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ABSTRACT

This paper addresses the problem of labeled data insufficiency in
neural network training for semantic segmentation of color-stained
histological images acquired via Whole Slide Imaging. It proposes
an efficient image augmentation method to alleviate the demand for a
large amount of labeled data and improve the network’s generaliza-
tion capacity. Typical image augmentation in bioimaging involves
geometric transformation. Here, we propose a new image augmen-
tation technique by combining the structure of one image with the
color appearance of another image to construct augmented images
on-the-fly for each training iteration. We show that it improves per-
formance in the segmentation of histological images of human skin,
and also offers better results when combined with geometric trans-
formation.

Index Terms— color-stained slide, deep learning, segmenta-
tion, color transfer, histopathology, Fontana Masson, skin.

1. INTRODUCTION

Histological images of plant and animal cell tissues allow us to ex-
plore their structures and functions. Image segmentation is a crucial
first step in many image analysis tasks, especially in histopathology,
and aims at identifying accurately the presence, number, distribution,
size, or morphology of certain tissue features (specific cells, nuclei,
...). In the dermatological field, it is used in a range of applications
including melanoma detection and the assessment of histopatholog-
ical damage of the skin [1]. With the recent advent of digital and
whole slide imaging, the number and the size of acquired images
are growing up and there is a need of finding ways to also adapt the
throughput of image quantification.

A review of segmentation methods of color-stained histological
images of pathological skin (lymphoma) has been presented in [2],
which covers various methods based on regions, thresholding, K-
means, graph-cut, and watershed transform. Recent advances in
deep learning have enabled automatic methods for image segmen-
tation using convolutional neural networks (CNN) [3–5]. By ex-
tending CNN to fully convolutional networks (FCN), we can train
a network that segments arbitrary-sized images without redundant
computation [6–8]. Nevertheless, these deep neural networks usu-
ally require large training sets to achieve an acceptable performance,
while the generation of the segmentation ground-truth necessary for
supervised learning is very time-consuming. Another challenge in
the segmentation of histological images using deep learning is that
the network generalization could be influenced by the complex tissue
structures and inconsistencies in sample preparation [9].

The aim of this paper is to show that a deep neural network
can learn a satisfactory segmentation model with relatively few data,
thanks to a convenient image augmentation method. This is obtained
by using an image augmentation technique that exploits the color
transformation between different images, with a specific attention on
the stained components within each sample. This allows the network
to learn invariance to such variation, without the need to see these
transformations in the labeled data [10], which is particularly impor-
tant in the segmentation of histological images of human skin since
the color variation is one of the most common variations [11, 12]. It
is shown below that such transformations can be efficiently imple-
mented.

To augment the available labeled data for training, some people
make use of simple geometric transformation such as image rotation
and translation for achieving the invariance to irrelevant spatial fac-
tors [5, 6], while others explore the combination of geometric and
photometric augmentation techniques to increase the robustness to
differing illumination color and intensity [13]. In this paper, we pro-
pose a novel image augmentation method working in the color space
of the images, and combine it with existing geometric augmentation
techniques for increased variation generation. We demonstrate fast
and accurate results on histological images of human skin and we
provide a direct comparison with other methods.

The presented work contributions are twofold: (1) It proposes a
new image augmentation method adapted to the histological images
with various color appearances; (2) Experimental results illustrate
the good performance of the proposed method, which outperforms
traditional ones in deep learning frameworks.

2. MATERIAL

2.1. Histological image of human skin

Skin is an epithelial tissue which possesses a specific layered struc-
ture: a layer of stratum corneum (SC) located on the top of a layer of
Living Epidermis (LE), and the dermis (see in Fig 1). Besides, the
three interfaces between these layers are respectively named Surface,
Internal Epidermis Boundary (IEB), and Dermal-Epidermal Junction
(DEJ).

In this paper we deal with histological images of normal and le-
sional human skin (Fontana Masson staining). Our aim is to segment
stratum corneum (labeled SC) and living epidermis (labeled LE): for
that purpose, other components out of SC and LE were labeled as
Background (BG).



Table 1: Description of databases

Database Number Image size in pixels Memory
Database1 76 0.5× 106 - 1.6× 107 835 Mb
Database2 52 0.7× 106 - 1.1× 107 420 Mb

Fig. 1: Histological image of lesional human skin (with high DEJ
structural deformations) showing its main compartments and corre-
sponding boundaries.

2.2. Database description

In order to test the generalization capabilities of different models,
and in particular the model using the proposed color augmenta-
tion method, two databases have been collected. The first one,
Database1 (76 images), is used for network training. It contains
images from two clinical studies including paired lesional and non-
lesional samples. Among the 76 images in Database1, we randomly
selected 35 images for training (26 images) and validation (9 im-
ages), while the remaining images (41) are used for testing. More-
over, in order to assure the independence of images from different
subsets, images from the same histological samples were distributed
to the same subset since they have very similar appearances.

The second one, Database2 (52 images), is used to evaluate the
network generalization capacity. It contains images coming from a
third clinical study, which incorporates different color appearances
compared to Database1. Table 1 summarizes the characteristics of
these two databases.

3. METHOD

The field of data augmentation is not new, and various data augmen-
tation techniques have been applied to specific problems. In image
classification, data augmentation methods artificially create training
images by altering available images [14]. Previous works [15–17]
have shown its effectiveness to reduce overfitting, thus increasing the
quality of generalization on new data. As data augmentation should
be adapted to the intrinsic nature of training samples, the proposed
image augmentation method focus on the color transformation of the
stained components contained in different histological images.

The main idea of color augmentation, inspired by Reinhard [18],
is to impose one image’s color characteristics on another using a sta-
tistical analysis. In our method, instead of transferring the color of
the whole image, the transformation is limited to the stained com-
ponents in the histological images. Such transformation should aug-
ment the color variations of training images used in the training pro-
cess. Based on these augmented images, the neural network’s per-
formance has been largely improved on the histological images of
human skin from outside the training set, where various color ap-
pearances are present.

3.1. Lab color space

The CIE-Lab color space endows the color space with a perceptu-
ally meaningful measure of Euclidean distance as color similarity,
and it is related to the RGB color space through a complex trans-
formation equation [19]. In RGB color space, the color information
is separated into three channels but the same three channels also en-
code brightness information. On the contrary, in Lab color space, the
lightness channel L is independent of color information and only en-
codes brightness, while the other two channels are chromatic yellow-
blue and red-green opponent channels.

Another advantage of Lab color space is that the selection of
stained components can be achieved by a simple thresholding oper-
ation in the lightness channel. According to the Beer-Lambert law
mentioned in [12], the transmission of light through a material can
be modeled as

I = I0e
−αcx (1)

where I0 is the intensity of the incident light, I is the intensity of
light after passing through the medium, α is the absorption coeffi-
cient, c the concentration of absorbing substance, and x the distance
traveled through the medium. α and x are assumed to be constant
for a specimen and a given stain, while c can vary between different
images and within the same image. Thus, in the histological images,
the principal stained components with a large concentration of ab-
sorbing substance should have a lower intensity compared to other
parts where fewer or no absorbing substance is present. In the Lab
color space, as the brightness information is encoded in the L chan-
nel, these components can be extracted by selecting the pixels such
that their L channel values are lower than a threshold value (set as
0.86× Lh in our work, with Lh being the highest possible value of
the L channel).

3.2. Color transfer

In the area of automatic image analysis, several works have been
proposed to address the problem of stain inconsistency by pre-
processing images using stain normalization techniques, in which
all images from a dataset are mapped to a user-selected reference
image [11, 20, 21]. As this method is very sensitive to the choice
of reference image, others proposed to normalize the stains in an
adversarial frameworks [22], which eliminates the need for an expert
to pick a representative reference image [23, 24].

In this work, we propose a stain-focused image augmentation
technique to augment training images using color -matching. The
color variation between different histological images mainly comes
from the stains, while the background remains bright (see for images
(a), (b) and (d) in Fig 2). Thus, the color transformation should be
applied to the stains rather than the whole image. With this method,
we aim to transfer the color appearance of a histological image to-
wards another one without modifying the background. More specif-
ically, for each training image, a target image is randomly selected
from the training set at each iteration, and an augmented image is
generated through a color transfer defined as below:

Ctransferred = Coriginal − Coriginal + C target (2)

where C is the mean of channel C calculated over the principal
stained components within an image. This translation is applied to
each channel of the image. Using this image augmentation tech-
nique, the augmented image takes the color appearance from the tar-
get image while its structure is the same as in the original image (see
Fig 2).



(a) Original image (b) Target image (c) Augmented image

(d) Target image (e) Augmented image

Fig. 2: Examples of two augmented images (c and e) obtained from
an original image (a) using two different target images (b and d).
This augmentation is applied to crops of size 512 × 512 in training.

3.3. Data preparation and preprocessing

To use the data augmentation method proposed in Section 3, im-
ages in RGB color space are transformed into Lab color space for
augmentation using the color transfer. Besides, we use a geodesic
reconstruction to cope with non-local information within fully con-
volutional networks [25]. Then, as the histological images in the
datasets are of huge yet variable sizes, crops of size 512 × 512 are
extracted from them and used for training (158 crops) and validation
(53). When necessary in an experiment, image augmentation meth-
ods are applied to these crops on-the-fly during training. Moreover,
crops containing only the background are removed since no interface
appears in them.

3.4. Network training

In this paper, we consider a U-Net architecture [8], a typical
FCN used in biomedical imaging, which consists of an "encoding-
decoding" architecture for extracting high-level information without
losing the object details. Here, the window size is 3 × 3 for convo-
lution and 2 × 2 for max-pooling and upsampling. In our network,
four layers of downsampling/upsampling are contained in the encod-
ing/decoding path, with the output number of filters being 16 after
the first convolution layer. At the end of the decoding path, a 1x1
convolution with the sigmoid activation is applied to have a channel
dimension equaling the number of classes in the segmentation task.
Thus, three probability maps of the same spatial dimensions as the
input image is obtained at the output of the network.

Besides the network’s architecture, another essential element in
deep learning is the loss function. Inspired by [26], who proposed
a differentiable version of the Jaccard distance to measure the dis-
similarity between two sets, we encode the ground truth into one-hot
vectors and define the loss function as below:

LJ = 1−
∑
i,j,k(tijkpijk)∑

i,j,k t
2
ijk +

∑
i,j,k p

2
ijk −

∑
i,j,k(tijkpijk)

(3)

where tijk = 1 if the true class of pixel Iij in the input image is k
(tijk = 0 otherwise), and pijk represents an estimated probability
that this pixel belongs to class k.

3.5. Post-processing

After training the network on crops of size 512× 512, we can apply
it to images of arbitrary size as long as they can be passed on GPU

Table 2: Training results on Database1

Method Time Best train loss Best val loss
No aug 14 mins 0.0060 0.0307

Geo 44 mins 0.0133 0.0243
Color 22 mins 0.0114 0.0272
Mix 58 mins 0.0178 0.0211

for network prediction. Another constraint on the image size is that
it has to be the multiples of 16 (24) since four 2 × 2 max-pooling
layers are included in the network. Then, as proposed in [25], the
following post-processing is applied. For the stratum corneum and
the living epidermis, only the largest connected component is kept;
for the background, the connected components touching the top or
the bottom of the image are kept. Based on these components, the
final segmentation result is obtained through a watershed transform.

4. EXPERIMENTAL RESULTS

To illustrate the performance of the proposed augmentation method,
we trained four networks with different methods on Database1. Sev-
eral experiments were conducted to define the parameters for geo-
metric transformation: 5 degrees of rotation range, 0.1 total width
for horizontal shift range, 0.1 total height for vertical shift range,
random horizontal flip, and interpolated by nearest value. ’No aug’
refers to no augmentation; ’Geo’ refers to augmentation with geo-
metric transformation; ’Color’ refers to augmentation with the pro-
posed color transfer and ’Mix’ combines our color transfer with geo-
metric transformation to augment the variability of the labeled data.

The networks were implemented using Keras with TensorFlow
backend and were trained on an NVIDIA Titan-X GPU of 11 Gb
memory. All networks were trained using the same architecture and
loss function. Besides, we used Adadelta optimizer with the default
parameters proposed by [27], during 200 epochs and patience of 50.
For the learning process, online learning (one training sample for
each iteration) was applied while the augmented images were con-
structed on-the-fly.

4.1. Results on the test set from Database1 (41 images)

In Table 2, we present the best training and validation losses ob-
tained during the training process. Convergence seems satisfactory
in most cases. However, a problem of overfitting appeared in the un-
augmented training process. Data augmentation has mitigated over-
fitting, while the mixed augmentation achieved the best validation
loss with only a tiny increase compared to the training loss.

For evaluating the network’s performance on the test set, we cal-
culated a Jaccard index [28] for each class, also known as the Inter-
section over Union (IoU), which is commonly used in the evaluation
of medical image segmentation. Besides, as histological images of
human skin possess a specific layered structure, correct segmenta-
tion results should contain three interfaces as shown in Fig 1. There-
fore, for each interface within a slide, we can calculate a mean spa-
tial distance D between the interface in the ground truth Igt and the
interface predicted by the network Ipre, defined as:

D =
1

2

 1

|Igt|
∑

p∈Ipre

d(p, Igt) +
1

|Ipre|
∑
p∈Igt

d(p, Ipre)

 (4)

where d(·) is the Euclidean distance calculated in pixels. Finally, for



Fig. 3: Three examples of segmentation results on Database2 obtained with networks trained with various image augmentation techniques
(BG in black, SC in gray, and LE in white). From left to right: original image, ground-truth, no augmentation, geometric transformation,
color transfer, combined augmentation.

Table 3: Test results on Database1

Method Jaccard index (per class) D (per interface)
BG SC LE Surface IEB DEJ

No aug 0.97 0.77 0.87 54.6 311.5 7.9
Geo 0.99 0.82 0.89 16.3 30.9 5.1

Color 0.99 0.89 0.91 2.1 9.7 4.3
Mix 0.99 0.89 0.92 2.0 9.7 3.6

each interface, a mean distance averaged over all the test set is cal-
culated to determine the segmentation’s quality. In the case where a
certain interface is not detected in the segmentation result, the corre-
sponding mean distance would take the value of the image diagonal
as a penalization.

Table 3 presents the test results on the test set from Database1.
While the Jaccard index of the BG class is equally improved using
different data augmentation techniques, the networks trained with
color transfer give better results for the Jaccard indexes of SC and LE
compared to the un-augmented training and the augmented training
using geometric transformation.

In terms of mean distances, networks trained with data augmen-
tation introduce a great improvement compared to the un-augmented
training. Moreover, networks trained with the proposed method of
color augmentation give better results than geometric transforma-
tion, while the best result is provided by the combination of these
two augmentation techniques.

4.2. Results on Database2 used as test set (52 images)

In the real application, the trained networks would be applied to im-
ages from different studies. In order to verify the networks gener-
alization, we applied them to Database2, which consists of images
coming from a different study than Database1. Fig 3 shows exam-
ples of segmentation results on this database.

Quantitative evaluation results are given in Table 4. Firstly, the
mean distance of IEB detected by the un-augmented training net-
work is much larger than the other networks, which is a consequence
of the segmentation results where no corresponding IEB is present
(see the third image of the first line in Fig 3). Secondly, an improve-
ment by a large margin has been achieved by networks using the

Table 4: Test results on Database2

Method Jaccard index (per class) D (per interface)
BG SC LE Surface IEB DEJ

No aug 0.92 0.47 0.70 156.6 992.5 58.5
Geo 0.95 0.74 0.70 19.2 321.5 72.8

Color 0.99 0.91 0.91 1.8 9.0 5.1
Mix 0.99 0.92 0.92 1.4 8.0 4.2

color transfer, especially in the aspect of mean distances. The per-
formance difference between the network using only geometric data
augmentation and the networks using color augmentation is much
larger in the case of Database2. This shows that the proposed method
brings a welcome generalization capacity to the models dealing with
this kind of histological data. Last but not least, the best result on
Database2 is given by the network trained with the combined aug-
mentation, which is also true for Database1.

5. CONCLUSIONS

We present an image augmentation method to automatically in-
crease the color appearance variety of color-stained histological
images used for neural network training, which yields improved
performance in comparison to a typical augmentation technique. We
evaluated the networks trained with various methods on histological
images of human skin, where the color transformation is one of the
most important variations between different images. By applying the
networks to a generalization database containing histological images
coming from a different study, a satisfactory result was obtained by
using our method.

The main constraint with our algorithm is that its performance is
very dependent on the color variety existing in the training set, which
could be insufficient to cover all the variations observed in the real
application. We consider extending our method of color augmenta-
tion with elastic deformation [8] to increase the appearance variety
existing in the training images. Additional future work may include
combining image augmentation with stain normalization techniques,
in which a generative adversarial network, such as [24,29,30], could
be used to automatize the whole process.
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[5] D. Cireşan, A. Giusti, L. Gambardella, and J. Schmidhuber,
“Deep neural networks segment neuronal membranes in elec-
tron microscopy images,” in Proceedings NIPS’12, USA,
2012, Curran Associates Inc.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
tional networks for semantic segmentation,” CoRR, vol.
abs/1411.4038, 2014.

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet:
A deep convolutional encoder-decoder architecture for image
segmentation,” CoRR, vol. abs/1511.00561, 2015.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” in MIC-
CAI (3). 2015, vol. 9351 of Lecture Notes in Computer Science,
pp. 234–241, Springer.

[9] D. Komura and S. Ishikawa, “Machine learning methods for
histopathological image analysis,” CoRR, vol. abs/1709.00786,
2017.

[10] H. Zhang, M. Cisse, Y. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in ICLR, 2018.

[11] D. Magee, D. Treanor, D. Crellin, M. Shires, K. Smith,
K. Mohee, and P. Quirke, “Colour normalisation in digital
histopathology images,” in MICCAI Workshop, 2009.

[12] J. Vicory, H. D. Couture, N. E. Thomas, D. Borland, J. S. Mar-
ron, J. T. Woosley, and M. Niethammer, “Appearance normal-
ization of histology slides,” Comput Med Imaging Graph, vol.
43, pp. 89–98, 2015.

[13] S. Hauberg, O. Freifeld, A. Boesen Lindbo Larsen, J. Fisher,
and L. Kai Hansen, “Dreaming more data: Class-dependent
distributions over diffeomorphisms for learned data augmenta-
tion,” in AISTATS, 2016.

[14] Luis Perez and Jason Wang, “The effectiveness of data aug-
mentation in image classification using deep learning,” CoRR,
vol. abs/1712.04621, 2017.

[15] C. Nader Vasconcelos and B. Nader Vasconcelos, “Increas-
ing deep learning melanoma classification by classical and
expert knowledge based image transforms,” CoRR, vol.
abs/1702.07025, 2017.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
NIPS’12, USA, 2012, pp. 1097–1105, Curran Associates Inc.

[17] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang
Lu, and Zhi Jin, “Improved relation classification by deep
recurrent neural networks with data augmentation,” in Proc.
COLING 2016, 2016, pp. 1461–1470.

[18] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color
transfer between images,” IEEE Comput. Graph. Appl., vol.
21, no. 5, pp. 34–41, Sept. 2001.

[19] F. W. Billmeyer, “Color science: Concepts and methods, quan-
titative data and formulae, 2nd ed., by gunter wyszecki and w.
s. stiles, john wiley and sons, new york, 1982,” Color Research
& Application, vol. 8, no. 4, pp. 262–263.

[20] M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T.
Woosley, Xiaojun Guan, C. Schmitt, and N. E. Thomas, “A
method for normalizing histology slides for quantitative analy-
sis,” in ISBI 2009, June 2009, pp. 1107–1110.

[21] A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, “A
nonlinear mapping approach to stain normalization in digital
histopathology images using image-specific color deconvolu-
tion,” IEEE Transactions on Biomedical Engineering, vol. 61,
no. 6, pp. 1729–1738, June 2014.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative
adversarial nets,” in NIPS 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., pp.
2672–2680. Curran Associates, Inc., 2014.

[23] A. Bentaieb and G. Hamarneh, “Adversarial stain transfer for
histopathology image analysis,” IEEE Transactions on Medi-
cal Imaging, vol. 37, no. 3, pp. 792–802, March 2018.

[24] M. Tarek Shaban, Christoph Baur, Nassir Navab, and Shadi Al-
barqouni, “Staingan: Stain style transfer for digital histological
images,” CoRR, vol. abs/1804.01601, 2018.

[25] E. Decenciere, S. Velasco-Forero, F. Min, J. Chen, G. Gauthier
H. Burdin, B. Lay, T. Bornschloegl, and T. Baldeweck, “Deal-
ing with topological information within a fully convolutional
neural network,” in ACIVS, 2018.

[26] Yading Yuan, Ming Chao, and Yeh-Chi Lo, “Automatic skin
lesion segmentation using deep fully convolutional networks
with jaccard distance,” IEEE Transactions on Medical Imag-
ing, vol. 36, pp. 1876–1886, 2017.

[27] M. D. Zeiler, “Adadelta: An adaptive learning rate method,”
CoRR, vol. abs/1212.5701, 2012.

[28] Maxim Berman and Matthew B. Blaschko, “Optimization
of the jaccard index for image segmentation with the lovász
hinge,” CoRR, vol. abs/1705.08790, 2017.

[29] F. Mahmood, D. Borders, R. Chen, G. N. McKay, K. J. Sal-
imian, A. S. Baras, and N. J. Durr, “Deep adversarial training
for multi-organ nuclei segmentation in histopathology images,”
CoRR, vol. abs/1810.00236, 2018.

[30] L. Hou, A. Agarwal, D. Samaras, T. M. Kurç, R. R. Gupta, and
J. H. Saltz, “Unsupervised histopathology image synthesis,”
CoRR, vol. abs/1712.05021, 2017.


