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Abstract

This paper offers a novel approach for computing globally optimal
solutions to the pump scheduling problem in drinking water distri-
bution networks. A tailored integer linear relaxation of the original
non-convex formulation is devised and solved by branch and bound
where integer nodes are investigated through non-linear programming
to check the satisfaction of the non-convex constraints and compute
the actual cost. This generic method can tackle a large variety of net-
works, e.g. with variable-speed pumps. We also propose to specialize it
for a common subclass of networks with several improving techniques,
including a new primal heuristic to repair near-feasible integer relaxed
solutions. Our approach is numerically assessed on various case studies
of the literature and compared with recently reported results.

1 Introduction
To transition to a low-carbon energy system, EU countries have agreed a
40% cut in greenhouse gas emissions in 2030 compared to 1990 levels [9].
It would induce to shift the share of electricity generated from renewable
energy sources, primarily by investing in wind and solar power generation
capacities [28]. The incorporation of intermittent sources motivates a tran-
sition from “a power system in which controllable power stations follow
electricity demand” to “an efficient power system overall where flexible pro-
ducers, flexible consumers and storage systems respond increasingly to the
intermittent supply of wind and solar power” [17].

The evolution of the power sector constitutes a significant issue but also
an opportunity for drinking water distribution network (DWDN) operators.
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On the one hand, intermittency is likely to jeopardize electricity peak/off-
peak tariffs, on which standard pump control strategies of DWDNs rely:
they pump at night to take advantage of the lower cost [18]. Furthermore,
a higher electricity average price would increase energy expenditure due to
pump operation, which represents around 40% of the life cycle costs of a
pump [38]. On the other hand, the substitution of peak/off-peak tariffs for
highly dynamic tariffs might be profitable to DWDNs given their flexible
consumption and storage capacities: the pumps can be quickly and auto-
matically operated, while the elevated water tanks act as (potential) energy
storages and allow to partly dissociate pump operation and power consump-
tion from water delivery to the end-consumers.

The introduction of dynamic tariffs motivates the use of optimization
tools to schedule the pump operation on a daily horizon at a minimum
operation cost, given water demand and electricity price forecasts [20, 33].
However, optimizing the day-ahead pump schedule of a DWDN remains
a difficult task, because the pressure-related physical laws are non-convex
and the pump operation decisions are discrete [12]. Solving the non-convex
Mixed Integer Non Linear Programming (MINLP) formulation with a state-
of-the-art solver, through spatial branch and bound and a systematic relax-
ation, is then not yet an option for most DWDNs of practical size [34, 4].

Following the traditional way to handle non-convex MINLP, a large share
of the literature proposed to approximate the non-convex constraints with
piecewise linear functions leading to solve a Mixed Integer Linear Program-
ming (MILP) approximation of the problem, but the approach has two ma-
jor drawbacks. First, the approximated solution is infeasible for the original
problem if the approximation is not tight enough. Second, a tight approxi-
mation may require to introduce a large number of linearization points, and
the associated binary variables make the MILP model hard to solve when
the size of the DWDN grows.

Paper contribution. In this paper, we first introduce a tailored tractable
relaxation of the non-convex constraints instead of systematic relaxations or
piecewise-linear approximations. Polyhedral Outer Approximations (OA) of
the non-convex equality constraints are devised in a way that optimal re-
laxed solutions are expected (in practice) to be close to satisfy the equality
constraints. These relaxations do not require additional discrete variables
as the OA regions are convex, and a minimal number of planes are gener-
ated w.r.t. some gap parameter ε. They result in a MILP relaxation (vs.
approximation) of reasonable size and that is consistent with the objective.

Second, to solve the original non-convex MINLP, we present a variant of
LP/NLP branch and bound for convex MINLPs [42], where no OA cuts are
generated except the ones defining the MILP relaxation at the root node.
The MILP relaxation is solved with a standard LP branch and bound. Each
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time an integer solution is found in the process, a non-convex NLP solver
checks the satisfaction of the non-convex constraints and, if feasible, returns
the actual cost of the solution. This results in an exact solution method: a
spatial branch and bound – using two relaxations in a single tree – which is
readily implemented by embedding an NLP solver, as lazy cuts, in a MILP
solver. (The relation of the proposed algorithm with respect to a few others
in the literature is discussed in Section 4.)

The third originality of our approach, regarding the literature of pump
scheduling, is to cover a broad variety of DWDNs with little or no restriction
on the topology of the network (branched or with loops, directed or not),
on the distribution of the elements (single or multiple sources, demand or
tanks at intermediate nodes or at leaves), and on the nature of the elements
(types of pumps and valves, models of the physical laws).

DWDNs considered in the literature often fall in the category of DWDNs
with binary settings (BS), i.e. DWDNs where the operation mode of the
active elements (valves and pumps) is binary (on/off), as opposed to DWDNs
with mixed settings (MS), i.e. DWDNs that contain at least one variable-
speed pump or pressure-reducing valve. We propose then to specialize our
method by exploiting a feature of class BS: the fixed NLP subproblem reverts
to a feasibility problem and we can generate effective combinatorial cuts for
the MILP relaxation at infeasible nodes.

Furthermore, from the near-feasible solutions found at these nodes, we
apply a primal heuristic which tries to slightly adjust the time step lengths to
fix the tank level limit violations. Indeed, when using a large discretization
step, these violations could sometimes not be fixed with another (binary)
assignment of pumps and valves, although switching pumps a few minutes
earlier or later is technically possible and can solve these violations. Our
heuristic is thus an alternative to optimizing on smaller time steps. Note also
that this new heuristic has a broader scope of application, as it could also be
used to derive feasible schedules from approximated solutions of piecewise
linear models.

Finally, we experimented our approach on various benchmark sets (Sim-
ple FSD/VSD [35], AT(M) [44, 10], Poormond [20, 37, 49] and DWG [56]),
and drove an empirical comparison with recently reported results [10, 20,
37, 49] and with the reference global optimization solver BARON [46]. The
computational results demonstrate the applicability of our generic solution
method and also its efficiency regarding the results of the dedicated algo-
rithms on given instances, although solving the non-convex NLP subprob-
lems remains a bottleneck for the largest instances of class MS.

Paper structure. The paper is structured as follows: Section 2 surveys
the relevant literature on pump scheduling in DWDNs. A generic MINLP
formulation of the problem is defined in Section 3. Section 4 describes our
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adapted LP/NLP branch and bound for non-convex MINLPs and special-
ization techniques to the class BS or MS of the network. Section 5 provides
the MILP outer approximation. Section 6 describes the time-step adjust-
ment heuristic. Section 7 presents the experimental results, comparisons
and analysis.

2 Literature Review
An extensive literature has been devoted to the pump scheduling problem
in DWDNs for almost half a century. In earliest contributions, the complex
hydraulic network model is often simplified by the use of mass-balance or
regression models, where the pressure aspects are either fully neglected or
approximated by calibrated curves [39]. For example, Ormsbee et al. [40]
consider DWDNs with one single tank and multiple pump stations: they
estimate, with regression curves, the minimum energy requirement associ-
ated with a specific tank water level transition and required pump flow,
which they embed in a dynamic programming model of the tank water level
trajectory.

As stated in [31], “deterministic methods started being supplemented by
metaheuristics during the mid 1990s”, in particular genetic algorithms [50]
sometimes coupled with local search techniques [55], but also ant colony op-
timization [30] or simulated annealing [32]. Besides their non-exact nature,
they appear to be not less expensive: for example in [21], a hybrid method
based on linear programming shows a strong reduction in computing time
with respect to a genetic algorithm.

Due to a large improvement of the dedicated methods and solvers [11],
Mixed Integer Non-Linear Programming approaches have recently grown in
popularity in the field of water network optimization [12], in particular to
solve the static design problem of gravity-fed DWDNs. However, solving
the non-convex MINLP formulation of the dynamic pump scheduling prob-
lem with any off-the-shelf global optimizer does still not scale up when the
number of time steps or the network size increase [34]. In [23] for instance,
the spatial branch and bound of SCIP is directly applied to two large case
studies in the MS class but only the static variant of the problem, i.e. on one
time step [12], is considered. Alternative methods based on mathematical
programming relaxations or approximations have thus been investigated.

To tackle the large DWDN of Berlin, Burgschweiger et al. [7] rely on
network reduction strategies, and on smoothing the valve and pump oper-
ation, in particular by aggregating the dozen of pumps installed in parallel
at each station. The hierarchical approach solves the resulting continuous
non-convex NLP, then determines the individual pump schedules to provide
locally optimal solutions in less than 30 minutes. This continuous relaxation
is however not suitable to a majority of rural DWDNs having only one or
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two pairs of pumps at each station.
In a significant share of the literature [19, 36, 56, 14, 34, 35], the non-

linear flow-coupling constraints are approximated by piecewise linear func-
tions. While this technique outperforms a direct approach with a global
optimization solver [34], it is often limited to small DWDNs since comput-
ing a feasible schedule may require a fine-grained approximation resulting
in a large MILP, especially in networks with multiple loops [33]. Further-
more, the MILP optimal solutions are not certified to correspond to feasible
schedules (see also [5] in the context of the optimal design problem).

Ghaddar et al. [20] present a Lagrangian decomposition by dualizing the
time-coupling constraints to separate the scheduling problem in independent
one-time step MINLPs. It provides valid lower bounds and the Lagrangian
solutions are converted to feasible solutions by a simulation-based limited
discrepancy search. Naoum-Sawaya et al. [37] obtained better solutions on
the Poormond network (class BS) with another hybrid approach. They
apply a Benders decomposition with combinatorial cuts to separate the de-
cision on the binary operation variables, in the master problem, from the
simulation of the hydraulic constraints. The solution space is only explored
locally to speed up the search, thus the solutions have no performance guar-
antee. Costa et al. [10] also employ a simulation-optimization framework but
which explicitly evaluates all the possible combinations of the binary oper-
ation variables. This full enumeration scheme was successfully applied to a
small DWDN of class BS but it probably does not scale well. Shi and You [49]
consider a similar decomposition but they develop an exact method and
use a tight master MILP where the hydraulic constraints are only partially
relaxed: non-convex outer approximations defined by piecewise-linear seg-
ments are automatically generated and refined during the search. Contrarily
to the previous works, this approach directly applies to DWDNs of class MS,
although only experiments on two small DWDNs of class BS with a limited
number of time steps are presented. This exact method outperformed a
direct solution with SCIP on these cases, but the proposed piecewise-linear
relaxation may require, like piecewise-linear approximations, a large number
of auxiliary binary variables to model the linear segments. Bonvin et al. [4]
exploited a specific property of a class of branched DWDNs to derive a tight
convex relaxation with the same size of the original non-convex MINLP:
they showed how to relax the head-flow coupling equalities into inequalities
and convert the solutions to feasible near-optimal (even optimal if all pumps
are identical) schedules. The same relaxation has been used in a heuristic
to approximate the operation of fixed-speed pumps [34] and variable-speed
pumps [35].

In this paper, we generalize the convex relaxation of [4] to DWDNs
with loops, both in classes BS and MS, and devise an exact method based
on a similar decomposition to [37] and [49]. The key differences with these
approaches are that: (1) our MILP master relaxation is tighter than [37] and
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smaller than [49], and (2) the solutions are searched and evaluated within
one single tree search. Our approach bears similarities with the LP/NLP
branch-and-bound framework developed by Quesada and Grossmann [42] for
general convex MINLPs but we progressively tighten the MILP relaxation
with combinatorial cuts, as in [37], instead of OA cuts. Furthermore, we
specialize the method for DWDNs of class BS by exploiting, like in [37, 10],
the fact that the NLP subproblem can be turned into a feasibility check
with a simple hydraulic simulation. A similar characteristic happens on the
optimal DWDN design problem and was exploited by Raghunatan [43] to
improve the LP/NLP branch and bound he applies to a convex formulation
of this static problem.

Finally, as stated in [5], the variety of the modeling assumptions makes
difficult to set up a formal comparison with alternative methods of the lit-
erature. In contrast with the problem of the optimal design of gravity-fed
DWDNs where a benchmark set of 9 instances1 exists, the methods dedi-
cated to the pump scheduling problem are often evaluated on only one or two
instance sets which vary from study to study. Menke et al. [34] compared dif-
ferent implementations of mathematical programming approaches on small
generated instances and concluded that piecewise-linear approximation was
faster than solving the non-convex model with SCIP. The two hybrid ap-
proaches by [20] and [37] were also rigorously compared on instances of the
Poormond network [37]. For this paper, we built a benchmark set of 75
instances by applying the 5 electricity tariff profiles of [20] to a variety of
networks with different characteristics coming from [35, 44, 20, 56]. While it
was not an option to reimplement the complex methods of the literature, we
propose to perform an empiric comparison with the computational results
reported in four recent papers [20, 37, 10, 49].

3 Model formulation
This section describes the standard assumptions we used to model the dif-
ferent physical assets of DWDNs, and provides a non-convex MINLP for-
mulation (P) of the pump scheduling problem.

3.1 Notations and variables

A DWDN is described as a directed graph G=(J ,A), where nodes J are
divided into tanks JT , sources JS and internal nodes JJ , and arcs A are
divided into pumps K, pipes L and valves V [12]. The set of pumps K is
further split into fixed-speed pumps KF and variable-speed pumps KV . The
scheduling horizon is discretized in T periods, t ∈ T = {0, . . . , T − 1}, that

1Available at http://www.or.deis.unibo.it/research_pages/ORinstances/
ORinstances.htm
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a ∈ A arcs j ∈ J nodes
l ∈ L ⊂ A pipes JT ⊂ J tank nodes
v ∈ V ⊂ A valves JS ⊂ J source nodes
k ∈ K ⊂ A pumps JJ ⊂ J internal nodes
KF ⊂ K fixed-speed pumps T = {0, . . . , T − 1} time periods
KV ⊂ K variable-speed pumps

xat ∈ {0, 1} status of active element a ∈ K ∪ V in period t ∈ T
wkt ∈ [0, 1] speed of pump k ∈ KV in period t ∈ T
qat ∈ R flow through a ∈ A in period t ∈ T
hjt ≥ 0 hydraulic head at node j ∈ J in period t ∈ T ∪ {T}

Table 1: Summary of notation

we assume w.l.o.g. of equal length ∆ (in hours). As water demands and
electricity tariffs often fluctuate on a daily basis, the horizon is typically
limited to one day: T = 24 and ∆ = 1. We also assume a steady-state
operation of the network during each time period [6, 20].2

The pump scheduling problem involves 4 sets of variables: qat ∈ R de-
notes the water flow rate (in m3/h) through arc a ∈ A during period t ∈ T;
hydraulic head hjt ≥ 0 is the sum of the geographical elevation and the
water pressure head (in meters) at node j ∈ J at the end of period t ∈ T;
binary variable xat ∈ {0, 1} models the status of an active element a ∈ K∪V
during period t ∈ T, e.g. whether a pump is on or off, or a gate valve is
open or close; finally, for variable-speed pumps k ∈ KV , continuous variable
0 ≤ wkt ≤ 1 gives the normalized speed value during period t ∈ T.

3.2 Nodes

Internal nodes. Flow conservation at internal node j ∈ JJ is enforced at
any time t ∈ T by ∑

ij∈A
qijt =

∑
ji∈A

qjit +Djt, (1)

with Djt ≥ 0 the forecasted water demand rate (in m3/h) for period t. Note
that pressure-dependent water leaks could be considered, by adding a term
to (1) as in [51], but we neglect them here for simplicity. Water has also to
be served with a minimal pressure level Pj ≥ 0 (in meters), thus

hjt ≥ Zj + Pj , if Djt 6= 0, (2)

where Zj is the elevation (in meters) of node j.
2In [36], transitional regimes are taken into account through the hammer equation but,

as pointed out in [12], it is yet unclear whether the dynamic hydraulic behavior needs to
be described this accurately in the context of pump scheduling.
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Sources. We assume that head level Hjt (in meters) at source node j ∈ JS
varies in time t ∈ T but is exogenous as it is independent of the system
operation, thus

hjt = Hjt. (3)

This is a common assumption as sources are often high capacity reservoirs
such as lakes, rivers or groundwater aquifers [45]. In addition, one can
enforce a daily maximal withdrawal limit Vj ≥ 0 (in m3) due to the capacity
of raw water pumping stations or to a contractual agreement [7, 56], namely∑

t∈T

∑
ji∈A

qjit∆ ≤ Vj . (4)

Water tanks. Flow conservation at water tank j ∈ JT is enforced at any
time t ∈ T by ∑

ij∈A
qijt −

∑
ji∈A

qjit = Sj
∆ (hj(t+1) − hjt)). (5)

The right-hand side represents the water tank net inflow during t, where
Sj > 0 denotes the surface (in m2) of the tank and hj(t+1) − hjt models
the variation of the water level. The water level is bounded by [Hj , Hj ]
according to the geographic elevation, the capacity and the water volume
reserved for emergency purposes. Finally, the water level at the end of the
day is usually constrained to be greater than the initial level Hj0 ∈ [Hj , Hj ],
namely

Hj ≤ hjt ≤ Hj , (6)
hj0 = Hj0 ≤ hjT . (7)

3.3 Arcs

Pipes. Under the steady-state assumption, the Hazen-Williams or Darcy-
Weisbach formulae are empirically-close approximations of the head losses
due to friction through pipes [6]. Since they are sometimes difficult to handle
in an optimisation framework, accurate quadratic approximations have been
proposed [16, 41]. Our approach is compatible with all these relations but,
to facilitate the comparison with previously proposed methods, we adopt
here, for each pipe l = ij ∈ L and time t ∈ T, the quadratic relation

hit − hjt = Φl(qlt) = Alqlt +Blqlt|qlt|, (8)

where Al and Bl are real parameters that can be either extrapolated from
experiments or approximated from the cited formulae.

Since Φl is not differentiable at 0, state-of-the-art global optimization
solvers cannot handle this model. An alternative formulation (see, e.g. [49])
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is to specify the flow direction with a binary variable xlt ∈ {0, 1} and to
split the flow into its positive q+

lt ≥ 0 and negative q−lt ≥ 0 parts, as

qlt = q+
lt − q

−
lt , (8a)

q+
lt ≤ Qltxlt, (8b)
q−lt ≤ |Qlt|(1− xlt), (8c)
hit − hjt = Al(q+

lt − q
−
lt ) +Bl(q+2

lt − q
−2
lt ), (8d)

where flow bounds Qlt ≤ 0 ≤ Qlt can be computed as proposed in Sec-
tion 5.1.

Pumps. When sources are elevated, gravity-fed water is supplied to the
household connections with sufficient pressure. Otherwise, pumps are re-
quired to increase the hydraulic head within the network. Following [7, 36],
when a pump k = ij ∈ K is active, the head increase between the inlet i ∈ J
and outlet j ∈ J nodes at time t ∈ T can be approximated by

hjt − hit = Ψk(qkt, wkt) = w2
kt

(
αk − βk

(
qkt
wkt

)γk)
, (9a)

where αk, βk, γk are real parameters derived from the pump manufacturer
data, and the flow qkt and speed wkt variables are restricted to some positive
intervals [Qk, Qk] and [Wk,Wk], with Wk = Wk = 1 for a fixed-speed pump.
When the pump is inactive, flow and speed are null and the head at the inlet
and outlet nodes remain uncoupled [12]. This behavior can be modeled by
binary variable xkt ∈ {0, 1}, with xkt = 1 iff k is active at time t, and the
following constraints:

Mk(1− xkt) ≤ hjt − hit −Ψk(qkt, wkt) ≤Mk(1− xkt), (9)
Qkxkt ≤ qkt ≤ Qkxkt, (10)
Wkxkt ≤ wkt ≤Wkxkt, (11)

with Mk and Mk sufficiently large big-M values whose computation is dis-
cussed in Section 5.1. Note that xkt = wkt for fixed-speed pump k ∈ KF .

The maintenance cost of a pump can represent around 10% of its overall
net present value lifecycle cost [38]. Sound practices can limit this cost, for
example by restricting the number N ∈ T of daily pump switches or fixing
the minimum number of periods τ1 ∈ T (resp. τ0 ∈ T) a pump has to remain
on (resp. off) [29]. These constraints are modeled in [20] by using a binary
variable ykt (resp. zkt) that is 1 if pump k ∈ K is switched on (resp. off) at
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time t ∈ T and by the following constraints:

T−1∑
t=1

ykt ≤ N, (12)

ykt ≥ xkt − xk(t−1), ∀t ∈ {1, . . . , T − 1} (13)
ykt ≤ xkt′ , ∀t, t′ ∈ T : 0 < t ≤ t′ < t+ τ1 (14)
zkt ≥ xk(t−1) − xkt, ∀t ∈ {1, . . . , T − 1} (15)
zkt ≤ 1− xkt′ , ∀t, t′ ∈ T : 0 < t ≤ t′ < t+ τ0. (16)

Valves. A large variety of valves with distinct functions exist for DWDNs [45].
We focus on the three types appearing the most frequently in optimization
studies: gate valves (GVs), check valves (CVs) and pressure-reducing valves
(PRVs). Their purposes are to totally open or close a pipe, to avoid re-
versed flow, and to enforce a given head loss, respectively. Any of these
valves v = ij ∈ V can be modeled by two constraints at any time t ∈ T,
namely

Mv(1− xvt) ≤ hit − hjt ≤Mv (1− g(xvt)) , (17)
Qvg(xvt) ≤ qvt ≤ Qvxvt, (18)

with xvt a binary variable modeling the valve status, Qv, Qv, Mv and Mv

sufficiently large big-M values (see Section 5.1) and g a Boolean function
defined by g(xvt) = xvt if v is a GV or a CV and by g(xvt) = 1− xvt if v is
a PRV.

For a GV, flow is null and head at inlet and outlet are decoupled if the
valve is closed (xvt = 0), and heads and flow are untouched, otherwise. For
a CV, by setting Qv = Mv = 0, either the flow is positive and heads are
untouched (xvt = 1) or the quantity hit − hjt is negative and the valve is
closed (xvt = 0) in order to prevent a negative flow. For a PRV, xvt denotes
the flow direction and the head drop hit − hjt can be seen as a decision
variable, then (17) forces the head to decrease in the flow direction. The
alternative formulation of PRVs used in [6],

(hit − hjt)qvt ≥ 0, (17a)

does not require binary variables but is non-convex. In our method, we use
both formulations: the discrete linear one in the MILP relaxation model of
the problem and the non-convex continuous one in the NLP model restric-
tions.

3.4 Optimization task

The common objective of pump scheduling is to supply the forecast wa-
ter demand with appropriate pressure requirements at minimal operating
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cost [6]. Following [56], we define a constant cost Es ∈ R+ per unit of raw
water for its extraction and treatment at source s ∈ JS , to which we add the
energy costs induced by pumping. The power consumption of a variable-
speed pump k ∈ KV for a period t ∈ T can be approximated by [7, 36]

Γk(qkt, wkt) = w2
kt (λkwkt + µkqkt) , (19)

with λk and µk two parameters computed from experimental points provided
by the pump manufacturer. For a fixed-speed pump, (19) is linear, i.e.

Γk(qkt, xkt) = λkxkt + µkqkt, (20)

since either wkt = xkt = 1 or wkt = xkt = qkt = 0.
Given Ct ∈ R+ the electricity unit cost at time t ∈ T, the objective

function to minimize is given by
∑
t∈T Γt(qt, wt)∆ with:

Γt(qt, wt) =
∑
s∈JS

∑
sj∈A

Esqsjt +
∑
k∈K

CtΓk(qkt, wkt). (21)

3.5 Summary of the mathematical model

In summary, a formulation of the Pump Scheduling Problem as a non-convex
MINLP can be stated as follows:

(P) : min
x,w,q,h,h′

∑
t∈T

Γt(qkt, wkt)∆ (21)

s.t.

h′jt = Hjt ∀j ∈ JS , t ∈ T (3)∑
t∈T

∑
ji∈A

qjit∆ ≤ Vj ∀j ∈ JS (4)

∑
ij∈A

qijt −
∑
ji∈A

qjit = Sj
∆ (h′j(t+1) − h

′
jt) ∀j ∈ JT , t ∈ T (5)

h′jt ∈ [Hj , Hj ] ∀j ∈ JT , t ∈ T ∪ {T} (6)
h′j0 = Hj0 ≤ h′jT ∀j ∈ JT (7)
Wkxkt ≤ wkt ≤Wkxkt ∀k ∈ K, t ∈ T (11)
(qt, ht) ∈ Ft(xt, wt, h′t) ∀t ∈ T (22)
x ∈ S (23)

where

S = {x ∈ {0, 1}(K∪V )×T,∃y ∈ {0, 1}K×T, z ∈ {0, 1}K×T, (12)− (16)}

defines the profiles of pumps and valves activity that satisfy the lifetime-
preserving operational constraints, and
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Ft(xt, wt, h′t) = {(qt, ht) ∈ RA × RJ ,(1), (2), (8), (9a), (10), (17), (18),
hjt = h′jt ∀j ∈ JS ∪ JT }

(24)

defines the solutions of the so-called steady-state network analysis prob-
lem during period t ∈ T associated to the given operation status of
pumps and valves (xt, wt), initial heads at source and tanks h′t and
demand rates at junctions Dt.

A key characteristic of this problem is that, since all the head loss func-
tions (Φ for pipes and −Ψ(·, wt) for pumps) increase monotonically with
the flow and since either demand or head is known at each node, the sys-
tem of equations {(1), (8), (9a)} has an unique solution in RA × RJ , which
can efficiently be computed with a gradient method – an application of the
Newton-Raphson algorithm – known as the Todini-Pilati method [54, 47].
It means that, in our context, we can compute the (unique) solution of
Ft(xt, wt, h′t), or prove that none exists by: i) removing the arcs correspond-
ing to inactive pumps and valves (xat = 0), ii) fixing active pump speeds wt,
heads at sources and tanks h′t and demands at junctions Dt, iii) applying
the Todini-Pilati method to the resulting network, and iv) checking that
the computed solution is not out of range according to (2), (10), and (18).
Remark that, we found no such violation in all our experiments, although
our approach makes an intensive use of this procedure (see Sections 4.2 and
6) when considering networks with binary settings (BS). It is likely because
our test networks have realistic topologies (and (2) are naturally induced)
and do not include strict operational restrictions on the flow values ((10)
and (18) are always satisfiable). Finally, in the BS case thereafter, we sim-
ply denote the network analysis subproblem (24) Ft(xt, h′t), as BS networks
only contain fixed-speed pumps for which w = x holds.

4 A LP/NLP-based branch and bound
Spatial branch and bound [52] is the best-known exact method for solving
non-convex MINLP [2]. Its implementation in global optimization solvers
is based on generic reformulation and linearization techniques to get valid
relaxations for bounding, and thus is applicable to a broad variety of prob-
lems including the model (P) defined in Section 3. However, the reformu-
lation introduces an auxiliary variable for each elementary non-linear term
and lifts then the model in a larger space: O(T (|L| + |KV |)) new variables
in our case. Each non-linear term being relaxed independently, the auto-
matic reformulation may also be too weak to effectively prune the search
tree [2]. Furthermore, global optimization solvers miss the advanced search
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and cut generation and management techniques that are part of modern
MILP solvers. This section presents our implementation of a spatial branch
and bound for (P), based on the tailored MILP relaxation (Pε) described
in Section 5, and built on top of the combination of a MILP solver with a
non-convex NLP solver.

4.1 Two relaxations, one search tree

Theoretically, we solve (P) within a single-tree branch and bound: we first
branch on the binary variables x = (xat)a∈K∪V,t∈T and use the LP relaxation
of the MILP relaxation (Pε) for bounding. Once all the binary variables are
fixed at a given node (x = X ∈ {0, 1}(K∪V )×T), the search continues to
solve the resulting restricted continuous non-convex NLP (P(X)), now in
the subtree, by evaluating the lower bounds with a systematic relaxation
of (P(X)), and by branching on fractional variables appearing in violated
non-convex constraints.

In practice, we embed a global optimization solver in a modern MILP
solver, using the so-called lazy callback functionality, to automatically drive
the search and take advantage of its advanced implementations. Relaxation
(Pε) is solved by the MILP solver but we specifically manage the incumbent
update as follows: In a callback function, at every node where a new incum-
bent solution (X,W,Q,H) of (Pε) is found (either at a leaf node or by a
heuristic), we check its feasibility against (P). The function calls the global
optimization solver on the restricted non-convex NLP (P(X, z̄)) obtained
by fixing the integer variables x = X in (P) and by bounding the optimal
solution value by the current MILP incumbent value, say z̄. If the restricted
problem is feasible, then it returns an actual feasible solution of (P), and
we update the incumbent with its actual value, which may differ from the
cost of the relaxed solution. Hence, whether the relaxed solution is feasible
or not, the node is discarded from the search.

This solution scheme is similar to the LP/NLP branch-and-bound al-
gorithm originally developed by Quesada and Grossmann [42] for convex
MINLP optimization problems, with the difference that the MILP relax-
ation is not refined with OA cuts during the search. Indeed, OA cuts are
not necessarily valid in non-convex optimization and the method cannot di-
rectly be used in the non-convex case. Instead, we generate a set of alleged
active OA cuts, once for all before the search, when constructing the MILP
relaxation (Pε). Our solution scheme (with actually two different implemen-
tations for classes BS and MS) is also in the spirit of the branch-and-check
algorithm [53] which, in its original framework, solves the restricted subprob-
lems with constraint programming and generates no-good cuts by linearizing
logical conditions. More recently, Dan et al. [13] propose to treat subtrees of
a unique MILP relaxation of a class of MINLP with equilibrium constraints
as separated search optimization problems and solve them by refining their

13



associated formulation.
Relative to our problem, the static optimal design of gravity-fed DWDNs

has been tackled by Raghunathan [43] through a similar scheme with two
differences. First, in that application, the objective depends on the binary
(pipe size choice) variables only, hence, a relaxed solution is discarded from
the search only if infeasible; otherwise, its relaxed cost matches its actual
cost and the incumbent is updated as usual. Second, an interesting feature
in [43] is that the restricted subproblem (P(X)) gets reduced to a feasibility
problem since, in gravity-fed DWDNs, flows and pressures (the continuous
variables) are fully determined once the sizes of the pipes (the binary vari-
ables) are decided. In the pump scheduling problem, the same feature may
appear depending on the nature of the active elements (pumps and valves) in
the considered DWDN. Hereafter, we propose to characterize the subclasses
of DWDNs having or not this feature and give implementation details to
improve the algorithm in both cases.

4.2 DWDNs with binary settings

This class defines the set of DWDNs that contain as active elements only
fixed-speed pumps, check valves (CVs) and gate valves (GVs). Elements of
these types operate in one state on or off at each time, then can be modeled
with only binary variables x. In this context, the restricted subproblem
P(X) at an integer node x = X ∈ {0, 1}(K∪V )×T admits at most one feasible
solution q ∈ RA×T, h ∈ RJ×T∪{T}, defined recursively by:

h′j0 = Hj0 ∀j ∈ JT
h′jt = Hjt ∀j ∈ JS , t ∈ T
h′j(t+1) = h′jt + ∆

Sj
(
∑
ij∈A qijt −

∑
ji∈A qjit) ∀j ∈ JT , t ∈ T

(qt, ht) ∈ Ft(Xt, h
′
t) ∀t ∈ T

(25)

Indeed, as explained in Section 3.5, for given Xt and h′t, the network analysis
problem Ft(Xt, h

′
t) has at most one solution.

As a consequence, we do not solve P(X) with an NLP solver but with
the following iterative algorithm, called extended period analysis and also
implemented in the notorious hydraulic simulator EPANET: At each iter-
ation t ∈ T, we compute the unique solution (qt, ht) of Ft(Xt, h

′
t) with the

Todini-Pilati method, check the bounds (2), (10) , and (18), and compute
the associated operation cost zt(Xt) = ∆Γt(qt, Xt). We then compute the
water level in the tanks at the end of period t, given by h′t+1 with (5),
and check if they satisfy the tank capacities (6). If no bound is violated
at any time t ∈ T and if the final tank levels at t = T also satisfy (6) and
(7), then the solution is returned with operation cost z(X) =

∑
t∈T zt(Xt).

Otherwise, as soon as a constraint is violated, say at time period t = t̄,
the simulation can be prematurely halted and the relaxed solution X said
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infeasible. As in the Benders decomposition of [37], we can then reinforce
our MILP relaxation (Pε) with the combinatorial infeasibility cut

t̄∑
t=0

 ∑
a∈K∪V :
Xat=0

xat +
∑

a∈K∪V :
Xat=1

(1− xat)

 ≥ 1. (26)

The so-called [1] canonical cut (26), mostly known as a no-good cut [15],
forces here to swap at least one binary decision Xat for some active element
a and time period t ∈ {0, . . . , t̄} to prevent the infeasibility at time period
t̄. Although not necessarily efficient in general, the combinatorial cuts were
effective in accelerating the branch and bound in our experiments (see Sec-
tion 7.2.1), at least when they stemmed from infeasibilities detected at early
period t̄.

4.3 DWDNs with mixed settings

This class defines the set of DWDNs that contain at least one variable-speed
pump (VSP) or one pressure-reducing valve (PRV). The operating modes of
these active elements are not discrete and their models require a continuous
variable which is not implied by the on/off status: pump speed wkt for VSPs
and head drop hit − hjt for PRVs. Applying the branch and bound to this
class of problems requires this time a non-convex NLP solver to optimize
the restricted subproblem, where all binary variables are fixed.

In our implementation, we solve the restricted subproblem P(X) with
the global optimization solver Baron after bringing two adjustments to
the model: (a) we remove the non-differentiability related with the sec-
ond derivative of function φ at q = 0 by replacing constraints (8) by (8a) -
(8d), and (b) we model PRVs with the non-convex constraints (17a). The
first condition introduces one binary variable for each bidirectional pipe and
each time, while the latter condition means that, at a given integer node
x = X, we optimize a less restricted subproblem where the flow directions
through the PRVs (xvt, v ∈ VPR, t ∈ T) are unfixed. Once checked, whether
a feasible solution is found or not, the following combinatorial infeasibility
cut is added to the MILP (P):

∑
t∈T

 ∑
a∈K∪VC∪VG:

Xat=0

xat +
∑

a∈K∪VC∪VG:
Xat=1

(1− xat)

 ≥ 1. (27)

Possibly, the resulting restricted non-convex MINLPs cannot be solved
at global optimality in reasonable time. In this case, we propose to turn
our whole solution process into a heuristic providing also a lower bound and
then a certificate of performance of the returned solution. First, we fix a

15



stopping tolerance 0 < tol < 1 and solve each restricted subproblem after
setting z̄(1 − tol) as an upper bound on the optimal value, where z̄ is the
current relaxed MILP incumbent. Second, to prevent our branch and bound
to get stuck at integer nodes which are hard to close, we solve each restricted
subproblem P(X) within a fixed time limit and record both the best feasible
solution found, which is possibly used to update the MILP incumbent z̄, and
the final lower bound L(X). At the end of the branch and bound, the global
lower bound L is then corrected by L = min(L,minX∈S L(X)), where S
denotes the set of unsolved integer nodes. Note that after this correction,
the final optimality gap z∗−L

L may be greater than tol.
Finally, a local optimization solver can be used instead of the global

optimization solver to handle the restricted non-convex NLP subproblems.
In our experiments, we tested Bonmin [3] alone which regularly computes
good feasible solutions in short computing times. Note that in this case,
our algorithm keeps providing a global lower bound even if Bonmin does
not return value L(X) for the unsolved integer nodes X ∈ S. We use
instead the optimum Lε(X \XV ) (or a lower bound) of the restricted MILP
(Pε(X \XV )) obtained by fixing all the binary variables to X except for the
status of the PRVs. When solving this MILP at optimality was too long, we
fixed the optimality tolerance (we used tol = 1% for DWG with T = 48)
and used the final lower bound.

5 An ε-Outer Approximation
In the case of a DWDN with only one-way pipes and fixed-speed pumps,
a convex MINLP relaxation of the pump scheduling problem (P) is readily
obtained by relaxing the equality in the head-flow coupling constraints (8)
and (9a) to inequality [4]. This relaxation is no longer convex in the general
case when considering two-direction pipes or variable-speed pumps, and thus
cannot be used for bounding in the branch and bound described in Section 4.

Thus, we propose instead to build a tractable MILP relaxation (Pε)
of (P) where the non-convex functions are replaced by polyhedral outer
approximations (OA) defined by a minimal number of planes so as to be
tight in this sense: the projection of any optimal relaxed solution on any such
polyhedron is expected to be at a distance lower that some given tolerance
ε > 0 from the non-convex curve. Indeed, as previously observed on a
specific branched network [4], we expect that when relaxing the equality
head-flow constraints, then pipe head losses (resp. pump head gains) tend
to be underestimated (resp. overestimated) in optimal relaxed solutions, and
variable-speed pumps tend to run with high speeds. Reasons for that are:
(1) a minimum head is required at each node, but only water tanks have a
maximum head limit related to their maximum capacity, and because of the
optimization criterion, this maximum limit is reached on a limited number
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Figure 1: A convex relaxation (hatched area) of head loss in pipes (in orange)
on the interval [Q, Q].

of time steps, (2) due in particular to their fixed operating costs, pumps are
called heavily infrequently – rather than lightly frequently – thus inducing
high speeds and high head gains at the periods they are active. Under this
rationale, we propose to build the relaxation with tight underestimators
for the pipe head losses, and tight overestimators for the pump head gains
when running at speed w = 1. Furthermore, in order to keep the relaxation
tractable, we consider polyhedral OA of the convex functions, which can
then be modeled with only linear constraints and no additional discrete
variables.

Precisely, Figure 1 depicts, for a given pipe l = ij ∈ L, the head loss
function q 7→ Φl(q) (the orange curve) on [Ql, Ql], and the polyhedral outer
approximation P εl (the hatched area) that we consider in our relaxed model,
i.e., we relax the nonconvex equality constraint hjt − hit = Φl(qijt) to the
linear system (qijt, hjt−hit) ∈ P εl for each t ∈ T. P εl is built so that head loss
underestimations (on the dashed red piece-wise line) are tight as follows:

|δh| ≥ |Φl(|q|)| − ε, ∀(q, δh) ∈ P εl , q ∈ [Ql, Ql(1−
√

2)] ∪ [Ql(1−
√

2), Ql].

Note that the underestimation may exceed ε when flow is close to 0, i.e., in
the interval [Ql(1−

√
2), Ql(1−

√
2)]. Both the size of this interval and the

number of planes required to satisfy our definition of tightness above are
inversely related to the sharpness of the bounds Ql and Ql.

In this section, we first show how to tighten these bounds (as well as the
big-M values in our model), then we exhibit an outer approximation P εl of the
head loss function Φl that meets our tightness condition. We then present
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(a) Head increase

(b) Power consumption (nonconvex part)

Figure 2: Illustrations of (a) a linear over-estimator Π∗ (in red) of the head
increase Ψ (in orange) and (b) a linear under-estimator Π∗ (in red) of the
non-convex addend Γ (in orange) of the power consumption. The black curve
lines depict function s(w), the maximum flow value for a given speed value
w, projected on Ψ and Γ: (a) Π∗ is tangent to the black curve Ψ(s(w), w)
and also to Ψ at some point (q∗, 1) in the plane w = 1. (b) Π∗ is tangent to
the black curve Γ(s(w), w) at some w∗ and meets Γ at (0, 1).
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a similar approach to relax the head-flow coupling constraints (9) through
a pump k ∈ K while limiting the head gain overestimation. As depicted in
Figure 2a, we exhibit an outer approximation P εk of the characteristic curve
Ψk(q, w) that satisfies

|δh| ≤ |Ψk(q)|+ ε, ∀(q, δh) ∈ P εk , w = 1.

Finally, as the objective function may not be linear, we exhibit a family of
linear under-estimators of the power consumption Γk (19) of a variable-speed
pump k ∈ KV , depicted in Figure 2b.

5.1 Bound tightening

The quality of an approximation highly depends on the sharpness of the
bounds on the variables from which it is built. To tighten the relaxations
of the non-convex constraints, the variable domains and the big-M values in
the indicator constraints, we estimate, as a preprocessing step, static bounds
of the dynamic variables of the problem: flow bounds Qa and Qa for each
pipe, pump or valve a ∈ A, speed bounds Wk, Wk for each pump k ∈ KV ,
and head increase bounds Ma and Ma (resp. Pa and Pa) for each inactive
(resp. active) pump or valve a ∈ A.

These static bounds can be obtained using optimization-based bound
tightening [22] (OBBT): quantities qa for a ∈ A, wk for k ∈ K and (hj −
hi) for ij ∈ K ∪ V are, successively, minimized and maximized under the
following set of constraints (C):∑

ij∈A
qij =

∑
ji∈A

qji + dj , ∀j ∈ JJ (28)

hi − hj = Φij(qij), ∀ij ∈ L (29)
Mk(1− xk) ≤ hj − hi −Ψk(qk, wk) ≤Mk(1− xk), ∀k ∈ K (30)
Mv(1− xv) ≤ hi − hj ≤Mv (1− g(xv)) , ∀v ∈ V (31)
Qkxk ≤ qk ≤ Qkxk, xk ∈ {0, 1} ∀k ∈ K (32)
Wkxk ≤ wk ≤Wkxk, ∀k ∈ K (33)
Qvg(xv) ≤ qv ≤ Qvxv, ∀v ∈ V (34)
min

1≤t≤T
(Djt) ≤ dj ≤ max

1≤t≤T
(Djt), ∀j ∈ JJ (35)

Hj ≤ hj ≤ Hj , ∀j ∈ JT (36)
min

1≤t≤T
(Hjt) ≤ hj ≤ max

1≤t≤T
(Hjt), ∀j ∈ JS . (37)

where the bounds Qa, Qa for a ∈ K∪V andWa,Wa for a ∈ K are initialized
with the technical information provided by the component manufacturer and
the big-M values Ma, Ma for a ∈ K ∪V are fixed to sufficiently large values.
A bound computed at one iteration can be exploited to tighten the model at
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the next iterations. The final result then depends on the order for evaluating
the bounds. The computed bounds are valid since for any solution (q, h, x) of
(P), the steady-state configuration (qt, ht, xt, dt) at any time t ∈ T satisfies
all these constraints.

In our experiments, we opted for solving these non-convex MINLPs di-
rectly with Baron, without updating the bounds between two iterations, and
after adding binary variables to model the flow direction in the non-smooth
constraints (29) (see (8a)-(8d)). However, for DWDNs of large size or with
many bidirectional pipes, solving the non-convex MINLP may quickly be-
come prohibitive. On the AT(M) network, where all the 41 pipes are bidi-
rectional, we thus relaxed the integrality constraints and solved the NLP
relaxation instead, again with Baron. Finally, a safety margin is applied
to the obtained extreme values to take into account the inaccuracies of the
optimal solution returned by the solver: a fixed tolerance value greater than
the expected error is added to the upper bounds and subtracted from the
lower bounds.

5.2 Outer approximation of the head loss in a pipe

We now devise linear functions to under- and over-approximate the quadratic
curve Φ representing the head loss through a pipe (8), given tight bounds
Q and Q on the flow values, as depicted in Figure 1.

Proposition 1 Given a real function φ defined on R by φ(q) = Aq +Bq|q|
with A,B ∈ R, B > 0, let fq∗(q) = φ′(q∗)(q − q∗) + φ(q∗) for q∗ 6= 0
denote the tangent of φ at q∗ with, by extension, f0 = 0, and g[q1,q2](q) =
φ(q2)−φ(q1)

q2−q1
(q − q2) + φ(q2) for q1 6= q2 denote the straight line intersecting φ

at q1 and q2. Then, on any interval [Q,Q], with Q < Q:

φ ≤

fq∗ , ∀q
∗ ≤ min(Q,Q(1−

√
2)) if Q < Q(1−

√
2)

g[Q,Q] otherwise (38)

φ ≥

fq∗ ,∀q
∗ ≥ max(Q,Q(1−

√
2)) if Q > Q(1−

√
2)

g[Q,Q] otherwise. (39)

Proof: We prove the validity of the upper bounds (38) in case 1 (Q <

Q(1−
√

2)) and in case 2 (Q ≥ Q(1−
√

2)); the proof for the lower bounds
(39) is similar given the symmetry φ(q) = −φ(−q).

On R−, φ is concave (since φ′′ = −2B ≤ 0), so its graph lies below
its tangents: φ(q) ≤ fq∗(q) for all q, q∗ ≤ 0. On R+, φ is convex (since
φ
′′ = 2B ≥ 0), so its graph lies below the line segment between any two

points of the graph: φ(q) ≤ g[q1,q2](q) for all 0 ≤ q1 ≤ q ≤ q2. It proves the
proposition when Q ≤ 0 in case 1 and when Q ≥ 0 in case 2.
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Suppose now that Q < 0 < Q and note, by direct computation, that φ
is continuous at 0, Q∗ = Q(1 −

√
2) < 0 and f ′Q∗ = φ′(Q∗) = g′[Q∗,Q], so

fQ∗ = g[Q∗,Q], i.e. the tangent at Q∗ intersects φ at Q.
In case 1, Q < Q∗ < 0 < Q, consider fq∗ the tangent at any q∗ < Q∗:

by concavity, fq∗ ≥ fQ∗ on [Q∗,+∞), fq∗ ≥ φ and fQ∗ ≥ φ on R−. In
particular, fQ∗(0) ≥ φ(0) then, since fQ∗(Q) = φ(Q), fq∗ ≥ fQ∗ ≥ g[0,Q] ≥ φ
on [0, Q].

In case 2, Q∗ ≤ Q < 0 < Q: g′[Q,Q] ≥ g′[Q∗,Q] (by direct computation),
g′[Q∗,Q] = f ′Q∗ ≥ f ′Q (by concavity), and g[Q,Q](Q) = φ(Q) = fQ(Q) (by
definition), then g[Q,Q] ≥ fQ ≥ φ on [Q, 0]. In particular, g[Q,Q](0) ≥ φ(0)
and, since g[Q,Q](Q) = φ(Q), then g[Q,Q] ≥ g[0,Q] ≥ φ on [0, Q]. �

Building on Proposition 1, we relax the non-convex constraint (8) for
each pipe l = ij ∈ L and time t ∈ T to

hit − hjt ≤

g
l
[Ql,Ql]

(qlt) if Ql ≥ Ql(1−
√

2)

f lq∗(qlt) ∀q∗ ∈ N ε
l otherwise

(8ε)

hit − hjt ≥

g
l
[Ql,Ql]

(qlt) if Ql ≤ Ql(1−
√

2)

f lq∗(qlt) ∀q∗ ∈ N ε
l otherwise.

(8ε)

In our implementation, the sets N ε
l and N ε

l of points, at which OA
constraints are generated, are built progressively in such a way that the
distance between Φl(q) and the closest approximation f lq∗(q) never exceeds
a fixed precision value ε > 0.

5.3 Over approximation of the pump head increase

To approximate the head increase function Ψk through an active pump k =
ij ∈ K, we consider the points that operate a minimal increase: Ψk(q, w) ≥
Pk, where Pk > 0 is computed from the pump manufacturer information or,
with more precision, in our preprocessing step by minimizing hj − hi under
constraints (C) and the additional constraint xk = 1 for the given pump k.

To simplify the two next propositions, we replace a bivariate function
with its graph in the 3-dimensional space, e.g. (q, w, p) ∈ Ψ ⇐⇒ Ψ(q, w) =
p and denote with subscripts its monovariate restrictions, e.g. Ψw(q) =
Ψ(q, w) or Ψq=a(w) = Ψ(a,w). The two propositions are illustrated on
Figures 2a and 2b.

Proposition 2 Given a real bivariate function Ψ defined on R+ × (0, 1] by
Ψ(q, w) = w2(α− β qγ

wγ ) with positive parameters α, β, γ and 1 ≤ γ ≤ 3, and
a positive lower bound P ≤ α, then:
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1. Ψ(q, w) ≥ P only on the domain D = {(q, w) |
√

P
α ≤ w ≤ 1, 0 ≤ q ≤

s(w)} where (s(w), w, P ) defines the non-empty intersection of Ψ with
the plane p = P , i.e. s(w) = Ψ−1

w (P ) = w(αβ −
P
βw2 )

1
γ , ∀w ∈ [

√
P
α , 1].

2. For any 0 < q∗ < s(1), if the tangent line of Ψ at (q∗, 1) in the plane
w = 1 intersects the tangent line of Ψ in the plane p = P at some
point (s(w∗), w∗), defined by s(w∗) + s′(w∗)(1−w∗) = q∗+ P−Ψw=1(q∗)

Ψ′w=1(q∗)

with w∗ ∈ [
√

P
α , 1], then Ψ lies below the plane Π∗ containing these

two lines, i.e. Ψ(q, w) ≤ Π∗(q, w) = Ψw=1(q∗) + Ψ′w=1(q∗)(q − q∗) −
Ψ′w=1(q∗)s′(w∗)(w − 1) for any (q, w) ∈ D.

Proof: Since 0 < P
α ≤ 1 and Ψw is strictly decreasing, a direct computation

proves the first assertion. Assuming that P denotes a lower bound of Ψ, we
now restrict our study to the domain of definition D.

The restriction Ψq(w) = Ψ(q, w) to any fixed plane q is convex since, for
(q, w) ∈ D, Ψ′′q = 2α − β qγ

wγ (2 − γ)(1 − γ), hence Ψ′′q ≥ 0 if 1 ≤ γ ≤ 2, and
Ψ′′q ≥ 2α−β s(w)γ

wγ (2−γ)(1−γ) ≥ 2α−2(α− P
w2 ) ≥ 0 if 2 < γ ≤ 3. Since the

restriction Π∗q(w) = Π∗(q, w) to the plane q is a line, we just need to show
that Ψq(w) ≤ Π∗(q, w) at w = 1 and at w = s−1(q) in order to show that
Ψ ≤ Π∗ on D.

Case w = 1: In the plane w = 1, Ψw=1 is clearly concave, then it lies
below its tangent Π∗w=1 at q = q∗. Thus Ψq(1) = Ψw=1(q) ≤ Π∗w=1(q) =
Π∗(q, 1).

Case w = s−1(q): Note that Π∗w=1 is strictly decreasing and Π∗w=1(q∗) =
Ψ(q∗, 1) > P , then line Π∗w=1 intersects the plane p = P at some point
(q′, 1, P ) with q′ > q∗. Considering their restrictions to the plane p = P ,
Π∗ is by definition the tangent line to Ψ (then to the curve defined by
s) at (s(w∗), w∗) going through (q′, 1). Observe by computation that s
is non-decreasing and concave (since s′ ≥ 0 and s′′ ≤ 0 as γ ≥ 1), and
that the restriction Π∗q of Π∗ to a fixed plane q is non-decreasing (since
Π∗q ′ ≥ 0). Hence, for any (q, w) ∈ D such that Π∗(q, w) = P , we have:
q ≥ s(w) (since s concave), then w ≤ s−1(q) (since s non-decreasing), then
Ψq(s−1(q)) = P = Π∗q(w) ≤ Π∗q(s−1(q)) = Π∗(q, s−1(q)) (since Π∗q non-
decreasing). �

Note that Proposition 2 only applies when the characteristic pump func-
tion Ψk is between linear and cubic in the flow (1 ≤ γ ≤ 3). This range
does not restrict the practicability of the method as the pump head in-
crease can be reasonably represented by a quadratic curve of the flow [8]
and that reported values do not depart significantly from γ = 2 [6]. Propo-
sition 2 also provides a linear relaxation for fixed-speed pumps, although the
tighter relaxation hjt − hit ≤ Ψk(qkt, 1) may sometimes be directly handled
by efficient solvers, such as second-order cone solvers when the function is
quadratic (γ = 2) [4].
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As for relaxing the head loss in pipes, in our implementation, we pro-
gressively generate approximations Π∗k for a subset Qεk of points 0 < q∗ <
s(1) such that the distance between Ψk(q, 1) and the closest approximation
Π∗k(q, 1) never exceeds a fixed precision value ε > 0.

For each pump k = ij ∈ K and for each time t ∈ T, constraint (9) is
then relaxed to

hjt − hit ≤ Ψw=1(q∗)xkt + Ψ′w=1(q∗)(qkt − q∗xkt)
−Ψ′w=1(q∗)s′(w∗)(wkt − xkt) +Mk(1− xkt),∀ q∗ ∈ Qεk, (9ε)

where Mk is computed in the preprocessing step as the maximum head
difference hj−hi under constraints (C) and the additional constraint xkt = 0.
Constraints (9ε) are then reduced to hjt − hit ≤ Π∗(qkt, wkt) when xkt = 1
and hjt − hit ≤Mk when xkt = 0.

5.4 Under approximation of the power consumption

The power consumption of a fixed-speed pump is linear in the flow through
the pump, but it becomes polynomial in the speed value for a variable-speed
pump. Next proposition describes a family of linear under-estimators of the
non-convex addend of the power consumption function in this latter case,
as depicted in Figure 2b. As in Proposition 2, the study of the function is
limited to domain D on which the pump operates with a minimum pressure
increase P . Furthermore, we restrict the proof to the case where

√
P
α ≥

1
3 ,

i.e. α
9 ≤ P ≤ α, and µ > 0. This reasonable assumption is satisfied by all

the instances in our benchmarks although µ may sometimes be negative as
in [56].

Proposition 3 Given a real bivariate function Γ defined on D (see Propo-
sition 2) by Γ(q, w) = µqw2 with µ > 0, let γ denote its restriction to the
surface q = s(w) (i.e. Ψ(q, w) = P ): γ(w) = Γ(s(w), w) for w ∈ [

√
P
α , 1].

Then, Γ ≥ Π∗ on D, for any w∗ ∈ [
√

P
α , 1], where Π∗ denotes the plane

passing through M0 = (0, 1, 0) and tangent to γ at M∗ = (s(w∗), w∗, γ(w∗))
and which is formally defined by

Π∗(q, w) = b∗
c∗

(1− w)− a∗
c∗
q,

with (a∗, b∗, c∗) = u∗ × v∗ the cross product of u∗ = (s(w∗), w∗ − 1, γ(w∗))
the vector pointing from M0 to M∗ and v∗ = (s′(w∗), 1, γ′(w∗)) the tangent
vector of γ at M∗.

Proof: Let π∗ denote the intersection of Π∗ with the surface q = s(w),
i.e. π∗(w) = Π∗(s(w), w), we first show that γ ≥ π∗ on this surface. By
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construction, π∗ is tangent to γ at M∗ and, by direct computation, we
show that γ is convex (γ′′ ≥ 0) and that π∗ is concave (π′′∗ ≤ 0), then
γ(w) ≥ γ(w∗) + γ′(w∗)(w − w∗) = π(w∗) + π′(w∗)(w − w∗) ≥ π∗(w) for all
w ∈ [

√
P
α , 1].

Now consider, for any w+ ∈ [
√

P
α , 1], the plane Π+ containingM0,M+ =

(s(w+), w+, γ(w+)) and vector (0, 0, 1). Let D+ be the straight line of Π+
passing throughM0 andM+ and let D+

∗ be the line at the intersection of Π∗
and Π+. By definition, D+

∗ pass through M0 and M = (s(w+), w+, π∗(w+))
and, because γ(w+) ≥ π∗(w+), then D+

∗ lies below D+ in plane Π+, i.e. if
(q, w, p1) ∈ D and (q, w, p2) ∈ D+, then p1 ≤ p2.

Let C denote the intersection of Γ with Π+, then C intersects D+ in
M0 and M+. If w+ = 1, then Π+ is the plane w = 1 and C is the straight
line defined by w = 1 and p = µq, so it coincides with D+. Otherwise, if
w+ < 1, then an equation for Π+ is given by q = π+(w) = s(w+)

1−w+
(1 − w).

Because Γ is restricted to domain D and π+(w) ≤ s(w) implies w ≥ w+
and vice-versa, then C is defined by the parametric equation q = π+(w)
and p = Γ(π+(w), w) for w ∈ [w+, 1]. Consider, for example, the first-order
condition

< ∇Γ(π+(w2), w2)−∇Γ(π+(w1), w1), (π+(w2), w2)− (π+(w1), w1) >

= µ
s(w+)
1− w+

(w2 − w1)2(2− 3(w1 + w2)) ≤ 0, if w1 + w2 ≥
2
3 .

It shows that C is concave on the segment (w+, 1) then it lies above D+,
then above D+

∗ . This being true for any w+ ∈ [
√

P
α , 1], it proves that Γ lies

above Π∗. �
The power consumption of a variable-speed pump k ∈ KV is given

by (19) as the sum of a convex function λw3, which can be approximated
from below by its tangent lines (λw2

∗(3w − 2w∗), for any w∗ > 0), and
of function µqw2 studied in Proposition 3. In our implementation, for each
variable-speed pump k ∈ KV , we generate a fixed number nk of linear under-
estimators by setting Wk the set of nk values of w∗ evenly distributed in the

interval [
√

Pk
αk
, 1]. Then we introduce, for each time t ∈ T, two new decision

variables y1
kt ≥ 0 and y2

kt ≥ 0 with the constraints

y1
kt ≥ λw2

∗(3wkt − 2w∗),∀w∗ ∈Wk, (40)

y2
kt ≥

b∗
c∗

(1− wkt)−
a∗
c∗
qkt, ∀w∗ ∈Wk. (41)

Finally, we relax the objective function (21) to∑
t∈T

∆(
∑

ji∈A|j∈JS

Ejqijt +
∑
k∈KV

Ct(y1
kt + y2

kt) +
∑
k∈KF

CtΓk(qkt, xkt)). (42)
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6 A time-step duration adjustment-based heuris-
tic for class BS

As explained in Section 5, we expect that a pump schedule that is feasible
for the MILP relaxation (P) is either feasible for (P) or there exists a pump
schedule in a neighborhood, that is feasible in practice, but possibly not
for our model (P) due to the time discretization. This is particulary true
for instances of class BS where pump speeds or valve pressure reductions
cannot be adjusted to compensate for the small flow imbalances resulting
from the violations of the tank level limits (6) and (7). These violations
could be prevented by allowing to switch the active elements not only at the
precise times fixed by the discretization. This motivates the following primal
heuristic to turn near-feasible solutions of (P) to feasible pump schedules,
by adjusting the time step lengths. We describe it in the context of instances
of class BS, i.e. without variable-speed pumps or pressure-reducing valves.
Note that this heuristic is not specific to our branch and bound as it could
be applied to any near-feasible pump schedule like, e.g., the solution of a
piecewise-linear approximated model of (P).

6.1 Mathematical model of the neighborhood

Given a complete assignment X ∈ {0, 1}(K∪V )×T of the binary variables x
of (Pε), let act(X, t) = {a ∈ K ∪ V |Xat = 1} denote the configuration of
active pumps and valves during time step t ∈ T. We allow configuration
act(X, t) to be active earlier or latter (up to 1 time step, i.e. during the
times steps t− 1 or t+ 1), and for a shorter or longer duration (between the
start of time step t− 1 and the end of time step t+ 1), without preemption.
We formulate the following mathematical program to compute a solution of
minimum power cost in the neighborhood of X thus created:

(Nρ(X)) :min
δ,q,h

∑
(t,σ)∈T×Σ

δσt Γt(qσt , Xσ
t ) (43)

s.t. Hσ
jt = Hjt, ∀j ∈ JS , (t, σ) ∈ T× Σ (3’)∑

(t,σ)∈T×Σ
−Qσjtδσt ≤ Vj , ∀j ∈ JS (4’)

Qσjtδ
σ
t = Sj(Hσ+1

jt −Hσ
jt), ∀j ∈ JT , (t, σ) ∈ T× {1, 2} (5’)

Q1
jtδ

1
t = Sj(H1

j(t+1) −H
3
jt), ∀j ∈ JT , t ∈ T (5”)

Hj + ρHj ≤ Hσ
jt ≤ (1− ρ)Hj , ∀j ∈ JT , (t, σ) ∈ T× Σ (6’ρ)

H1
j0 = Hj0 ≤ H1

jT − ρHj , ∀j ∈ JT (7’ρ)
δ1
t + δ2

t + δ3
t = ∆, ∀t ∈ T (44)

u3
t−1 + u1

t ≤ Lt ∀t ∈ T \ {0} (45)
δ3
t−1 − δ3

t′−1 − δ1
t + δ1

t′ ≥ (τs + t− t′)∆,∀s ∈ {0, 1}, (t, t′) ∈ Is (46)
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0 ≤ δ2
t ≤ ∆, ∀t ∈ T (47)

0 ≤ δσt ≤ uσt ∆, uσt ∈ {0, 1}, ∀t ∈ T, σ ∈ {1, 3} (48)
uσt ∈ {0, 1}, u1

0 = 0, u3
T−1 = 0, ∀t ∈ T, σ ∈ {1, 3} (49)

Qσjt =
∑
ij∈A

qσijt −
∑
ji∈A

qσjit, ∀j ∈ JT ∪ JS , (t, σ) ∈ T× Σ

(50)
(qσt , hσt ) ∈ Ft(Xσ

t , H
σ
t ) ∀(t, σ) ∈ T× Σ (22’)

In this model, each time step t ∈ T is divided into three successive substeps
(t, 1), (t, 2), and (t, 3) where the active configurations of pumps and valves
are, respectively, act(X, t − 1), act(X, t) and act(X, t + 1). The problem
is to decide the length δσt ∈ [0,∆] of each substep (t, σ) with t ∈ T and
σ ∈ Σ = {1, 2, 3}. Binary variables u are required to prevent preemption
and extra pump switches: u1

t = 1 if configuration act(X, t− 1) is extended
on period t (δ1

t > 0 and δ3
t−1 = 0) and, symmetrically, u3

t = 1 if configuration
act(X, t + 1) is advanced on period t (δ3

t > 0 and δ1
t+1 = 0). Constraints

(45) - (49) enforce nonpreemption, where Xσ
at ∈ {0, 1} denotes the active

status of a ∈ K ∪ V during substep (t, σ) ∈ T × Σ (i.e. X1
at = Xa(t−1),

X2
at = Xat, and X3

at = Xa(t+1)), and Lt ∈ {0, 1} denotes a configuration
switch (i.e. L1 = 1 iff act(X, t − 1) 6= act(X, t)). Constraints (46) ensure
that the maintenance constraints (13)-(16) are still satisfied after adjusting
the time step length, where (t, t′) ∈ I1 ⊆ T2 (resp. I0) if t < t′ and at
least one element a ∈ K ∪ V is on (resp. off) at t and off (resp. on) at t′).
Constraint set (22’) ensures a feasible flow-head configuration during each
time substep.

Parameter ρ in (6’ρ) and (7’ρ) has default value 0, but we can set it to a
positive value (e.g. ρ = 10−3) to strengthen the tank head bounds, in order
to improve the convergence of the iterative scheme described thereafter.
Indeed, we do not solve directly the non-convex MINLP (N0(X)) that is
almost as hard as the original problem (P). Instead, we heuristically solve,
for a limited time, a sequence of MILP approximations where the stationary
hydraulic components (22’) are fixed and progressively refined.

6.2 An iterative heuristic solution approach

Indeed, model (N0(X)) has an interesting decomposable structure: i) the
arc flows q are fully determined at every substep by only one steady-state
hydraulic component (22’), ii) these components are independent and only
linked to the remaining scheduling subproblem through the tank heads H,
iii) each hydraulic component can efficiently be solved with the Todini-
Pilati method, and iv) the remaining scheduling subproblem has only linear
constraints. As we are interested in a primal (not dual) solution, we do
not dualize the linking constraints in a Lagrangian decomposition fashion.
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Instead, we progressively solve the subproblems by fixing the linking vari-
ables to their values in a previous subproblem solution. Precisely, at one
iteration of our algorithm, we successively solve the hydraulic components
(qσt , hσt ) ∈ Ft(Xσ

t , H
σ
t ) at every substep (t, σ) ∈ T × Σ for given values of

tank heads Hσ
t , and the scheduling subproblem

(Nρ(X, q)) : min
δ,H

(43) s.t. (3’)− (7’ρ), (44)− (50)

with the arc flows q ∈ RA×T×Σ set at their values in the hydraulic compo-
nent solutions. If a scheduling solution δ is returned, we test its feasibility
regarding the neighborhood model (N0(X)) by running an extended period
analysis (as used to solve (P(X)) in Section 4.2): when all variables δ are
fixed, (N0(X)) admits at most one solution that can be computed by iter-
ating over the time substeps (t, σ) ∈ T×Σ: starting with initial tank levels
H1

0 = H0, we solve (22’) at one substep and compute the tank levels for
the next substep according to (5’) or (5”). If one bound is violated at any
substep (either in (22’) or among (4’), (6’ρ), (7’ρ) with ρ = 0), then δ is not
a feasible solution of (N0(X)) and we start another iteration of our heuris-
tic, with the newly computed head tank profiles. Our iterative heuristic is
summarized in Algorithm 1.

As stated before, the constraints in (N0(X)) that are more likely to be
violated at Step 3 of the algorithm by a solution δ of (Nρ(X, q)) are the tank
capacities (6’ρ) and (7’ρ) with ρ = 0, and these violations will tend to vanish
from an iteration of the algorithm to the other. Indeed, the flows computed
at Step 3 result from a slight alteration of the tank heads computed in Step
2. So, flows and tank heads do not differ significantly between Step 2 and
Step 3. Because the tank heads at Step 2 all satisfy the strongest tank limits
(6’ρ) and (7’ρ) with ρ > 0, we expect that the tank heads at Step 3 almost
satisfy the tank limits with ρ = 0.

Finally, we propose to run this primal heuristic at some integer nodes
X of our branch and bound by initializing the tank head profiles H to their
values in the optimal relaxed solution of (Pε(X)). Hence, if the heuristic
does not abort in Step 2, then it returns a feasible solution of (N0(X)) with
a cost close to the optimum of (Nρ(X, q)) for some flow profile q, which is
itself close to an optimal flow of (Pε(X)). Since (N0(X)) is a relaxation of
(P(X)) and that all these models share the same objective functions, we
may expect that the heuristic solution has a low cost.

7 Experimental results
In this section, we report on the computational evaluation of our algorithm.
In Section 7.1, we describe the benchmark set, while in Section 7.2 we discuss
the computational results. Finally, in Section 7.3 we compare our results
with those in the literature.
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Algorithm 1 Time-step duration adjustment-based heuristic for DWDNs
of class BS
Input: (hjt)j∈JT ,t∈T, (Xt)t∈T, ρ ∈ R+
Initialize: (H1

jt, H
2
jt, H

3
jt) = (hj(t−1), hjt, hjt) ∀j ∈ JT , t ∈ T

while time limit is not reached do
Step 1 (Input: H / Output: q): solve (22’) independently for all
(t, σ) ∈ T× Σ with the Todini-Pilati method [54]
Step 2 (Input: q / Output: δ): solve the approximated MILP model
(Nρ(X, q))
if (Nρ(X, q)) infeasible then
break

else
Step 3 (Input: δ / Output: (q,h)): run the extended period
analysis by solving (22’) on every substep (t, σ) ∈ T × Σ, starting
with the initial tank levels H1

0 = H0, and updating the tank levels
for the next substep according to (5’) or (5”) and δσt
if all bounds holds in (22’), (4’), (6’ρ) and (7’ρ) with ρ = 0 then
Output: (δ, q, h) a feasible solution of (N0(X))

else
set Hσ

jt = hσjt ∀j ∈ JT , (t, σ) ∈ T× Σ
end if

end if
end while

7.1 Experimental data

Experimental data consist of 5 case studies which cover different aspects that
can be encountered in real-world DWDNs. Their characteristics are summa-
rized in Table 2. Simple FSD (resp. Simple VSD) is a test network drawn
from [35] with 1 source, 1 water tank, 2 pipes and 3 identical fixed-speed
(resp. variable-speed) pumps operating in parallel. AT(M) is a modified
version proposed in [44] and further investigated in [10] of the extensively
studied hypothetical network Anytown [57].3 It consists of 1 source, 3 wa-
ter tanks, 41 pipes and 3 identical fixed-speed pumps working in parallel.
Poormond is adapted by [20] from the schematic representation of the Rich-
mond water distribution system owned by Yorkshire Water in the UK [21].
It comprises 1 source, 5 water tanks, 44 pipes, 7 fixed-speed pumps and 4
check valves. Finally, DWG is the Belgium network operated by the water
company De Watergroep considered in [56], without the extra operational

3With respect to [10], we connect the water tanks 165 and 265 with a pipe of zero
length to prevent non-physical behaviors induced by the discretization, especially with
long time steps. This change is justified by the fact that the head levels in the two tanks
are always very close, as shown in Figure 8 of [10]. The alternative used in [10] is to run
the extended period analysis on a smaller time step.
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Instance Class |L| |V | |K| |JT | |JS | |JJ |
Simple FSD BS 2 0 3 1 1 2
AT(M) BS 41 0 3 3 1 19
Poormond BS 44 4 7 5 1 46
Simple VSD MS 2 0 3 1 1 2
DWG MS 22 6 5 6 3 24

Table 2: Characteristics of DWDNs instances.

constraints.4 It consists of 3 sources, 6 water tanks, 22 pipes, 5 fixed-speed
pumps and 6 PRVs. Simple VSD and DWG are the only DWDNs of class
MS because of the presence of 3 variable-speed pumps for the former and 6
PRVs for the latter.

It is standard in pump scheduling to consider an horizon of 1 day divided
in 24 1-hour steps (see, e.g., references in [31]) as it likely matches the
precision for demand forecasts. To appreciate how the computational scheme
responds to the time precision, we considered the cases T=12, 24 and 48 by
smoothing the electrical tariff and water demand profiles, if need be. We
considered five different daily electrical tariffs profiles that correspond to
the wholesale prices occurring on the Single Electricity Market (SEM) on
the five-day period starting from May 21, 2013 at 7am [48]. In summary,
we built a benchmark of 75 instances that we are pleased to share under
request.

For each instance, we applied the following solution process. First, the
variable bounds are estimated with the procedure described in Section 5.1.
Then, MILP relaxation (Pε) is built – with parameters ε = 0.01 m and
nk = 10 for all k ∈ KV – using the Gurobi Python API, and solved with
Gurobi v.5.6.3 [27] on one thread of a 2× Xeon E5-2650V4 2.2.GHz, 256
GB RAM. The restricted NLPs (P(X)) are investigated through a Gurobi
callback function, which differs whether the DWDN is of class BS or MS.
For BS, the extended period analysis is implemented in Python, as well as
the primal heuristic which is launched at most one time each 30 seconds
with a time limit of 10 seconds. For MS, the non-convex NLP is modeled
with Pyomo [24] and solved successively by Bonmin (v.1.8.4) and Baron
(v.18.5.8) with a time limit of 300 seconds each. Finally, the overall solution
scheme is stopped once reaching either the optimality gap tolerance tol or
the overall time limit, fixed respectively to 0% and 1 hour for BS, and to
1% and 2 hours for MS.

4To use our MINLP formulation, we made three modifications: 1) the minimal pressure
level P is only required for internal nodes with positive demands, 2) we modeled the
complex operation of the water tanks (see Eq.(5)-(9) in [56]) by preceding each water
tank with a PRV, 3) we dropped the operating constraints related to raw water pump.

29



T = 12 T = 24 T = 48
Day Best Gap %CB 1st Best Gap %CB 1st Best Gap %CB 1st

Si
m
pl
e
FS

D 21 inf <1s 51% <1s 155.1 3s 33% 1s 150.9 1285s 1% 2s
22 inf <1s 34% <1s 159.1 2s 29% <1s 155.7 0.9% 3% 2s
23 inf <1s 34% <1s 172.4 3s 39% <1s 168.5 0.9% <1% 4s
24 inf <1s 34% <1s 181.7 6s 55% 1s 176.0 0.2% <1% <1s
25 inf <1s 34% <1s 147.8 2s 42% <1s 145.5 0.6% <1% <1s

AT
(M

)

21 766.3 17s 6% 9s 733.2 1.2% 26% 48s 731.8 1.5% 18% 195s
22 796.4 7s 14% 5s 732.1 1.1% 26% 32s 730.6 2.7% 15% 514s
23 825.5 23s 5% 12s 761.5 0.8% 28% 51s 765.0 2.9% 16% 367s
24 884.2 16s 6% 10s 822.9 2.0% 26% 69s 824.0 2.6% 22% 99s
25 845.8 4s 27% 3s 690.6 0.1% 16% 7s 685.6 3.7% 18% 143s

Po
or
m
on

d 21 111.6 404s 11% 61s 109.0 2.2% <1% 52s 110.1 4.9% <1% 561s
22 113.6 342s 8% 31s 113.0 3.8% <1% 87s 112.4 4.8% <1% 556s
23 126.6 230s 6% 31s 125.2 3.8% <1% 54s 124.5 4.9% <1% 262s
24 138.9 465s 3% 31s 136.3 2.6% <1% 51s 136.0 4.1% <1% 174s
25 113.4 359s 19% 32s 94.2 1.4% <1% 52s 92.4 3.9% <1% 212s

Si
m
pl
e
V
SD

21 148.2 <1s 79% <1s 146.8 7s 14% <1s 146.9 1.3% <1% <1s
22 154.0 <1s 82% <1s 152.4 6s 12% <1s 151.5 1.2% <1% <1s
23 167.5 <1s 76% <1s 165.1 6s 11% <1s 164.0 817s <1% <1s
24 173.5 <1s 78% <1s 172.2 6s 12% <1s 171.2 3368s <1% <1s
25 145.0 <1s 81% <1s 139.8 3s 30% <1s 140.9 742s <1% <1s

D
W
G

21 3379.3 1.6% >99% 322s (3266.5) - 99% - (3266.9) - 92% -
22 3469.1 4.2% >99% 268s (3292.3) - 99% - (3284.8) - 87% -
23 3635.4 4.5% >99% 36s (3428.9) - 99% - (3417.9) - 88% -
24 3689.4 1.5% >99% 47s (3549.8) - 99% - (3549.1) - 93% -
25 3602.3 12.2% >99% 25s (3128.1) - 99% - (3122.9) - 93% -

Table 3: Results on the different networks of class BS and MS.

7.2 Computational results

Table 3 presents the results for DWDNs of class BS (Simple FSD, AT(M),
Poormond) and MS (Simple VSD, DWG). For each instance, defined by a
day and a time step number T , Best gives the cost of the best solution found
within the given optimality gap and time limit, if available, otherwise the
lower bound computed as in Section 4.3 (in parenthesis); Gap is either the
time (in s.) to find an optimal solution or its optimality gap (in %); %CB is
the share of time spent in the callback function; 1st is the time to compute
a first feasible solution.

7.2.1 Results for class BS

For all 45 instances of class BS, we computed solutions with an optimality
gap of 5% and obtained the first solutions in less than 10 minutes. Except
for the simplest instances, a small share of the overall computing time is
spent in the callback function to evaluate the feasibility and possibly repair
the integer relaxed solutions X. Indeed for class BS, subproblem (P(X)) is a
feasibility problem fast checked with the procedure described in Section 4.2,
and the primal heuristic is launched only on 4% of the nodes.

We evaluated the impact of the combinatorial cuts (26) by dropping
them, i.e. by generating, at each integer node X, the constraint (26) with
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T = 12 T = 24 T = 48
Day Best Gap %CB 1st Best Gap %CB 1st Best Gap %CB 1st

Po
or
m
on

d 21 118.1 7.5% 21% 2531s 118.5 10.5% 12% 1458s 111.3 6.3% 4% 1229s
22 (112.2) - 27% - (108.5) - 14% - 115.9 7.7% 2% 1714s
23 (124.4) - 29% - 132.6 9.6% 13% 2706s 134.1 11.8% 8% 308s
24 (136.7) - 24% - 141.8 6.8% 13% 307s 140.0 6.8% 1% 501s
25 (110.8) - 34% - (91.4) - 33% - 98.6 10.1% 1% 312s

Table 4: Results on Poormond (BS class) without the primal heuristic.

t̄ = T which cuts no other solution than X. For Simple FSD with T = 24
and Poormond with T = 12, the computational duration increased by 1.1
and 3.0 times in average. For AT(M) with T = 12, no feasible solutions are
obtained in 10 minutes for 2 instances and an optimality gap above 7% is
still present for the 3 others. Cuts (26) are then effective and even necessary
to solve the problem in some cases.

The heuristic has contrasted performances over the three DWDNs. For
Simple FSD, all instances are solved in less than 30 seconds for T = 12
and T = 24 and we do not call the heuristic in this case; for T = 48,
most of the integer relaxed solutions (87%) were feasible. For AT(M) with
T = 24 and T = 48, 12% of the feasible solutions as well as 9 out of the
10 best feasible solutions are computed by the heuristic. For Poormond,
all computed feasible solutions are provided by the heuristic. The strength
of the heuristic can be highlighted by considering the electricity tariffs of
day 25. Indeed, it is about four times higher between 9.30am and 11.30am
and significant savings can be obtained by turning the pump on as little
as possible during this time window. On the Poormond instance, pumping
was required during this time window. While the discretization imposes to
switch the pumps on for a multiple of ∆, the heuristic allows to adjust this
duration at its minimum.

We further investigated on Poormond our core branch and bound and,
in particular, the strength of the MILP relaxation) by disabling the primal
heuristic (see results in Table 4). For 6 out of the 15 instances, no solutions
are obtained in the time limit of 1 hour. For the remaining 9 instances,
the cost of the best solutions obtained was 5% higher on average, and the
time needed to compute a first feasible solution is 15 times higher. These
results show first that many integer relaxed solutions of (Pε) are infeasible for
(P). Indeed, with the heuristic disabled, only 26 out of the 105,159 potential
candidates over the 15 instances were in fact feasible. However, many relaxed
solutions are near feasible and the heuristic is able to quickly repair them
and recover feasible solutions of good quality, which helps a lot in cutting
the search tree. Indeed, with the heuristic on, only 36 relaxed solutions
were to investigate and the heuristic was able to repair 33 out of them, even
leading to solutions of lower cost for 30. Note finally, as expected, the higher
deterioration when turning off the heuristic for instances with T = 12 and
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T = 24. Indeed, the heuristic helps to adjust the time step duration, then it
allows to schedule with fewer and longer time steps without degrading the
optimum.

These experiments show that the MILP relaxation is often tight for in-
stances of class BS, providing low-cost and close-to-feasible solutions, and
that it is well complemented by the heuristic, which appears to be a key
factor of the overall solution scheme in some cases.

7.2.2 Results for class MS

High quality solutions are quickly computed for all 15 instances of Simple
VSD: the first feasible solutions are found in less than 1 second and the
best feasible solutions (with optimality tolerance tol = 1%) in less than 20
seconds. Incidentally, for each of the 85 integer nodes investigated, Baron
was never called. Indeed, if Lε(X) denotes the optimum of (Pε) at node X,
Bonmin was always able to return feasible solutions of (P(X)) with a cost
smaller than (1 + tol)Lε(X).

Solving the instances of DWG was more difficult: for T = 12, feasible
solutions are obtained in less than 2 minutes and best solutions found in
2 hours have an average optimality gap of 4.8%, but no feasible solutions
are found for the largest instances with T = 24 and T = 48. Apart from
the problem size, 3 characteristics of network DWG make these instances
difficult: (a) the flow direction is unknown for 12 out of the 22 pipes. Each
requires to introduce binary variables and linear and non-convex quadratic
constraints (8a)-(8d) to the NLP subproblems (P(X)); (b) the internal node
pressure constraints (2) and the daily maximal withdrawal limits (4) are
tight and make harder to recover feasibility from integer relaxed solutions;
(c) DWG has PRVs but no variable-speed pumps, which offers less flexibility
to readjust flows once the status of the pumps and valves is fixed since PRVs
can only dissipate an excess of pressure, while variable-speed pumps can
balance the pressure upward or downward. Hence, even for the smallest
instances (T = 12), Bonmin and Baron were able to close (i.e. either to
find a feasible solution in the gap limit G or to prove infeasibility) only 72
out of the 181 nodes investigated within the 5 minutes time limit, and they
provided new incumbent solutions at 14 nodes. Only one improving solution
was provided by Bonmin directly, but the mean computing time per node
required by Baron was 192 seconds against only 6 seconds for Bonmin.

Table 5 presents the individual results when disabling Baron to solve
the NLP subproblems heuristically with Bonmin only. Note that Bonmin
almost always finished long before the 300s time limit. First, we observe
in Table 5 (compared to Table 3) for the 5 instances with T = 12 that
the best solutions found are improved, the mean cost being 1.5% lower and
the mean optimality gap reduced from 4.8% to 3.0%. This improvement
results from the increase of the number of nodes explored, from 36 to 741
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T = 12 T = 24 T = 48
Day Best Gap % CB 1st Best Gap % CB 1st Best Gap % CB 1st

D
W
G

21 3382.8 1.6% 94% 982s (3266.7) - 98% - (3267.0) - 88% -
22 3398.2 1.8% >99% 1814s 3420.6 3.7% 98% 7057s (3284.9) - 82% -
23 3555.6 1.8% 98% 668s (3429.2) - 98% - (3418.0) - 82% -
24 3692.3 1.4% 88% 510s 3737.5 5.0% 98% 4568s (3549.4) - 86% -
25 3477.2 8.4% >99% 509s 3312.7 5.3% 98% 1971s 3360.4 7.0% 91% 6958s

Table 5: Results on DWG (MS class) solving NLPs with Bonmin only

on average. The search tree was even completely explored in the time limit
for two instances: Day 21 in 6482s and Day 24 in 6596s. For T = 24 and
T = 48, the heuristic approach allowed to compute feasible solutions within
the time limit on 4 out of 10 instance.

7.3 Comparison with published results

In this section, we perform an approximate empirically comparison of our
branch and bound with alternative methods proposed in the literature. Note
that the codes of these alternatives are not available and that we have not
reimplemented them (except in 7.3.4). Hence, our results on the test cases
presented so far are put side-by-side with some results reported in previous
publications and we draw some approximate empirical conclusions. For the
comparison being as fair as possible, we recall, for each publication, the
available details on the experimental set-up and the known differences with
our models.

7.3.1 Enumeration and simulation [10] on AT(M)

In [10], Costa et al. apply their enumeration scheme on the AT(M) network
(class BS) with 3 identical pumps and a rather complex pipe layout. The
daily scheduling horizon is divided into 24 hours and the case study is inves-
tigated for different values of N the maximum number of pump activations.
The search tree is built by deciding progressively for every hour the number
of pumps to activate. Partial schedules at nodes are pruned if the hydraulic
simulation with EPANET proves them to be infeasible. Performed on a PC
(i7-4771 CPU, 3.5 GHz, 32 GB), the method computed optimal solutions in
425 seconds (N = 1), 10 hours (N = 2) and 81 hours (N = 3). Our LP/NLP
branch and bound was not able to outperform these results: our computing
time was longer for N = 1 (440 seconds) and a positive gap of 1.6% for
N = 2 and 1.9% for N = 3 remained after the same amount of computing
time for the two other cases. However, near-optimal solutions were quickly
obtained with our algorithm with an optimality gap of less than 6% after 5
minutes, while no information on the quality of intermediate solutions are
provided with the enumeration scheme if prematurely stopped because the
search tree is explored by Breadth First Search.
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Day LR [20] BD [37] LP/NLP savings

Po
or
m
on

d 21 130.7 129.74 116.05 10.6%
22 139.4 131.39 119.35 9.2%
23 140.2 140.59 124.12 13.0%
24 151.8 147.73 137.68 6.8%
25 130.3 125.57 93.32 25.7%

Table 6: Best costs obtained with a Lagrangian relaxation (LR), a Benders
decomposition (BD), and our method (LP/NLP) with a time limit of 1 hour
on different machines (LR and BD were performed on a RedHat Linux blade
server 3.5 GHz). Column savings gives the cost improvement of LP/NLP
with respect to the best of LR and BD.

7.3.2 Lagrangian relaxation [20] or Benders decomposition [37]
on Poormond

Ghaddar et al. [20] and Naoum-Saway et al. [37] reported results on network
Poormond (class BS) with T = 48 and 96 respectively. In both papers, mod-
eling assumptions are almost identical5 and the only difference with ours is
the shape of the pump power consumption function: we thus solved our
model with T = 48 after computing the linear coefficients in (20) to ap-
proximate their cubic formulation, then recomputed the costs from the best
solutions found. This explains the (small) difference between the cubic costs
reported in Table 6 and the linear costs reported in Table 3. Bearing in mind
that our method was performed on a different environment, we reported in
Table 6 substantially better solutions for the five instances investigated.

Our approach bears similarities with the combinatorial Benders decom-
position of [37] but it seems to benefit a lot from our tigher MILP relaxation.
In [37], the non-convex constraints and the objective are almost totally re-
laxed in the master MILP. Furthermore, we showed in Section 7.2.1 the
importance of the primal heuristic on these instances. Finally, note that
the best solutions were found with the Benders decomposition of [37] when
run in the manner of a local search, loosing thus the faculty to provide
performance guarantee.

7.3.3 Outer-approximation algorithm [49] on simplified versions
of Poormond

The outer-approximation algorithm proposed by Shi and You [49] is applied
to two simplified versions of the instance Poormond with a scheduling hori-
zon of 8 one-hour time periods. Despite some differences with our model

5The authors of [20] and [37] do not mention check valves in their mathematical for-
mulation, but likely include them in the hydraulic model of EPANET. That could explain
the inconsistency between the lower bounds reported in [20] and our results.
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(Hazen-William formula for φl, cubic function of the flow for Γk), the op-
timal solutions found on the 8-step horizon are similar (the state of one
pump differs during one time period for the small-scale case study while the
two solutions are identical for the large-scale case study). Thus, we pro-
pose to compare the computing times to obtain them. The reported results
were obtained, on an Intel Core i5-2400 CPU @ 3.10 GHz with 8GB RAM,
using CPLEX 12 and CONOPT 3 for solving the MILP relaxations and
NLP restrictions, respectively. The reported computing times are 60.74s
and 321.69s, while we obtain 1.44s and 9.15s, respectively. This difference
can be explained by analysing Figure 9 in [49] which decomposes the time
needed to solve the large-scale instance into the different steps. We observe
that the OA algorithm takes only two iterations, but most of the time is
spent to solve two MILP relaxations: at the first iteration (190.35s) to ob-
tain a relaxed integer solution, and at the second iteration (129.51s) to prove
that no cheaper solution exists. With our branch and bound, the optimal
solution was obtained in less than 1s, then it took less than 9s to explore
the search tree and evaluate 512 other integer nodes.

The comparison highlights two key features of the proposed method.
First, we explore one single search tree and evaluate all integer solutions,
in the manner of the LP/NLP branch and bound, while the OA algorithm
waits to evaluate the optimal solution of the MILP relaxation. This is
justified as the evaluation step is cheap for instances of class BS. Second,
our convex OA relaxation may perhaps be not as tight as the non-convex
OA relaxation of [49], but it results in a much smaller MILP as we do not
introduce additional binary variables to model piecewise linear segments.
Finally, note that the MILP relaxation of [49] is automatically generated
while we propose a tailored generic MILP relaxation, but both approaches
have a wide range of application.

7.3.4 Solving the MINLP formulation of Simple VSD and DWG

Finally, we directly solved the non-convex MINLP formulations of the two
DWDNs of class MS with Baron using the default parameters.6 Results
are given in Table 7 for T = 12 and can be compared to the results of the
proposed approach summarized in Table 3. For Simple VSD, solving and
proving optimality required more than 20 seconds while our method required
less than 1 second. For DWG, no feasible solution has been found in 2 hours,
while our method found at least one feasible solution for all instances in less
than one hour and stopped with an optimality gap lower than 15%. Note
that for T ≥ 24 our approach was not able to compute a feasible solution
for DWG.

6Note that [35] and [56] report approximated solutions that cannot be directly com-
pared with ours.
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Instance 21 22 23 24 25
Simple VSD 148.2 154.0 167.5 173.7 145.0

(22s) (25s) (21s) (26s) (24s)
DWG - - - - -

Table 7: Optimum values (with tol = 1%) and computation times for
solving (P) with Baron on the MS case studies with T = 12 in a time limit
of 2 hours.

8 Conclusion
In this paper, we presented a tailored LP/NLP-based branch-and-bound
algorithm to solve at optimality a non-convex formulation of the pump
scheduling problem in DWDNs. This framework can readily be implemented
by embedding a non-convex NLP solver as a lazy cut separator within a
MILP solver. To our knowledge, this framework has never been applied in
the context of water or gas networks. The full solution scheme includes also
several contributions such as a tailored MILP relaxation that has provided
the opportunity to deal with networks of class MS, i.e. with multi-settings
active elements such as variable-speed pumps. For the other networks (of
class BS: binary-settings), we added several improving techniques including
a fast evaluation, cuts, and a new primal heuristic to turn slightly infeasible
solutions into feasible solutions. A computational study on several bench-
mark instances, including a comparison with competing methods, highlights
the strengths and weaknesses of the proposed approach. For DWDNs of
class BS, it quickly computes near-optimal solutions but the lower bound
evolves slowly afterwards. While a systematic piecewise linear relaxation
as in spatial branch and bound does not seem worthwhile, the MILP relax-
ation could be refined during the search by branching on the non-convex
constraints which are consistently violated. On DWDNs of class MS, the
proposed method outperformed a direct application of a global optimiza-
tion solver but solving the non-convex NLP restrictions at integer nodes
remains a bottleneck as the problem size grows. One option could be to
derive sufficient conditions to reject the infeasible integer nodes as done in
[25, 26] in the context of the optimal design of gas networks. Finally, this
work suggests that this two-step LP/NLP-based branch and bound could be
considered in a broader context to solve non-convex MINLPs given efficient
bound tightening techniques and a tight MILP relaxation.
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