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Industrial Context

» Cullet is mainly used for the production of container glass:

Germany 85 % Belgium
Poland 57 % Italy

United-Kingdom 66 % Portugal

Sweden 99 % Holland

Table 1: Rates of glass recycling in Europe in 2015 [FEVE source].

96 %
78 %
58 %
83 %

France
Austria
Spain
Denmark

75 %
87 %
70 %
85 %

» Advantages of introduction of cullet in raw materials:
» Reductions of mineral resources;

» Reduction of CO, release;

» Reduction of the energy to provide.
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Industrial Context

» Cullet is mainly used for the production of container glass:

Germany 85 %

Poland 57 %
United-Kingdom 66 %
Sweden 99 %

Table 1: Rates of glass recycling in Europe in 2015 [FEVE source].

Belgium
Italy
Portugal
Holland

96 %
78 %
58 %
83 %

France
Austria
Spain
Denmark

75 %
87 %
70 %
85 %

» Advantages of introduction of cullet in raw materials:

» Reductions of mineral resources;
» Reduction of CO, release;
» Reduction of the energy to provide.

What is the limitation to reach 100 % of

cullet?
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Industrial Context
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Industrial Context

How and why these bubbles are created?
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1. Experimental set-up

2. Spatial distributions of nucleated bubbles
3. Bubble growth rate

4. Saturation and nucleation

5. Conclusion
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1. Experimental set-up

Figure 1: Sketch of HTO furnace.
Si0, Na,0O CaO MgO A,LO; SO Fe,0; FeO
724 1385 8.88 3.74 0.73 0.22 0.055 0.014

Table 2: Composition of the float glass (wt %).

P Recording of the melting with 2 cameras (60 and 25 :m/px).
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2. Spatial distributions of nucleated bubbles

Figure 2: Detection of nucleation sites on each face of the crucible
and Voronoi diagram of nucleation sites.
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2. Spatial distributions of nucleated bubbles
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Figure 3: PDF of the area of Voronoi cells.
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2. Spatial distributions of nucleated bubbles

» PDF can be described by the Gamma distribution:
f(x) = n"x"'e=™ /I (n), (1)

with x = i

(A)

» Atmosphere side: n = 3.5;

» Tin side: n = 12.2 at the beginning and n — 25.5 at the
end.

» For objects randomly distributed over a surface, n = 7/2'.

» The disagreement on the tin side due to the bubble
coalescence.

1J.-S. Ferenc/Z. Néda: On the size distribution of Poisson Voronoi cells, in:
Physica A 385.2 (2007), pp. 518-526.



2. Spatial distributions of nucleated bubbles

» Simulation population of bubbles undergoing coalescence:
1. Population of 3000 “nuclei” distributed following a Poisson
distribution over a square of 108 pixels;
2. At each step, the closest “nuclei” are gathered at the
barycentre position.

Figure 4: Coalescence between the closest nuclei.

3. Process is reiterated 500 to 1500 times.
4. “Numerical experiences” are repeated 500 times.
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2. Spatial distributions of nucleated bubbles
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Figure 5: PDF of area of Voronoi cells obtained from the numerical
simulations.



2. Spatial distributions of nucleated bubbles

Parameter of the Gamma-distribution

Figure 6: n vs. the proportion of coalesced objects.
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2. Spatial distributions of nucleated bubbles
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Figure 7: Bubble densities on the two sides of glass samples.
» In atmosphere side, dy = 40 nuclei/lcm?;
» In tin side, dy = 9300 nuclei/cm? (230 times larger).
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3. Bubble growth rate
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Figure 8: a (um) vs. v/t (1/s) for bubbles on tin and atmosphere sides

of molten glass samples.

100

13



3. Bubble growth rate

» Three redox couples are taken into account?:
1 1

Fe’™ + 502* = Fe*" + 702 (3)
SO,”” = S0, + %02 + 0, (4)
sn*t + 0" = sn®t + %02. (5)

» Gas contents (O,, SO,, H,O, CO, & N,) and bubble radius are
determined by:

dnG f
at

N,
da a [ 2y
@ M(Z,_1PG'_P/_a)' @)

BG.:
= 47TaDGj(CGj - LG,- PGjG/)v (6)

2F. Pigeonneau: Mechanism of mass transfer between a bubble initially
composed of oxygen and molten glass, in: Int. J. Heat Mass Transfer 54
(2011), pp. 1448—1455.



3. Bubble growth rate
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Figure 9: a (um) vs. v/t (1/s) for bubbles on tin and atmosphere sides
of molten glass samples.
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3. Bubble growth rate

» In atmosphere side, Po, = 1.3 - 10723 Pa; tin side, Po, = 4.1- 10~* Pa.
» Tin leads to a reduction of glass.
P> Decrease of the SO, chemical solubility.

(a) Atmosphere side (b) Tin side
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Figure 10: Sag, = Cq,/(Lg, P, ) of the 5 gas species vs. T on both sides.



4. Saturation and nucleation

» The critical bubble size for nucleation in the case of
multi-species is given by

acr = 27 3
C
SaG’ Glﬁc
Lg, P,

i

» The supersaturation for Ny dissolved species is

o= Z Sa”ﬁG -
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4. Saturation and nucleation
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Figure 11: o vs. T (°C) in atmosphere and tin sides.
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5. Conclusion

» Remelting of cullet leads to a large bubble formation.

» Enhancements of the bubble nucleation and growth rate
due to the tin pollution.

» The glass reduction on tin side is the main parameter
controlling the bubble nucleation and the growth rate.

» Difficult to quantify the bubble nucleation rate (work in
progress to improve the prediction).

» The 100 % of cullet is difficult to reach because the bubble
creation persists and needs to introduce fining agents.

» See for more details®.

3D. Boloré/F. Pigeonneau: Spatial distribution of nucleated bubbles in
molten glasses undergoing coalescence and growth, in: J. Am. Ceram. Soc.
101.5 (2018), pp. 1892—1905.
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