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ABSTRACT

This paper presents a generic non-compact linear program-
ming approximation of the pump scheduling problem in
drinking water distribution networks. Instead of relying on
the binary on/off status of the pumps, the model draws
on the continuous duration of activation of pump combina-
tions, whose entire set is computed in a preprocessing step
by ignoring the pressure variation in the water tanks. Pre-
processing is accelerated using network partition and sym-
metry arguments. A combinatorial Benders decomposition-
based local search takes the approximated solution as input
to derive a feasible solution. Our experiments on two differ-
ent benchmark sets, with fixed- or variable-speed pumps,
show the accuracy of the approximated formulation and
the ability of the matheuristic to compute near-optimal
solutions in seconds, where concurrent, more specialized
approaches need minutes or hours.

1 INTRODUCTION

With the evolution of the power sector – because dynamic
pricing is a savings opportunity for water network opera-
tors [6] – together with advances in mixed-integer nonlinear
programming (MINLP), recent years have seen a renewed
interest in minimizing the pumping costs in drinking water
distribution networks.

The so-called pump scheduling problem is a hard com-
binatorial non-convex optimization problem. A variety of
solution approaches have been investigated, but they often
inefficiently deal with large or medium networks, and many
small instances are still open. A first category of approaches
(e.g. [6, 7, 10]) combine a numerical simulator, to compute
the feasible hydraulic balances, with an exact or heuristic
optimization algorithm, to schedule the pump operations
at minimum cost. Separating feasibility from optimization
makes the convergence of these approaches slow, resulting
in sub-optimal solutions. A second category of approaches
formulate the whole problem as a MINLP with simplified
hydraulic constraints, based either on piecewise-linear ap-
proximations (e.g. [8, 9]) or convex relaxations [2, 3, 13].
These approaches only apply to small networks, because
of the combinatorial nature of the models, and they may
return impracticable solutions. Instead, Burgschweiger et
al. [4] keep the non-convex constraints in their model but
relax the binary on/off pump activation variables by ag-
gregating them. This relaxation is only suitable to large
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city-wide networks where dozen of pumps are installed in
parallel in each pumping station.

In this paper, we are interested in tackling intermediate-
size networks with a mixed approach. We propose to ap-
proximate the MINLP model by decoupling feasibility and
optimization in the way of Dantzig-Wolfe decomposition:
by ignoring the pressure variation in the water tanks, we
can compute the feasible hydraulic balances for all pump
configurations as a preprocessing step, then derive a non-
compact linear programming (LP) model based on the
durations of activation of these configurations. We apply
network partition and symmetry arguments to acceler-
ate the preprocessing without hindering optimality. While
the approximated LP solutions may be accurate enough
to be practically implemented in pump controllers, we
also propose to derive feasible solutions for the original
MINLP with a local search approach, adapted from the
combinatorial Benders decomposition of Naoum-Sawaya et
al. [10]. Finally, we generalize the approach to networks
with variable-speed pumps or pressure-reducing valves,
which are often overlooked in the literature.

Experiments on the Poormond [6] and Van Zyl [17]
benchmark networks show the efficiency of our prepro-
cessing, the accuracy of our approximation, and the poten-
tial of the overall method to compute near-optimal solutions
within seconds where concurrent methods [3, 6, 8, 10, 13]
need minutes or hours to compute solutions of higher costs.

The paper is organized as follows: Section 2 defines the
problem and describes the standard MINLP formulation in
a simplified case. Section 3 presents our non-compact LP
formulation and preprocessing reduction techniques and
Section 4 the heuristic. Computational results are given in
Section 5 and conclusions and perspectives in Section 6.

2 PUMP SCHEDULING PROBLEM

This section describes the problem and a standard formu-
lation in the special case, for the sake of simplicity, of a
network equipped with unidirectional pipes, fixed-speed
pumps and no valves. Comprehensive formulations for more
general networks can be found e.g. in [3, 4].

As illustrated in Figure 1, a water distribution network
can be represented as a directed graph G = (J, L) with
sources JS , junctions JJ and tanks JT as nodes J , and
pipes LP and pumps K as arcs L. Given a time horizon
T of typically one day, the system dynamics are driven by

the water demand rate D ∈ RJJ×T
+ at the junctions and

are governed by complex hydraulic laws of conservation
of flow and pressure through the network. The problem
is to schedule the pump operations over T in order to
continuously satisfy the demand and the allowed filling
level of the tanks, while minimizing the operation cost.
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Figure 1: The Poormond network

A standard model is defined as follows, with x ∈ {0, 1}K×T

the binary on/off state of the pumps, q ∈ RL×T
+ the flow

rate through the arcs, and h ∈ RJ×T
+ the head at the nodes

(defined as the sum of pressure and elevation):

(P ) : min
x,q,h

∑
t∈T

∑
k∈K

Ct∆tΓk(xkt, qkt) (1)

s.t.
∑
ij∈L

qijt =
∑
ji∈L

qjit +Djt, t ∈ T , j ∈ JJ (2)

∑
ij∈L

qijt−
∑
ji∈L

qjit =
σj

∆t
(hjt−hjt−1), t ∈ T , j ∈ JT (3)

hj0 = H0
j , j ∈ JT (4)

Hmin
jt ≤ hjt ≤ Hmax

jt , t ∈ T , j ∈ J (5)

qkt ≤ Qmax
k xkt, t ∈ T , k ∈ K (6)

hit − hjt = Φij(qijt), t ∈ T , ij ∈ LP (7)

(hjt − hit −Ψij(qijt))xijt = 0, t ∈ T , ij ∈ K. (8)

In this model, the time horizon is discretized T = {1, . . . , T}
with a resolution ∆t of typically 1 hour in which the sys-
tem is assumed to operate in steady state. Constraints (2)
and (3) enforce the conservation of flow at junctions and
tanks. In (3), a tank j ∈ JT is assumed to be a vertical
cylinder of area σj which links the stored water volume
linearly to the head. Bounds on heads (4) and (5) depend
on the node types: for a tank j ∈ JT , they are given by the
minimum and maximum filling levels, and by the initial
level H0

j ; for a junction j ∈ JJ , H
min
jt stands for the mini-

mum pressure required to serve demand Djt; for a source
j ∈ JS , the head is fixed exogenously. Constraints (7) en-
force the head losses due to friction in pipes. For each
directed pipe ij ∈ Lp, the head loss can be accurately
approximated by a quadratic function Φij of the flow. Con-
straints (6) bound the flow through the pumps and bind
flow values and pump activation states. Constraints (8)
model the head increase through active pumps (if xijt = 1).
For each pump k ∈ K, head-flow coupling function Ψk can
be accurately fitted from operating points as a quadratic
function. Finally, the financial cost is mainly incurred by
purchasing electricity for pumping, see objective (1) with
Ct ≥ 0 the actualized electricity price on period t, and Γk

the power consumption of pump k defined by a linear curve
fit Γk(x, q) = λkx+ µkq.

Model (P ) is a non-convex MINLP which is often un-
tractable even for small networks. One option to solve (P )
is to decrease the resolution of the time discretization, and
thus the model size, but it has potential drawbacks: (1)
the steady-state assumption is less realistic over longer

time steps, (2) this artificially reduces the set of feasible
schedules, and (3) the optimum increases accordingly. We
investigate the opposite option, closer to the reality, by
allowing to operate pumps at any time.

3 AN APPROXIMATED
NON-COMPACT MODEL

We present a new approximated LP formulation of the
pump scheduling problem which separates the computation
of the hydraulic balances from the optimization of the
schedule. The description is first given in the context of
networks where fixed-speed pumps are the only operable
elements. We then generalize the definition to networks
with valves or variable-speed pumps.

3.1 Tank head approximation

Let A ⊆ L be the set of operable elements of the network,
and assume for now that A = K the set of fixed-speed
pumps. We call configuration any subset s ⊆ A, also de-
noted by its indicator function Is ∈ {0, 1}A defined by
Isa = 1 ⇔ a ∈ s. Configuration s is said active at time
t ∈ T if all its elements, and only these elements, are active
(e.g. pumps are on): xat = 1 ⇐⇒ a ∈ s.

Looking at model (P ), a configuration s ⊆ A can be
active at time t ∈ T only if, given the tank levels and the
allowed variation range, the pumps belonging to the config-
uration offer together enough power to increase head and
satisfy the demand rate Dt at all junctions. Because water
tanks are usually very large containers, the level variation
during 1 hour or less is relatively limited when compared
to their heights. We propose to ignore this variation and
assume that, at any tank j ∈ JT , the head is fixed to an ar-
bitrary value H∗

j during time step t. Under this assumption,
we can easily compute the hydraulic balance for supplying
demand Dt with configuration s. Indeed, by definition, it
is a solution (qt, ht) ∈ RL

+ × RJ
+ of the non-convex sys-

tem {(2), (5), (6), (7), (8)} restricted to a single time step
T = {t} with fixed pump states xat = Isa ∀a ∈ A and fixed
tank heads hjt = H∗

j ∀j ∈ JT . It is known [5, 6, 16] that
this equation system, that we denote Ft(I

s, H∗), has at
most one solution which can quickly be computed, in par-
ticular, by the Newton method [16] which is implemented
in the popular numerical simulator EPANET [11].

To estimate if a configuration s may supply demand rate
Dt, we thus propose to check the feasibility of Ft(I

s, H∗)
with tank heads arbitrarily fixed to their median values
H∗

j = (Hmin
j + Hmax

j )/2 for all j ∈ JT . If feasible and
(qs, hs) its solution, we compute the corresponding instan-
taneous power consumption P s

t =
∑

k∈s∩K Γk(1, q
s
kt) and

net fill rate Rs
jt =

∑
ij∈L qsijt −

∑
ji∈L qsjit at each tank

j ∈ JT . We denote by S∗
t = {s ⊆ A | Ft(I

s, H∗) ̸= ∅} the
set of configurations which may be active during time step
t ∈ T according to this assumption.

3.2 Configuration scheduling

Given these estimates, we reformulate the pump scheduling
problem as a configuration scheduling problem where, at
any time step t, any configuration s ∈ S∗

t is allowed to be
active for a duration 0 ≤ δst ≤ ∆t within the time step.
Modelling the system dynamics boils down to enforce tank
head conservation between consecutive time steps, then
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leads to the following linear program:

(P ∗) : min
δ,h

∑
t∈T

Ct

∑
s∈S∗

t

P s
t δst (1’)

s.t.
∑
s∈S∗

t

δst = ∆t, t ∈ T (9)

hjt−hjt−1 =
∑
s∈S∗

t

Rs
jt

σj
δst, t ∈ T , j ∈ JT (3’)

Hmin
jt ≤ hjt ≤ Hmax

jt , t ∈ T , j ∈ J. (5’)

In (P ∗), pumps can thus be operated during time steps.
Furthermore, (P ∗) is an approximation of (P ), and not
just a relaxation: an optimal configuration s at time t for
(P ) may not belong to S∗

t if it can indeed satisfy demand
Dt but not under the half-filled tanks assumption; if s does
belong to S∗

t , otherwise, then its actual consumption may
not be P s

t precisely.

3.3 Processing configurations

Computing one hydraulic balance with the Newton algo-
rithm is almost immediate, but the exponential number of
configurations to evaluate, in O(T2|A|), can make it com-
putationally challenging to build (P ∗). We propose two
techniques to significantly reduce the computation time
without hindering optimality.

First, we exploit the symmetries, which are frequent
in real data. For instance, when demand rate Dt ∈ RJJ

is constant at all junctions over a number of time steps,
then the configurations need to be evaluated on only one
time step, since if Dt = Dt′ , then S∗

t = S∗
t′ , P

s
t = P s

t′ and
Rs

t = Rs
t′ for all s ∈ S∗

t . Another symmetry arises when
pumps with identical characteristics are installed in parallel
at a pumping station (see e.g. pumps 1 and 2 in Figure 1).
Only one symmetric configuration is then evaluated.

Second, we exploit a partition of the network along the
tank nodes. Precisely, we consider the graph G′ = (J ′, L′)
obtained from G by duplicating each tank node j ∈ JT for
each incoming arc ij ∈ L as a new node denoted ji, i.e.
J ′ = J∪{ji | ij ∈ L, j ∈ JT } and L′ = L∪{iji | ij ∈ L, j ∈
JT } \ {ij ∈ L | j ∈ JT }. Once the heads at tanks j ∈ JT

(and at duplicate nodes ji) are fixed to their median values
H∗

j , the arc flow and node head values become independent
in each connected component of G′. We thus compute the
set of feasible configurations SC

t ⊆ A ∩ LC independently
for each connected component C = (JC , LC) ∈ CC(G′).
These sub-configurations are then combined by summa-

tion: for all s ⊆ A, P s
t =

∑
C∈CC(G′) P

s∩LC
t and Rs

jt =∑
C∈CC(G′) | j∈JC

Rs∩LC
jt for j ∈ JT . Hence, the network

partition reduces both the number of computations and
their complexity, being evaluated on smaller graphs. Fur-
thermore, the symmetry condition on constant demand
occurs with a higher frequency when regarding the subsets
of junctions independently.

3.4 Generalization

In most water distribution networks, not only pumps but
also valves V ⊆ L of different types can be operated. Like
fixed-speed pumps, gate valves and check valves have only
two possible states (close or open) and can be modeled in
(P ) with a binary variable for each time step (see e.g. [4]).

The definition of configuration can then be extended to
A = K ∪ V the set of pumps and valves, saying that a
valve is active if it is close. Furthermore, according to [12],
Ft(I

s, H∗) has still at most one solution.
The presence of variable-speed pumps or pressure-reducing

valves deserves more attention as they admit a continuous
range of operation modes. A variable-speed pump is either
off or operated within an allowed range of speed. For a
pressure-reducing valve, the amount of pressure reduction
is chosen within a given range and a binary state indicates
the direction of the flow (see e.g. [15]). As suggested in [5],
we propose to approximate the allowed operation range
of each pressure-reducing valve or variable-speed pump a
by a discrete set of sample values Aa. The set A is then
augmented with these sample values and a configuration is
now defined as s ⊆ A with |s∩Aa| ≤ 1. Once pump speeds
and pressure reductions are fixed in configuration s, the
Newton method can quickly solve Ft(I

s, H∗) as before.
Hence, the approximation model (P ∗) and configuration

processing scheme apply to a comprehensive class of water
networks. Still, the number of configurations to evaluate
grows exponentially with the number of operable elements,
unless the network partition separates these elements in
small sets so that the growth becomes near linear.

4 BENDERS DECOMPOSITION-
BASED HEURISTIC

This section describes an adaptation of the combinatorial
Benders decomposition of [10] to search, in the neighbor-
hood of the approximated solutions of (P ∗), feasible solu-
tions to the pump scheduling problem with pump aging
constraints.

4.1 Pump aging

While in practice pumps can be operated at any time,
too frequent switches are prohibited to prevent premature
pump aging. Ghaddar et al. [6] proposed to enforce the
following constraints in model (P ) for each pump k ∈ K:∑

t∈T

ykt ≤ N, (10)

ykt ≥ xkt − xk(t−1), t ∈ T (11)

xkt′ ≥ ykt, t ∈ T , t′ ∈ [t, t+ τ1] (12)

zkt ≥ xk(t−1) − xkt, t ∈ T (13)

xkt′ ≤ 1− zkt, t ∈ T , t′ ∈ [t, t+ τ0] (14)

with ykt (resp. zkt) a binary variable equal to 1 if pump
k ∈ K is switched on (resp. off) at time t, N the maximal
number of times a pump can be switched on, τ1 (resp. τ0)
the minimum continuous duration a pump is on (resp. off).

Naoum-Sawaya et al. [10] designed a combinatorial Ben-
ders decomposition approach, where the master integer
linear program denoted (M) is initialized with the ag-
ing constraints (10)-(14) alone. At each iteration, (M) re-
turns a candidate schedule X ∈ {0, 1}K×T to evaluate: the
EPANET simulator computes the hydraulic balance and
power consumption at each time step, sequentially. If a
hydraulic constraint is violated or if the partial cost exceeds
the best solution known so far at a given time t̄ ∈ T , then
the partial schedule up to time t̄ is discarded from the
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search by adding a no-good cut to master (M):

t̄∑
t=1

 ∑
k∈K

Xkt=0

xkt +
∑
k∈K

Xkt=1

(1− xkt)

 ≥ 1. (15)

The cut is also added with t̄ = T each time X proves to be
the new incumbent, i.e. an improving solution. The algo-
rithm stops when (M) becomes unfeasible. The algorithm
theoretically converges to a certified optimal schedule, but
its slow convergence requires to limit the computation time.

4.2 Truncated Benders decomposition

In the original method [10], the objective function of master
(M) is initialized to 0, then systematically redefined as the
minimal distance to the new incumbent, so as to search
the next candidate in a neighborhood. Thus, the algorithm
improves the solution progressively, as in a local search,
but it may start with a low quality solution. We propose to
adapt this algorithm to conduct it explicitly as a heuristic
to compute good solutions fast. To this end, we initialize the
algorithm with an optimal approximate solution δ∗ of (P ∗),
then adjust the distance function, i.e. the neighborhood,
iteratively until finding a feasible solution.

More precisely, we first compute the duration δ∗at =∑
s∈S∗

t
Isaδ

∗
st of activation of any pump or valve a ∈ A

during time step t ∈ T in the approximated solution. We
expect that, in an optimal schedule x, if δ∗at is close to
∆t then a is active during t (i.e. xat = 1), and that, if
δ∗at is close to 0 then a is inactive during t (i.e. xat =
0). Furthermore, we estimate that the daily duration of
activation

∑
t∈T xat∆t of a is close to

∑
t∈T δ∗at. Hence,

the minimization criterion of (M) is initialized to:∑
a∈A

∑
t∈T

(∆at −xat∆t)
2 +

∑
a∈A

(
∑
t∈T

∆at −
∑
t∈T

xat∆t)
2 (16)

with ∆at =

{
δ∗at if δ∗at ∈ {0,∆t}
αat otherwise,

and αat ∈ {0, δ∗at,∆t}

is a parameter of diversification which is initialized to δ∗at
to search first around the approximated solution of (P ∗),
and is then updated randomly at each iteration.

Another difference with [10], is that we generalize the
method to networks with variable-speed pumps or pressure-
reducing valves. In this context, we propose to use a non-
convex NLP solver instead of the EPANET simulator to
evaluate the candidate solutions X ∈ {0, 1}A×T by solv-
ing the slave program, i.e. the standard MINLP formula-
tion with the binary variables x fixed to values X. Note
here that, unlike for the processing of the configurations
(see Section 3.4), we do not extend the definition of the
set of operable elements A by discretizing the continuous
state range for variable-speed pumps and pressure-reducing
valves. Finally, because we run the Benders decomposition
as a heuristic, the slave problem is not required to be solved
at optimality. Hence, when the global optimization of the
restricted non-convex NLP is too time consuming, a fast
local optimization solver can be used instead.

5 COMPUTATIONAL RESULTS

We experimented the full heuristic, sketched in Algorithm 1,
on two benchmark sets: Poormond [6] and Van Zyl [17].
In this section, we evaluate the solutions in comparison

Algorithm 1: Heuristic for (P )

1 for C ∈ CC(G′), s ⊆ A ∩ LC , t ∈ T do
2 solve F(Is, H∗) with Newton method

3 compute P s
t , R

s
t by summation ∀s ∈ S∗

t , t ∈ T
4 solve LP (P ∗): get δ∗

5 initialize (M): min (16) s.t. (10)-(14)

6 while unfeasible do
7 solve MIQP (M): get X

8 simulate X with Newton method or NLP solver

9 if X feasible then
10 return X

11 else
12 add cut (15) to (M)

13 update (16)

Figure 2: The Van Zyl network

with the best solutions known so far for these instances
(see [3] for a comparative analysis of the results published
in [3, 6, 10, 13] on Poormond).

5.1 Experimental set-up

The Poormond network, depicted in Figure 1, was derived
by [6] from the real water distribution network of Rich-
mond, England. It is a medium-size network with 47 nodes
including 1 source and 5 tanks, 44 pipes, 7 fixed-speed
pumps and 4 gate valves. The benchmark set has five daily
instances, denoted from P21 to P25, each corresponding
to the real dynamic power tariff, available at [14], that
occurred each day in range May 21-25, 2013. The time
horizon is discretized in T = 48 time steps of ∆t = 1/2
hour each. Pumps are required to stay on for at least 1
hour (τ1 = 2), off for at least 1/2 hour (τ0 = 1), and to be
activated at most N = 6 times. The Van Zyl network [17],
depicted in Figure 2, is a fictive, small but complex network
with 1 source, 2 tanks, 15 pipes, 1 check valve and 3 pumps
assumed to be variable-speed pumps after [8]. We experi-
mented on this network using the same 5 tariff profiles set
at the same time resolution. We denote the five instances
Z21 to Z25 accordingly.

The computations were performed on a Xeon E5-2650V4
2.2GHz with 254 GB RAM. The processing of the configu-
rations, including the Newton method, was implemented in
Python, while the default LP solver and MINLP solver of
Gurobi 7.0.2 were run on one thread to solve (P ∗) and (M)
respectively. For the Van Zyl instances, the slave problems
of the Benders decomposition were solved with the default
non-convex NLP local solver of Bonmin [1]. The step to
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discretize the allowed pump speed range was empirically
fixed to |Aa| = 6.

The heuristic solutions are compared with the best solu-
tions returned by the branch-and-cut method of [3] running
in 1 hour under the same experimental set-up. In [3], a
MILP outer approximation of (P ) is solved with a LP-
branch and bound augmented with user cuts: at each inte-
ger node, the corresponding pump configuration is evalu-
ated as in the Benders decomposition here described, and
no-good cuts generated accordingly. To make the com-
parison of the results valid, we implemented the exact
evaluation procedure described in [3]. It includes, for the
Poormond instances, a primal heuristic which slightly ad-
justs the duration of activation of the pumps to correct
the small bound violations induced by the fixed time dis-
cretization.

5.2 Quality of the approximation

Figure 3 illustrates on instance P21, for each of the 7 pumps
of the Poormond network, the optimal pump schedule δ∗

returned by (P ∗) after recomputation of the real flows and
heads (in blue), and the feasible pump schedule returned
by our heuristic (in pink). Figure 4 depicts the water filling
profiles of the 5 tanks for both solutions and, below, the
dynamic electricity tariff profile.

Figure 3: Approximated and feasible schedules

We observe for the approximated solution on Figure 4
that the water levels in the tanks (the blue curves) only
slightly fall outside the allowed range (delimited by the
black lines) which indicates that the approximated pump
schedule is close to be practically feasible. When consid-
ering the modelling errors and the security margins and
ignoring the formal pump aging constraints, this approx-
imated schedule could probably directly be applied as a
command for the real-time control of the pumps.

The near feasibility of the solution attests the relevancy
of approximating the tank heads to their median values.

Figure 4: Tank levels in the approximated and fea-
sible solutions

Indeed, we observe an average relative deviation lower than
1% between the flow profiles delivered by the pumps, before
and after recomputation with the actual tank heads. This
confirms our hypothesis, we observed on a sample configu-
ration, that the error on the flow due to this approximation
is significant only when some tanks are empty while oth-
ers are full. Here, on the contrary and as expected, the
filling profiles of the 5 tanks all follow the same dynamic
generated by the variable electricity tariff.

Perhaps more surprising, we observe on Figure 3 that
the approximated and feasible pump schedules overlap ex-
tensively, from 77% for pump 5C to 100% for pump 1A,
which indicates that the approximated solution mostly sat-
isfies the fixed time discretization constraint of model (P )
and the pump aging constraints, although they are entirely
relaxed in (P ∗). Actually, because (P ∗) has comparatively
few constraints (O(T |J |)), a basic solution has then few
columns. In other words, only a fraction of the configu-
rations over all the time steps have a non-zero duration
in the optimal approximated schedule. For instance P21
depicted here, only 104 configurations are active which
corresponds to 3% of the generated configurations, and, on
the 48 time steps, 15 are associated to an unique configura-
tion. This explains why pumps are activated at reasonable
frequency, from 1 for pump 1A to 21 for pump 4B, in the
approximated solution.

Finally as the approximated and feasible solutions are
close, their costs (111.03 euros for the former and 117.50 for
the latter) present a moderate gap (+6%). We observed the
same proximity on all the Poormond instances and on all
the Van Zyl instances too. For example, in instance Z21, the
approximated solution has only 50 active configurations on
more than 20,000 candidates over the 48 times steps and it
satisfies all the pump aging constraints. Only one iteration
of the Benders decomposition and a slight adjustment of
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Computation time (s) Cost (euros)

Day conf LP TBD Total TBD best[3] TBD/LB best/LB

P21 1.6 <0.1 16.3 17.9 117.50 112.48 8.2% 4.1%
P22 1.6 <0.1 11.2 12.8 118.55 116.49 5.6% 3.9%
P23 1.6 <0.1 8.0 9.6 120.93 120.85 4.1% 4.0%
P24 1.6 <0.1 10.9 12.5 137.05 134.99 4.6% 3.1%
P25 1.6 <0.1 21.2 22.8 98.74 92.53 9.8% 3.8%

Z21 2.1 <0.1 0.7 2.8 220.60 222.66 14.9% 15.7%
Z22 2.1 <0.1 1.7 3.8 230.07 230.69 14.1% 14.3%
Z23 2.1 <0.1 1.4 3.5 240.67 240.93 13.7% 13.8%
Z24 2.1 <0.1 0.6 2.6 267.77 268.91 14.4% 14.7%
Z25 2.1 <0.1 0.7 2.8 188.52 190.29 14.5% 15.3%

Table 1: Results of the heuristic

the pump speeds were needed to retrieve a feasible solution
with a +4.2% cost deviation.

5.3 Performance of the heuristic

Table 1 summarizes the computational results of our heuris-
tic on the 10 instances of Poormond and Van Zyl. On the
left part, the computation times (in seconds) are detailed
for each algorithmic component: the preprocessing of the
configurations (conf), the solution of the approximated
model (P ∗) (LP), and the truncated Benders decomposi-
tion (TBD). The right part of the table gives the costs (in
euros) of the solutions returned by our heuristic (TBD)
compared to the solutions of the branch-and-cut approach
returned in 1 hour (best [3]); TBD/LB and best/LB de-
note the respective optimality gaps to the best know lower
bound also returned by the branch-and-cut in 1 hour.

We observe that the heuristic computed good quality
solutions fast. About 2 seconds were required to generate
an approximated schedule, mostly to preprocess the set of
configurations since solving the LP was immediate. The
graph partition has a great impact on the number of config-
urations to process. On the Van Zyl network, for example,
the partition creates two components: the one with all
the operable elements but no demand – resulting in 456
configurations which are identical for each time step (even
for each instance, actually) – and the other with the unique
demand node, only two pipes and no operable elements –
resulting in one configuration for each time step. Hence, we
computed 456 + 48 hydraulic balances instead of 456× 48.

The truncated Benders decomposition ran in 14 seconds
in average on Poormond and in 1 second on Van Zyl. It
stopped with a feasible solution after the first iteration,
except for instance P25 which required two iterations. On
Poormond, the costs of the heuristic solutions were, in
average, 2.9% higher than the best solutions, and up to
5% higher for instance P25. In comparison, the branch-
and-cut required 306 seconds in average to compute a first
feasible solution of comparable quality (at 2.6% of the final
solutions). According to [3], our heuristic solutions also
improve upon the solutions reported by [6] and [10] after 1
hour of computation. On Van Zyl, the heuristic computed
in 3 seconds, in average, solutions which slightly improve
upon the solutions found in 1 hour by the branch-and-cut.
The average optimality gap is 14.3%. In comparison, [8]
reported approximated solutions with a 30% optimality
gap computed in 5 minutes by solving a MILP obtained
by piecewise linearization of the non-convex constraints in
(P ).

6 CONCLUSION

We formulated the pump scheduling problem in water dis-
tribution network as a new generic non-compact linear
program, based on the approximation of the head at the
water tanks and on the relaxation of the pump aging con-
straints. This approximation turned out to be both tight
and easy to solve when experimented on two networks with
different characteristics. We were then able to quickly find
low cost feasible solutions by searching in a neighborhood of
the approximated solutions. These results lead us to believe
that this method could deal with networks larger than with
the currently known approaches. Failing to dispose of such
study cases, we envisage to build new realistic instances
to confirm our claim. Perspectives to extend our method
are, first, to exploit the new LP approximation in a global
optimization approach, and, second, to exploit historical
data of network operations to build the configuration set.
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