Survey on AI-Based Multimodal Methods for Emotion Detection - Mines Paris
Chapitre D'ouvrage Année : 2019

Survey on AI-Based Multimodal Methods for Emotion Detection

Résumé

Automatic emotion recognition constitutes one of the great chal-lenges providing new tools for more objective and quicker diagnosis, commu-nication and research. Quick and accurate emotion recognition may increasepossibilities of computers, robots, and integrated environments to recognizehuman emotions, and response accordingly to them a social rules. The purposeof this paper is to investigate the possibility of automated emotion representa-tion, recognition and prediction its state-of-the-art and main directions for fur-ther research. We focus on the impact of emotion analysis and state of the arts ofmultimodal emotion detection. We present existing works, possibilities andexisting methods to analyze emotion in text, sound, image, video and physio-logical signals. We also emphasize the most important features for all availableemotion recognition modes. Finally, we present the available platform andoutlines the existing projects, which deal with multimodal emotion analysis.
Fichier principal
Vignette du fichier
A-715.pdf (125.54 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02135811 , version 1 (21-05-2019)

Identifiants

  • HAL Id : hal-02135811 , version 1

Citer

Catherine Maréchal, Dariusz Mikołajewski, Krzysztof Tyburek, Piotr Prokopowicz, Lamine Bougueroua, et al.. Survey on AI-Based Multimodal Methods for Emotion Detection. High-Performance Modelling and Simulation for Big Data Applications, Springer, pp 307-324, 2019, 978-3-030-16272-6. ⟨hal-02135811⟩
369 Consultations
1444 Téléchargements

Partager

More