

May, 15th 2018, Nürnberg, Germany

Spatial distribution of nucleated bubbles in molten glasses undergoing coalescence and growth

D. Boloré (Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain) & F. Pigeonneau

Cullet is mainly used for the production of container glass:

Germany	85 %	Belgium	96 %	France	75 %
Poland	57 %	Italy	78 %	Austria	87 %
United-Kingdom	66 %	Portugal	58 %	Spain	70 %
Sweden	<mark>99</mark> %	Holland	83 %	Denmark	85 %

Table 1: Rates of glass recycling in Europe in 2015 [FEVE source].

Advantages of introduction of cullet in raw materials:

- Reductions of mineral resources;
- Reduction of CO₂ release;
- Reduction of the energy to provide.

May, 15th 2018, Nürnberg, Germany

Cullet is mainly used for the production of container glass:

Germany	85 %	Belgium	96 %	France	75 %
Poland	57 %	Italy	78 %	Austria	87 %
United-Kingdom	66 %	Portugal	58 %	Spain	70 %
Sweden	<mark>99</mark> %	Holland	83 %	Denmark	85 %

Table 1: Rates of glass recycling in Europe in 2015 [FEVE source].

Advantages of introduction of cullet in raw materials:

- Reductions of mineral resources;
- Reduction of CO₂ release;
- Reduction of the energy to provide.

What is the limitation to reach 100 % of cullet?

May, 15th 2018, Nürnberg, Germany

May, 15th 2018, Nürnberg, Germany

How and why these bubbles are created?

May, 15th 2018, Nürnberg, Germany

- 1. Experimental set-up
- 2. Spatial distributions of nucleated bubbles
- 3. Bubble growth rate
- 4. Saturation and nucleation
- 5. Conclusion

May, 15th 2018, Nürnberg, Germany

1. Experimental set-up

Figure 1: Sketch of HTO furnace. SiO₂ Na₂O CaO MgO Al₂O₃ SO_3 Fe₂O₃ FeO 72.4 13.85 3.74 0.73 0.22 0.055 0.014 8.88

Table 2: Composition of the float glass (wt %).

Recording of the melting with 2 cameras (60 and $25 \,\mu m/px$).

May, 15th 2018, Nürnberg, Germany

Figure 2: Detection of nucleation sites on each face of the crucible and Voronoï diagram of nucleation sites.

May, 15th 2018, Nürnberg, Germany

Figure 3: PDF of the area of Voronoï cells.

May, 15th 2018, Nürnberg, Germany

Nucleated bubbles

ARMINES

Cemef

PSL★

PDF can be described by the Gamma distribution:

$$f(x) = n^{n} x^{n-1} e^{-nx} / \Gamma(n), \qquad (1)$$

with $x = \frac{A}{\langle A \rangle}.$

- Atmosphere side: n = 3.5;
- Tin side: n = 12.2 at the beginning and n = 25.5 at the end.
- For objects randomly distributed over a surface, $n = 7/2^1$.
- The disagreement on the tin side due to the bubble coalescence.

¹J.-S. Ferenc/Z. Néda: On the size distribution of Poisson Voronoi cells, in: Physica A 385.2 (2007), pp. 518–526.

- Simulation population of bubbles undergoing coalescence:
 - 1. Population of 3000 "nuclei" distributed following a Poisson distribution over a square of 10⁸ pixels;
 - 2. At each step, the closest "nuclei" are gathered at the barycentre position.

Figure 4: Coalescence between the closest nuclei.

- 3. Process is reiterated 500 to 1500 times.
- 4. "Numerical experiences" are repeated 500 times.

Figure 5: PDF of area of Voronoï cells obtained from the numerical simulations.

Figure 6: *n* vs. the proportion of coalesced objects. $n = \frac{7}{2}e^{2.47x}$, with $x = \frac{d_0 - d}{d_0}$.

(2)

Figure 7: Bubble densities on the two sides of glass samples.

- ln atmosphere side, $d_0 = 40$ nuclei/cm²;
- ▶ In tin side, $d_0 = 9300$ nuclei/cm² (230 times larger).

Figure 8: $a (\mu m)$ vs. $\sqrt{t} (\sqrt{s})$ for bubbles on tin and atmosphere sides of molten glass samples.

Three redox couples are taken into account²:

$$Fe^{3+} + \frac{1}{2}O^{2-} \rightleftharpoons Fe^{2+} + \frac{1}{4}O_2,$$
 (3)

$$\mathrm{SO}_4^{2-} \rightleftharpoons \mathrm{SO}_2 + \frac{1}{4}\mathrm{O}_2 + \mathrm{O}^{2-}, \tag{4}$$

$$\operatorname{Sn}^{4+} + \operatorname{O}^{2-} \rightleftharpoons \operatorname{Sn}^{2+} + \frac{1}{2}\operatorname{O}_2.$$
 (5)

Gas contents (O₂, SO₂, H₂O, CO₂ & N₂) and bubble radius are determined by:

$$\frac{dn_{G_j}}{dt} = 4\pi a D_{G_j} (C_{G_j} - L_{G_j} P_{G_j}^{\beta_{G_j}}), \qquad (6)$$

$$\frac{da}{dt} = \frac{a}{4\mu} \left(\sum_{i=1}^{N_g} P_{G_i} - P_i - \frac{2\gamma}{a} \right).$$
 (7)

²F. Pigeonneau: Mechanism of mass transfer between a bubble initially composed of oxygen and molten glass, in: Int. J. Heat Mass Transfer 54 (2011), pp. 1448–1455.

Figure 9: $a (\mu m)$ vs. $\sqrt{t} (\sqrt{s})$ for bubbles on tin and atmosphere sides of molten glass samples.

- In atmosphere side, $P_{0_2} = 1.3 \cdot 10^{-3}$ Pa; tin side, $P_{0_2} = 4.1 \cdot 10^{-4}$ Pa.
- Tin leads to a reduction of glass.
- Decrease of the SO₂ chemical solubility.

Figure 10: $Sa_{G_i} = C_{G_i}/(L_{G_i}P_i^{\beta_{G_i}})$ of the 5 gas species vs. *T* on both sides.

4. Saturation and nucleation

 The critical bubble size for nucleation in the case of multi-species is given by

$$a_{\rm cr} = \frac{2\gamma}{\left(\sum_{i=1}^{N_g} Sa_{G_i}^{1/\beta_{G_i}} - 1\right) P_l},$$

$$Sa_{G_i} = \frac{C_{G_i}}{L_{G_i} P_l^{\beta_{G_i}}}.$$
(9)

The supersaturation for N_g dissolved species is

$$\sigma = \sum_{i=1}^{N_g} Sa_{G_i}^{1/\beta_{G_i}} - 1.$$
 (10)

4. Saturation and nucleation

Figure 11: σ vs. T (°C) in atmosphere and tin sides.

5. Conclusion

- Remelting of cullet leads to a large bubble formation.
- Enhancements of the bubble nucleation and growth rate due to the tin pollution.
- The glass reduction on tin side is the main parameter controlling the bubble nucleation and the growth rate.
- Difficult to quantify the bubble nucleation rate (work in progress to improve the prediction).
- The 100 % of cullet is difficult to reach because the bubble creation persists and needs to introduce fining agents.
- See for more details³.

³D. Boloré/F. Pigeonneau: Spatial distribution of nucleated bubbles in molten glasses undergoing coalescence and growth, in: J. Am. Ceram. Soc. 101.5 (2018), pp. 1892–1905.