates
due to hydrostatic pressure [Fig. 6] to quantify the
stress disruption effect in the confined region. The
numerical model is axi-symmetric: uniaxial compres-
sion simulations were performed by controlling the
hydrostatic pressure acting on the aggregates. In a
similar way as the initial numerical study, the ma-
trix is modelled by a neo-Hookean formalism and the
elastic modulus C10 dependence is studied. Besides,
the filler is assumed to be a stiffer elastic material
(E = 70 GPa,ν = 0.17).

For an infinite bridge height h0 → ∞, i.e. no con-
finement, a homogeneous uniaxial compression state
is expected everywhere in the matrix:

σ =

[0 0 0
0 0 0
0 0 −σzz

]
⇒
{

p = σzz
3

σV M
eq = σzz

(17)

In this limit case, the asymptotic behaviour is thus

found to be:
∂T b

g
∂ pH
→ 2.7 K.MPa−1 [Fig. 9].

For bridges of interest, i.e. 0.75 to 8 nm, the triax-
iality ratio [Fig. 7] never exceeds 1

α
in confined re-

gions, i.e. ρ < Rp, further:

χ <
1
α
⇒ σ

V M
eq −α p > 0 (18)

which induces a negative contribution of the local
stress on the total hydrostatic pressure effect (10).
Furthermore, this quantity is found to be strictly in-
dependent of the elastic modulus, i.e. rubbery-like or
glassy-like.

Figure 7: Triaxiality ratio in the confined regions (bridges).

ℎ(𝑝$)
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Figure 8: Unixial stress field σzz for h0 = 2 nm,Rp = 5nm.

The uniaxial stress field [Fig. 8] obtained for an
initial glassy bridge h0 = 2nm allows to clearly em-
phasize the local stress disruption in the confined re-
gion which is responsible for this pressure effect. By
contrast, a homogeneous uniaxial compression state is
observed if sufficiently far away from the bridge area,
i.e. ρ > Rp. Numerical results [Fig. 9] show a sharp
increase of the pressure effect on the local stress for
very tiny bridges (h0 < 1.5 nm). For higher bridges,
a slight decrease, consistent with the aforementioned
asymptotic behaviour (17), is observed.

5.2.3 Discussion
From a micro-mechanics framework, hydrostatic
pressure brings a contribution on local confinement,
on local stress and on the matrix. All these contri-
butions were quantified [Fig. 9]. It clearly appears
that the local confinement effect, due to the closer ap-
proach of aggregates, dominates.

The total hydrostatic pressure effect (10) accounts
for the local glass transition temperature shift ex-
pected for filled rubbers [Fig. 9]. A local shift of about
10 K.MPa−1 is predicted for intermediate bridge
heights 3 nm ≤ h ≤ 4 nm, which is consistent with
our experimental observations. This hydrostatic pres-
sure effect is about two orders of magnitude larger
than the one measured in pure rubbers.

From a physical framework, the hydrostatic pres-
sure influences the initial filler network by decreas-
ing the bridge heights (closer approach of aggre-
gates). It leads to a significant shift of the local be-



Figure 9: Total hydrostatic pressure effect on the local glass tran-
sition temperature with respect to the initial bridge height.

haviour T local
g for shorter bridges. This mechanism

drives the hydrostatic pressure-temperature superpo-
sition observed on the real sample. Finally, in order
to describe quantitatively the macroscopic behaviour
of the material, a scale-up has to be done, which is in
progress.

6 CONCLUSIONS

In order to study the hydrostatic pressure effect on
the thermo-mechanical behaviour of filled rubbers,
an experimental setup was designed. Shear mechan-
ical properties have been measured under superposed
hydrostatic pressure and temperature. A hydrostatic
pressure-temperature superposition is highlighted.
The amplitude of this effect is about 10 K.MPa−1,
which is two orders of magnitude larger than the one
observed in pure rubbers.

From a micro-mechanics framework, the local
glass transition temperature shift involved by the hy-
drostatic pressure -through local confinement, local
stress and the matrix- has been discussed. Our re-
sults proved that the local confinement effect, due
to the closer approach of aggregates, is essentially
responsible for this local shift. More importantly,
this predicted shift is consistent with our experimen-
tal results, which explains the observed hydrostatic
pressure-temperature superposition.
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