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1. INTRODUCTION

In the aerospace industry, aerodynamic efficiency is one of the main components of the overall
aircraft performance, and has thus a significant impact on the commercial success of aircraft.

†E-mail: elie.hachem@mines-paristech.fr
∗Correspondence to: Elie Hachem, Mines ParisTech, France.

Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled
with several numerical techniques to ensure stability and accuracy of the method. First, an edge based
error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the
constraint of a fixed number of elements, thus controlling the computational cost. A Variational MultiScale
stabilized finite element method is employed to solve the incompressible Navier-Stokes equations. Finally,
the Spalart-Allmaras turbulence model is solved using the Streamline Upwind Petrov-Galerkin (SUPG)
method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with
stabilized finite element methods provides an adequate framework for solving turbulent flows at high
Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature
of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift
coefficients as well as their evolution in time for unsteady cases.



Consequently, airplane and airship designers are often concerned with accurately predicting
aerodynamic forces and moments as a function of design parameters. In particular, the capability
to determine the drag and lift coefficients for a given configuration is instrumental in the process
of aircraft design. For this purpose, it is essential to reach a high level of accuracy and reliability
in the description of the physical phenomena involved. For instance, one drag count (i.e. 10−4

in drag coefficient) is often cited as the desired accuracy for the drag prediction of subsonic
transport aircraft [19] or the shape optimization of boats [30, 12]. However, the measurement of such
quantities through experimental data can be often time and budget consuming as well as difficult to
generalize, as such quantities depend strictly on the geometry at hand. For this reason, numerical
simulations have become very important for the conceptual and design phases in the aerospace
industry [22].

The high accuracy requirement for the prediction of integral coefficients in aerodynamic
simulations implies the necessity to correctly resolve local flow features such as boundary layers
or flow separation. For this purpose, locally-refined meshes are usually used. They incur a
computational cost that is several orders of magnitude lower than globally-refined meshes [31].
However, the generation of locally-refined grids is an extremely time- and effort-consuming process
that relies on the know-how and intuition of experts. It is not uncommon that engineers and
technicians must re-create adapted meshes when simulations prove locally under-resolved. Mesh
generation may amount to 80% of the overall analysis time in the automotive, aerospace, and ship
building industries [21].

One remedy to these challenges lies in algorithms for automatic adaptation of unstructured
meshes. A large variety of methods were proposed to optimize the compromise between accuracy
and computational cost in CFD (Computational Fluid Dynamics). One of the most successful
approaches involves a metric field that locally modifies the evaluation of spatial lengths depending
on an error estimator. With this technique, the mesh can be adapted in a classical manner, that is,
the local mesh size can be varied while maintaining element shapes as regular as possible. Above
all, it also makes it possible to perform anisotropic adaptation: the element shapes can be controlled
to fulfill a local mesh size requirement that varies depending on the direction. This capability is
necessary for obtaining optimal meshes in fluid dynamics problems, where anisotropic flow features
such as boundary layers are ubiquitous. Nevertheless, it implies that the numerical scheme perform
adequately with highly stretched elements or cells, which is not the case of all numerical methods.

Methods exploiting a priori error bounds through the evaluation of the Hessian or the gradient
of the solution have been developed in both the isotropic and anisotropic setting in [16, 32, 8].
Another class of anisotropic error estimates have also been obtained in [13, 14, 6], leading to the
standardization of the anisotropic metric construction procedure. However, dynamic anisotropic
mesh adaptation remains a challenge in the simulation of high Reynolds number flows past complex
geometries. In such cases, Reynolds-Averaged Navier-Stokes (RANS) models are most often used,
due to the prohibitive cost of turbulent scale-resolving approaches. With such models, local flow
features such as boundary layers and separation need to be well captured by mesh refinement, and
therefore the use of a priori adapted meshes often proves inefficient.

In this paper, we propose to solve RANS models by a stabilized finite element method combined
with an efficient dynamic anisotropic mesh adaptation procedure. In particular, we focus on the
Spalart-Allmaras [37] turbulence model. The mesh adaptation, driven by an efficient error estimator,



automatically captures thin boundary layers and flow separation points at high Reynolds number
(Re ∼ 106). The procedure makes it possible to accurately simulate three-dimensional turbulent
flows around complex geometries with a reasonable computational cost.

In this work, particular attention is paid to the automatic character of the mesh adaptation
process, with the objective of providing a useful and practical tool for aerodynamic applications.
The proposed algorithm enables adaptive meshing under the constraint of a fixed number of nodes,
which spares the end user from dealing with a case-dependent parameter linked to the error analysis.
Moreover, the choice of the appropriate input for the error estimator is usually difficult when
unknowns of different natures are solved simultaneously. Thus, we describe in this paper a multi-
criteria functional that estimates the error on a combination of several variables including the
velocity norm, all the velocity components as well as the turbulent viscosity.

In principle, the mesh adaptation procedure can be coupled to different spatial discretization
schemes such as Finite Volumes or Finite Elements. However, the numerical method must be able
to handle highly stretched simplicial elements. It is notoriously complicated to find schemes that
exhibit the level of robustness required by automatic anisotropic mesh adaptation, especially among
Finite Volume methods. We show here that stabilized Finite Element methods using appropriate
stabilization parameters are adequate to deal with elements of aspect ratio up to the order of
1000. A Variational Multiscale formulation for the incompressible Navier-Stokes equations, as well
as a Streamline Upwind Petrov-Galerking method used to solve the Spallart-Allmaras turbulence
equation, are presented for this purpose [26].

The proposed framework is first verified using the well known NACA0012 airfoil benchmark.
The results obtained for turbulent flows around cylinders with three different geometries are also
presented and compared to data from the literature. The solver is then validated by comparing
numerical predictions for the flow past an Unmanned Aerial Vehicle (UAV) with experimental
measurements.

This paper is organized as follows: we start in section 2 with the description of the anisotropic
mesh adaptation technique. Then, we present in Section 3 the governing equations and their
discretization. Section 4 describes the numerical test cases showing the efficiency and the accuracy
of the proposed method. Finally, Section 5 is dedicated to the conclusion and the future work.

2. ANISOTROPIC MESH ADAPTATION

The mesh adaptation strategy presented in this work relies on the a posteriori definition of a metric
field able, in some specified sense, to drive the re-meshing procedure so that the interpolation error
on the finite element solution is minimized. It relies on a statistical representation of the distribution
of edges sharing a vertex, a quantity we call length distribution tensor. In order to relate the length
distribution tensor to the interpolation error, following [10] we define an edge based error estimator
based on a gradient recovery procedure. Once the optimal metric has been obtained, the mesh
generation and adaptation procedure described in [27], based on a topological representation, is
applied to obtain the new mesh.
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Figure 1. Patch associated with node xi.

2.1. Definition of the length distribution tensor: a statistical representation

Let Ω ⊂ Rd be a polygonal domain, we consider a triangulation Ω =
⋃
K∈K

K where K is a simplex

such as a triangle or tetrahedron. Let Γ(i) be the “patch” associated to a mesh vertex xi, defined as
the set of nodes xj which share one edge with xi, and let us denote by xij the edge connecting xi

to xj as in Figure 1. The problem of finding a unitary metric Mi associated to the ith node can be
formulated as the least squares problem [10]

Mi = argmin
M∈Rd×d

sym

 ∑
j∈Γ(i)

Mxij · xij − |Γ(i)|

2

. (1)

Provided that the vertices of |Γ(i)| form at least d non co-linear edges with vertex xi (which is the
case in a valid mesh), then an approximate solution of (1) is given by

Mi =
1

d

(
Xi
)−1

, (2)

where, denoting by ⊗ the tensor product between two vectors, we have introduced the length
distribution tensor

Xi =
1

|Γ(i)|

 ∑
j∈Γ(i)

xij ⊗ xij

 (3)

whose purpose is to give an “average” representation of the distribution of edges in the patch.

2.2. Gradient recovery error estimator

Let vh be a P1 finite element approximation obtained by applying the Lagrange interpolation
operator to a regular function v ∈ C2(Ω). At node xi, we seek the recovered gradient gi of vh
defined by

gi = argmin
g∈Rd

∑
j∈Γ(i)

∣∣(g −∇vh) · xij
∣∣2 = argmin

g∈Rd

∑
j∈Γ(i)

∣∣g · xij − (vh(xj)− vh(xi)
)∣∣2 . (4)

The solution to (4) can be expressed in terms of the length distribution tensor introduced before as

gi =
1

|Γ(i)|
(
Xi
)−1 ∑

j∈Γ(i)

(
vh(xj)− vh(xi)

)
xij . (5)



It can be shown [10] that the quantity |gi · xij | gives a second order accurate approximation of the
second derivative of v along the edge xij . Motivated by the fact that, for P1 finite elements on
anisotropic meshes, edge residuals dominate a posteriori errors, as proved in [25], it is therefore
suitable to define an error indicator function associated to the edge xij as

eij =
∣∣gij · xij∣∣ . (6)

Moreover, this quantity can be easily extended to account for several sources of error, instead of just
the scalar field vh, by applying formula (6) to each component separately.

2.3. Metric construction

In order to relate the error indicator defined in (6) to a metric suitable for a mesh adaptation
procedure, we introduce the concept of stretching the factor sij defined as the ratio between the
length of the edge xij after the adaptation procedure and before the adaptation procedure. The new
metric, denoted by M̃i, will then be given by

M̃i =
1

d

(
X̃i
)−1

; X̃i =
1

|Γ(i)|

 ∑
j∈Γ(i)

(sij)2xij ⊗ xij

 (7)

To relate the metric to the interpolation error, following [23] we set a target total number of nodes
N . Because of the quadratic behavior of the error as a function of the scaling factor, denoting by ẽij

the quantity defined in (6) computed after the mesh adaptation process we have

sij =

(
ẽij

eij

)1/2

. (8)

Moreover, the number of nodes in the new mesh resulting from the application of the scaling factor
sij to the edge will be roughly equal to

N ij =
1

sij
, (9)

so that the total contribution of node i (in the old mesh) to the number of nodes in the new mesh
will be given by

N i = det

(Xi
)−1 ∑

j∈Γ(i)

N ijxij ⊗ xij

 (10)

By combining (8) and (9), it is possible to consider N i in (10) is a function of ẽij . Assuming that
the total error is equidistributed among all edges such that each edge contributes a constant error e

to the total, one can see that N ij =
(
eij

e

)1/2

, which results in the relation

N i(e) = e−
d
2N i(1). (11)

This article is protected by copyright. All rights reserved.



By summing over all the nodes of the old mesh, an expression for the total error as a function of the
number of nodes in the new mesh is obtained. Inverting this equality yields

e =


∑
i

N i(1)

N


2
d

, (12)

and injecting this into (8) provides an expression for the scaling factors

sij =

(∑
i

N i(1)

) 1
d

N
1
d (eij)

1
2

. (13)

2.4. Mesh adaption criteria

In the preceding sections, we have explained how a metric filed driving the mesh adaptation can
be derived from an edge-based error estimator under the constraint of a constant number of nodes.
Nevertheless, this work is dedicated to the solution of Fluid Dynamics problems, which involve
several unknowns, namely the velocity field v and the turbulent eddy viscosity ν̃ (see Section 3).

The common way to adapt a mesh to several variables is to compute the metrics corresponding
to each of them and then to produce a unique metric by intersection. The resulting metric should
yield the largest mesh size in any direction that still fulfills the size constraint given by all the
metrics. The intersection operation between several metric fields is not uniquely defined. The most
common technique, consisting of a sequence of simultaneous reductions of two metrics [1], does
not provide the optimal metric, is not commutative and incurs a relatively high computational cost.
Robust techniques, based on the optimization problems, are even more costly.

In this work, we simplify this operation by using one field that accounts for different variables.
Applying the error estimator (6) makes it possible to define a metric that to account for several
sources of error. A vector of error sources is locally defined in two dimensions as

Y(xi) =

 vix
‖vi‖

,
viy
‖vi‖

,

∥∥vi
∥∥

max
j
‖vj‖

,
ν̃i

max
j
ν̃j

 . (14)

In three dimensions, a component viz/
∥∥vi
∥∥ is added. The field used as input for the error

estimator (6) is the norm
(∑

k Y
2
k

)1/2
of Y, with Yk the components of Y. This definition measures

the error in the norm as well as in the direction of the velocity vector v, in addition to the error on
the turbulent eddy viscosity ν̃. Because all fields are normalized (the velocity components vx, vy
and vz by the local velocity norm, the velocity norm ‖v‖ and the turbulent eddy viscosity ν̃ by their
respective global maxima), a field that is much larger in absolute value does not dominate the error
estimator, and the variations of all variables are fairly taken into account.



3. GOVERNING EQUATIONS AND NUMERICAL SCHEME

In this section, we present the governing equations, namely the unsteady incompressible Navier-
Stokes equations coupled to the Spalart-Allmaras turbulence model, and their discretization. Time
splitting is applied to the system, so that the Navier-Stokes and the Spalart-Allmaras transport
equation can be solved separately using different numerical methods. At each time step, the Navier-
Stokes equations are solved in a first stage using the value of the turbulent variable from the
preceding time step, and the resulting velocity filed is used to solve the Spallart-Allmaras equation
in a second stage.

The stabilized Finite Element scheme for the Navier-Stokes equations is derived from a
variational multiscale point of view. Both the velocity and the pressure spaces are enriched which
cures the spurious oscillations in the convection-dominated regime and deals with the pressure
instability. The Spalart-Allmaras transport equation is solved through a Streamline Upwind Petrov-
Galerkin (SUPG) method. In both schemes, particular attention is paid to the determination of the
stabilization parameters in the presence of mesh anisotropy, through the use of a directional element
size.

3.1. The Navier-Stokes equations

To fix notations, let Ω ⊂ Rd be the fluid domain, where d is the space dimension, and ∂Ω its
boundary. The strong form of the incompressible Navier Stokes equations reads:{

ρ (∂tv + v · ∇v)−∇ · σ = f

∇ · v = 0
(15)

where t ∈ [0, T ] is the time, v(x, t) the velocity, p(x, t) the pressure and ρ the density. The Cauchy
stress tensor for a Newtonian fluid is given by:

σ = 2µ ε(v)− p Id, (16)

with Id the d-dimensional identity tensor and µ the dynamic viscosity. In order to close the problem,
Equations (15) are subject to the boundary and initial conditions to be specified later.

The Reynolds-Averaged Navier-Stokes (RANS) equations are obtained by applying a time-
averaging procedure to the Navier-Stokes equations, which gives rise to an additional stress term (the
Reynolds stress tensor) taking into account the effect of turbulent fluctuations on the averaged flow.
The Boussinesq approximation can then be used to model this additional stress as a turbulent eddy
viscosity µt. The RANS equations, with Reynolds-averaged velocity and pressure as unknowns,
have the same form as the Navier-Stokes equations, except that the molecular viscosity µ is replaced
by the sum µ+ µt. The eddy viscosity µt is obtained from a model involving additional partial
differential equations. We choose for this work the one-equation model described in Section 3.2.
Hereafter, we use the same notations for the Navier-Stokes and RANS equations and denote the
total viscosity as µ for the sake of simplicity.

The weak form of problem (15) combined with (16) can be obtained by multiplication of a test
function and integration by parts. Let H1(Ω) be the Sobolev space of square integrable functions
whose distributional derivatives are square integrable, and let V ⊂

[
H1(Ω)

]d
be a functional space



properly chosen according to the boundary conditions. Finally, letQ =
{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. By

denoting (·, ·) the scalar product of the space L2(Ω), the weak form of problem (15) on ∂Ω reads,
under the assumption of homogeneous Dirichlet boundary conditions:

Find (v, p) ∈ V ×Q such that:

ρ [(∂tv,w) + (v · ∇v,w)] + (2µε(v) : ε(w))− (p,∇ ·w) = (f ,w) , ∀w ∈ V

(∇ · v, q) = 0, ∀q ∈ Q.

(17)

where ρ and µ are the density and the dynamic viscosity, respectively. Based on a mesh Kh of
Ω made of Nel elements K, the functional spaces for the velocity V and for the pressure Q are
approximated by the finite dimensional spaces Vh and Qh respectively. It is well known that the
stability of the semi-discrete formulation requires an appropriate choice of the finite element spaces
Vh and Qh, that must to fulfill a compatibility condition [11]. Accordingly, the standard Galerkin
method with the P1/P1 element (i.e. the same piecewise linear space for Vh and Qh) is not stable.
Moreover, convection-dominant problems (i.e. problems where the convection term v · ∇v is much
larger than the diffusion term ∇ · (2µ ε)) also lead to a loss of coercivity in formulation (17).
This phenomenon manifests itself as oscillations that pollute the solution. In this work, we use
a Variational MultiScale method [20] which circumvents both problems through a Petrov-Galerkin
approach. The basic idea is to consider that the unknowns can be split into two components, a coarse
one and a fine one, corresponding to different scales or levels of resolution. First, we solve the fine
scales in an approximate manner and then we replace their effect into the large-scale equation. We
present here only an outline of the method, and the reader is referred to [17] for extensive details
about the formulation.

Let us split the velocity and the pressure fields into resolvable coarse-scale and unresolved fine-
scale components: v = vh + v′ and p = ph + p′. The same decomposition can be applied to the
weighting functions: w = wh + w′ and q = qh + q′. Subscript h is used hereafter to denote the
finite element (coarse) component, whereas the prime is used for the so called subgrid scale (fine)
component of the unknowns. The enrichment of the functional spaces is performed as follows:
V = Vh ⊕ V ′, V0 = Vh,0 ⊕ V ′0 and Q = Qh ⊕Q′. Thus, the finite element approximation for the
time-dependent Navier-Stokes problem reads:

Find(v, p) ∈ V ×Q such that:

ρ (∂t(vh + v′), (wh + w′)) + ρ ((vh + v′) · ∇(vh + v′), (wh + w′))

+ (2µεεε(vh + v′) : εεε(wh + w′))

− ((ph + p′),∇ · (wh + w′)) = (f , (wh + w′)) , ∀w ∈ V0

(∇ · (vh + v′), (qh + q′))Ω = 0, ∀q ∈ Q.

(18)

To derive the stabilized formulation, we split Equations (18) into a large-scale and a fine-scale
problem. The fine-scale problem is defined on element interiors. Under several assumptions about
the time-dependency and the non-linearity of the momentum equation of the subscale system
detailed in [17], the fine-scale solutions v′ and p′ written in terms of the time-dependent large-
scale variables using residual-based terms that are derived consistently. Consequently, we can use
static condensation, that consists in substituting directly v′ and p′ into the large-scale problem. This



gives rise to additional terms in the Finite Element formulation, that are tuned by a local stabilizing
parameter. These terms are responsible for the enhanced stability compared to the standard Galerkin
formulation. The large-scale system finally reads:

ρ (∂tvh,wh)Ω + (ρvh · ∇vh,wh)Ω

−
∑

K∈Th (τ1RM, ρvh∇wh)K + (2µεεε(vh) : εεε(wh))Ω

− (ph,∇ ·wh)Ω −
∑

K∈Th (τ2RC,∇ ·wh)K = (f ,wh)Ω , ∀wh ∈ Vh,0
(∇ · vh, qh)Ω −

∑
K∈Th (τ1RM,∇qh)K = 0, ∀qh ∈ Qh

(19)

where (·, ·)Ω represents the scalar product on the whole domain omega while (·, ·)K is the scalar
product on Element K. The quantities τ1 and τ2 are stabilization parameters defined hereafter. The
momentum residual RM and the continuity residual RC are expressed as:

RM = f − ρ∂tvh − ρvh · ∇vh −∇ph
RC = −∇ · vh

(20)

Compared to the standard Galerkin method, the proposed stable formulation involves additional
integrals that are evaluated element-wise. These additional terms represent the stabilizing effect
of the sub-grid scales and are introduced in a consistent way in the Galerkin formulation. They
make it possible to avoid instabilities caused by both dominant convection terms and incompatible
approximation spaces. All of these terms are controlled by the stabilization parameters τ1 and τ2,
for which we adopt the definition proposed in [9]:

τ1 =

[(
2ρ‖vh‖K
hK

)2

+

(
4µ

h2
K

)2
]− 1

2

, (21)

τ2 =

[(
µ

ρ

)2

+

(
c2‖vh‖K
c1hK

)2
] 1

2

(22)

where hK is the characteristic length of the element and c1 and c2 are algorithmic constants. We
take them as c1 = 4 and c2 = 2 for linear elements [9].

Equations (20) are discretized in time by a semi-implicit scheme. The convective term, the viscous
term and the pressure term in the momentum equation, as well the divergence term in the continuity
equation, are integrated implicitly through a backward Euler scheme. All other contributions (i.e.
the source term and the stabilization terms) are integrated explicitly by a forward Euler scheme.
Due to the split between the Navier-Stokes and the Spalart-Allmaras equations, the dependence of
the total viscosity µ on the turbulent viscosity µt is also explicit. Among the implicit terms, the
convection operator vh · ∇vh is non-linear, thus a Newton root finding algorithm is applied to the
system at each time step. Using the superscript n to denote the value of the quantities at time tn
and n+ 1, i to denote the value of the quantities for time tn+1 at the i-th iteration of the Newton



method, the system to be solved for (vn+1,i+1
h , pn+1,i+1

h ) at each iteration i reads:

ρ
(

vn+1,i+1
h −vn

h

∆t ,wh

)
Ω

+
(
ρ
[
vn+1,i
h · ∇vn+1,i+1

h + vn+1,i+1
h · ∇vn+1,i

h − vn+1,i
h · ∇vn+1,i

h ,wh

])
Ω

−
∑

K∈Th (τn1 R
n
M, ρv

n
h∇wh)K +

(
2µnεεε(vn+1,i+1

h ) : εεε(wh)
)

Ω

−
(
pn+1,i+1
h ,∇ ·wh

)
Ω
−
∑

K∈Th (τn2 RnC ,∇ ·wh)K = (fn,wh)Ω , ∀wh ∈ Vh,0(
∇ · vn+1,i+1

h , qh

)
Ω
−
∑

K∈Th (τn1 R
n
M,∇qh)K = 0, ∀qh ∈ Qh.

(23)

We usually precondition the linear system with a block Jacobi method supplemented by a
incomplete LU factorization, and solve it by means of a GMRES algorithm.

3.2. The Spalart-Allmaras turbulence model (SA)

The turbulence model chosen to compute the eddy viscosity is the one-equation Spalart-Allmaras
(SA) turbulence model. The SA model [37] represents the evolution of the kinematic eddy viscosity
ν̃ by a a non linear advection-diffusion-reaction equation:

∂ν̃

∂t
+ v · ∇ν̃ − cb1(1− ft2)S̃ν̃

+
[
cw1fw −

cb1
κ2
ft2

]( ν̃
d

)2

− cb2
σ
∇ν̃ · ∇ν̃ − 1

σ
∇ · [(ν + ν̃)∇ν̃] = 0 (24)

The eddy viscosity can then be obtained from µt = ρν̃fv1, with:

fv1 =
χ3

χ3 + c3v1

, χ =
ν̃

ν
, fv2 = 1− χ

1 + χfv1
ft2 = ct3e

−ct4χ2

fw = g

[
1 + c6w3

g6 + c6w3

] 1
6

, g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
,

S̃ = S +
ν̃

κ2d2
fv2, S =

√
2εεε(v) : εεε(v).

(25)

where d is the shortest distance to the wall, κ = 0.4 is the von Kármán constant, and the remaining
model coefficients are:

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, cv1 = 7.1, cv2 = 0.7, cv3 = 0.9,

cw1 =
cb1
κ

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2, ct3 = 1.2, ct = 0.5.

(26)

In order to improve accuracy and convergence, some modifications may be performed, in
particular to avoid the generation of negative viscosity values. There exist in the literature many
variations for the SA model, most of which are collected in NASA’s turbulence modeling resource
webpage [33]. In this work, the Negative Spalart Allmaras Model is used because of its capability
to avoid the generation of negative turbulent viscosity without the use of clipping [2]. It consists in



replacing (24) when ν̃ is negative by:

∂ν̃

∂t
+ v · ∇ν̃ − cb1(1− ct3)Sν̃ − cw1

(
ν̃

d

)2

− cb2
σ
∇ν̃ · ∇ν̃ − 1

σ
∇ · [(ν + fnν̃)∇ν̃] = 0, (27)

with fn = (cn1 + χ3)/(cn1 − χ3) and cn1 = 16. Moreover, the turbulent eddy viscosity µt is set to
zero when ν̃ is negative.

A stabilized Finite Element discretization of the Spallart-Allmaras model is proposed in [24].
Following a similar idea, we recast Equation (24) into a convection-diffusion-reaction form, and
apply a backward Euler time discretization:

ν̃n+1 − ν̃n

∆t
+
(
vn+1 − cb2

σ
∇ν̃n+1

)
· ∇ν̃n+1︸ ︷︷ ︸

convection

− 1

σ
∇ ·
[
(ν + ν̃n+1)∇ν̃n+1

]
︸ ︷︷ ︸

diffusion

−
[
cb1(1− fn+1

t2 )S̃n+1 +
(
cw1f

n+1
w − cb1

κ2
fn+1
t2

) ν̃n+1

d2

]
ν̃n+1︸ ︷︷ ︸

reaction

= 0, (28)

where ν̃n stands for the value of ν̃ at discrete time tn. We recall that the value of the velocity field at
time tn+1 is computed before the Spallart-Allmaras equation at the same time step, so the quantities
vn+1, S̃n+1, fn+1

t2 and fn+1
w are explicitly available when solving Equation (28).

Equation (28) is non-linear. Following [24], we apply the non-linear root finding algorithm at
semi-discrete level, but we chose to work with a simpler Picard-like linearization instead of the
Newton method employed in [24]. Using the superscript ν̃n+1,i for the value of ν̃n+1 at the i-th
iteration, an iteration of the non-linear root search reads:

ν̃n+1,i+1 − ν̃n

∆t
+
(
vn+1 − cb2

σ
∇ν̃n+1,i

)
· ∇ν̃n+1,i+1 − 1

σ
∇ ·
[
(ν + ν̃n+1,i)∇ν̃n+1,i+1

]
−
[
cb1(1− ft2)S̃n+1 +

(
cw1fw −

cb1
κ2
ft2

) ν̃i
d2

]
ν̃n+1,i+1 = 0, (29)

Equation (29) is then discretized in space using a Streamline Upwind Petrov-Galerkin (SUPG)
method. The Galerkin formulation is obtained by multiplying (29) by appropriate test functions
ωh ∈Wh, applying the divergence theorem to the diffusion terms and integrating by parts. Following
the lines in [3] on the use of stabilization methods for transient convection-diffusion-reaction
equations, the stabilized weak form of equation (29) reads:

(
ν̃n+1,i+1 − ν̃n

∆t
, ωh

)
Ω

+([
vn+1 − cb2

σ
∇ν̃n+1,i

]
· ∇ν̃n+1,i+1

h , ωh

)
Ω
−
(

1

σ
(ν + ν̃ih)∇ν̃n+1,i+1

h ,∇ωh
)

Ω

−

([
cb1(1− fn+1

t2 )S̃n+1
h +

(
cw1f

n+1
w − cb1

κ2
fn+1
t2

) ν̃n+1,i
h

d2

]
ν̃n+1,i+1
h , ωh

)
Ω

+
∑
K

(
R(ν̃n+1,i), τn+1,i

3

[
vn+1
h − cb2

σ
∇ν̃n+1,i

h

]
· ∇ωh

)
K

= 0, ∀ωh ∈Wh. (30)
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whereR(ν̃) is the finite element residual of (29). The stabilization parameter τ3, is computed within
each element as:

τ3 =

(
c2
h
‖αc‖K +

c1
h2
K

αd + αr

)−1

(31)

where αc, αd and αr are respectively the convection, diffusion and reaction coefficients in
Equation (30), hK is the element size, ‖αc‖K a characteristic norm of the convection term and
c1 = 4, c2 = 2 for linear elements.

The linear system arising from Equation (30) is solved using the same numerical method as for
the Navier-Stokes equations (see Section 3.1).

3.3. Element size measures in stabilization parameters

Recall that the coefficients (τ1,2,3) weight the stabilization terms added to the weak formulations
(19) and (30). They are defined for each element K of the triangulation and depend on the local
mesh size hK . Many numerical experiments show that good results can be obtained when using the
minimum edge length ofK [29], while others always use the triangle diameter (see [28] for details).

However, in the case of strongly anisotropic meshes with highly stretched elements, the definition
of hK is still an open problem and plays a critical role in the design of the stabilizing coefficients
[18, 9]. In [15], the authors examine deeply the effect of different element length definitions on
distorted meshes. In [7], anisotropic error estimates for the residual free bubble (RFB) method are
developed to derive a new choice of the stabilizing parameters suitable for anisotropic partitions. In
this work, we adopt the definition proposed in [39] to compute hK as the size of K in the direction
of the velocity:

hK =
2|vh|

ΣNK

i=1|vh · ∇ϕi|
(32)

where NK is the number of vertices of K and ϕ1, ..., ϕNK
are the usual basis functions of P1(K)

mapped onto K.

4. NUMERICAL EXPERIMENTS

This section describes the numerical tests conducted to assess the correctness and the efficiency of
the method. We compare results obtained for steady and unsteady 2D classical benchmarks such as
the flow around a prismatic cylinder and the NACA 0012 airfoil with data from the literature. For all
test cases, we use different type of meshes and number of elements to make adequate comparisons.
Finally, we present a more complex application, namely the flow past the 3D geometry of a UAV.

4.1. Evaluation of aerodynamic forces

The aerodynamic forces, which are the quantities of prime engineering interest in an aerodynamic
simulation, are most often expressed in terms of the lift coefficient CL and the drag coefficient CD



defined as

CD =
2FD
ρŪ2A

CL =
2FL
ρŪ2A

(33)

where A is a reference area, FD is the drag force oriented in the direction ex parallel to the flow and
FL is the lift force oriented in a direction ey normal to the flow. In 2D, these coefficients are usually
expressed per unit of span length by substituting a reference length L for the reference area A.

The total aerodynamic force exerted by the flow on an object of boundary S ∈ ∂Ω is given by

Faero =

∫
S

σn

so

FD = Faero · ex =

∫
S

(σn) · ex

FL = Faero · ey =

∫
S

(σn) · ey
(34)

We use the variational technique described in [41] to compute the components FD and FL of
Faero. Starting with the drag force, let us consider the Sobolev space [H1

∂Ω\S(Ω)]D of functions
supported in Ω that are equal to ex on S and that vanish on all other boundaries of Ω. A variational
form of the momentum conservation Equation (15) can be obtained by multiplying by a test function
and integrating by parts:∫

Ω

∂tv ·w +

∫
Ω

σ : ∇w +

∫
∂Ω

(σn) ·w

+

∫
Ω

(v · ∇)v ·w = 0, ∀w ∈ [H1
∂Ω\S(Ω)]D (35)

where n is the normal pointing inside the computational domain. Considering that w|∂Ω\S = 0, the
third term in (35) reduces to FD, and rearranging the terms yields

FD = −
∫

Ω

∂tv ·w −
∫

Ω

σ : ∇w −
∫

Ω

(v · ∇)v ·w, ∀w ∈ [H1
∂Ω\S(Ω)]D. (36)

In practice, we use for w the piecewise linear function that is equal to ex at the nodes lying on S
and 0 at every other nodes, i.e. the function that vanishes everywhere except on the first layer of
elements around S. The lift force can be obtained in the same manner, substituting ey for ex.

4.2. Flow past a 2D cylinder

As a first numerical test, we disregard the turbulence model (µt = 0) and consider the classical
benchmark proposed in [34], that is, the laminar flow past a cylinder located slightly asymmetrically
in a channel. The main point of this test is to demonstrate the ability of the mesh adaptation
framework to capture local flow features. Also, it assesses the capacity of the method described



Table I. Drag and lift coefficient values with literature for fixed mesh (Test 1) and adaptive mesh (Test 2).

CD CL
Schäfer and Turek [34] 5.58± 0.01 0.0107± 0.0003
Test 1 5.57 0.0098
Test 2 5.56 0.0099

in Section 4.1 to correctly evaluate the aerodynamic coefficients CD and CL on highly anisotropic
meshes. The detailed geometry, parameters, flow conditions and boundary conditions are described
in [34].

The first set of simulations corresponds to the steady case with Reynolds number Re = 20. Two
tests are performed, starting with a uniform solution and marching in time until the steady state is
reached. In the first test, a fixed fine mesh is used. In the second one, dynamic mesh adaptation is
triggered every a given frequency (i.e. here we fixed it at 10 iterations) under the constraint of a
fixed number of nodes N = 40, 000, starting from an arbitrary mesh.

Recall that a multi-criteria adaptivity is used in this case. As explained in Section 2.4, each
component of the velocity field and its norm were used to account for several sources of error.

The final drag and lift coefficients are listed in Table I, where they are compared with the reference
data from [34]. Very good agreement is found (about 0.2% in drag and 8% in lift).

To highlight the capability of the proposed adapted method, we repeated the same case with a
Reynolds number equal to 100. The same dynamic mesh adaptation parameters as for the steady
case are used. The velocity norm and the corresponding mesh at several points in time are shown in
the upper part of Fig. 2. As expected, the boundary layers on the cylinder and on the channel walls,
as well as the flow detachments, are captured automatically. The maximum drag and lift (i.e. 3.21
and 0.94 respectively) are again in good agreement with the reference.

Figure 2. Dynamic anisotropic mesh adaptation and fluid flow past a fixed cylinder.

4.3. Turbulent flow around prismatic cylinders

We turn now to a case with fully turbulent flow. Non-smooth cylindrical geometries are often
employed to assess stabilized finite element methods, because the sharp and localized flow features
that they develop challenge the stabilization techniques. For the same reason, they represent a good
test for mesh adaptation procedures. In this Section, we focus on the test cases proposed in [4]. They
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Figure 3. Geometry for cylinder case in section 4.3.

Figure 4. Plots of ν̃ (top) and streamlines (bottom) for Configurations (a) (left), (b) (center) and (c) (right).

involve geometries of 2D primatic cylinders that are parametrized by lengths H1 and H2 as shown
in Figure 3. The computational domain is 33H1 long and 21H1 wide. The cylinder is centered in
width, and its front side is located 8H1 downstream of the inlet boundary. Three configurations (a),
(b) and (c), corresponding to aspect ratios H2/H1 of 0, 0.6 and 1 respectively, are considered. The
values of the inlet velocity Vin and the dynamic viscosity µ are chosen to yield a Reynolds number
based on H1 equal to Re = 2.2× 104.

The inflow boundary conditions are v = (Vin, 0), ν̃ = 3ν, as recommended in [38]. Symmetry
conditions are imposed on the outer boundaries parallel to the flow direction as vy = 0, ∂vx/∂y =

0 and ∂ν̃/∂y = 0. For the outflow, p · n− (µ+ µt)
(
∇v +∇Tv

)
· n = 0 and ∇ν̃ · n = 0 are

prescribed, whereas for the rigid body no slip conditions are imposed as v = 0 and ν̃ = 0. The non-
dimensional time step is chosen equal to ∆t = 0.002. We are interested in assessing the evolution of
the drag and lift coefficients over time, once a condition of periodic shedding of vortices has been
reached. These quantities are computed by means of the method described in Section 4.1.

The plots in the upper part of Figure 4 depict the turbulent variable ν̃ at a time in the periodic
regime of the flow for the three different geometries with fixed meshes. It is clear that the turbulence
model is only active in the restricted area of interest, and the effects of the averaging process and
damping function seem to be correctly taken into account. The streamlines, shown in the bottom
part of Figure 4, are similar to those given in [4] in the cylinder wake.



Table II. Comparisons of drag and lift coefficients with the literature for Configurations (b) and (c).

mean CD r.m.s. CL
Bearman and Obasaju (c) [5] 2.10 1.20
Sohankar et al. (c) [36] 2.25 1.50
Shimada and Ishihara (c) [35] 2.05 1.43
Bao et al. (c) [4] 2.04 1.24
Present work (c) 2.08 1.57

Bao et al. (b) [4] 2.50 ± 0.125 1.7 ± 0.1
Present work (b) 2.57 1.79

The results in Table II are in good agreement with the literature presented in [4] and the references
therein. Some differences may however be spotted (for instance in the lift coefficient CL with
Configuration (c)). This may be due to the fineness of the spatial discretization, but also to the time
discretization, as pointed out in [40]. In addition to the use of a first-order implicit time integration
scheme, the time splitting error may contribute to this inaccuracy.

As in the previous case, the effects of mesh adaptation are investigated on Configuration (b). The
adaptive process always starts with an arbitrary uniform mesh and is iterated every 5 time steps.
It considers again a multi-criteria adaptivity taking into account the velocity components, its norm
and the turbulent viscosity. The number of nodes N is set to 105. As shown in Figure 5, the dynamic
mesh adaptation capture well the evolution of the solution. Note the concentration of the resolution
not only along the boundary layers but also in the wake regions. This reflects well the anisotropy of
the solution caused by the nature of the flow past the cylinder. The snapshots in Figure 5 explains
also, how for a controlled number of nodes, the mesh is refined around the newly appeared vortices
and automatically is coarsened in the regions far from the cylinder.

The zoom-in in Figure 6 highlights how sharply the layers are captured. It shows that the shape
but also the size and the orientation of the elements matches the directional features of the flow
(boundary layers, flow detachments). The zoom-out in Figure 6 shows how the anisotropic adaptive
procedure modifies the mesh in a way that the local mesh resolutions become adequate in all
directions. The mean aspect ratio for the anisotropic elements is O(1:1000). Again, the developed
stabilized finite element methods show to be very efficient and robust for solving flows at high
Reynolds number using highly stretched elements.

The evolution of drag and lift coefficients for different aspect ratios H2/H1 is shown in Figure 7.
Both reach as expected a steady oscillating state, and compare well to the plots shown in [4].

4.4. NACA0012 airfoil at Re = 6× 106

The objective of this test case is to demonstrate the capability of the method to simulate turbulent
flows at Reynolds numbers typical of aeronautical applications, as well as to assess the multi-criteria
adaptation feature presented in Section 2. We consider the flow around a NACA0012 airfoil [33],
that is a standard benchmark for aerodynamic simulations. The geometry of the NACA airfoil is
placed in a domain that is 8 chord lengths wide and 20 chord lengths long, which is considered
sufficiently large to avoid any influence of the boundaries on the flow in the vicinity of the airfoil



Figure 5. Subsequently adapted meshes and the corresponding velocity norm.

Figure 6. Zoom-out with vortex shedding (left) anf zoom-in the adapted mesh (right).

(see Figure 8). The Reynolds number based on the unitary cord length is Re = 6× 106 and the
Mach number is Ma = 0.2, thus ensuring the validity of the incompressibility hypothesis.

Flat velocity and turbulent viscosity (ν̃ = 3ν) profiles are imposed at the inlet boundary. Slip
conditions are prescribed on the boundaries parallel to the flow as v · n = 0. On the profile, no-
slip boundary conditions for the velocity as well as homogeneous Dirichlet conditions for the SA
working variable ν̃ are imposed. Time marching is performed until the steady-state is reached. The
non-dimensional time step is set to ∆t = 10−4.

As for the preceding test cases, the effects of the mesh adaptation process described in Section 2
are investigated, in particular with regard to the variables driving the adaptation and the use of a
fixed number of elements. Mesh adaptation is triggered every 5 time steps.

In a first phase, two cases are studied with a constant number of N = 100, 000 nodes in the
mesh. In the first one, only the velocity (norm and directions) is included in the adaptation criterion,
whereas in the second case, the combination of the velocity and the turbulent viscosity is considered.
The meshes obtained are depicted in Figure 9. It is clear that adapting on both the velocity and the
turbulent viscosity increases mesh resolution in the wake.



(a) (b)

(c)

Figure 7. Drag (lines) and lift (dots) coefficients for aspect ratios (a) H2/H1=0.0 ,(b) H2/H1=0.6 and (c)
H2/H1=1.0 .
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Figure 8. Geometry for the NACA test case in section 4.4.

In a second phase, the adaptation criterion including both velocity and turbulent viscosity
is chosen, and three tests are carried out, with a constraint of N = 50, 000, N = 100, 000 and
N = 150, 000 nodes respectively. The meshes obtained at the stationary state are shown in Figure 10.
We notice that pressure gradients are too localized to drive the adaptation procedure in a way that



Figure 9. Adaptation driven by the velocity (left) and combination of velocity and turbulent viscosity (right).

would be beneficial to the resolution of the complete flow. As expected, a high degree of mesh
anisotropy is reached in all the cases because of the steep local variations of the velocity and the
turbulent viscosity. Note the high resolution in the wake: the element size increases anisotropically
when moving away from the trailing edge.

The effect of the mesh resolution and adaptation on the drag coefficient is summarized and
compared to results obtained by different codes [33] in Table III. The influence of the mesh size is
clearly visible. Under the constraint of a fixed number of elements, the anisotropic mesh adaptation
algorithm, based on the principle of equi-distribution of the error, increases the mesh size at the
interface to better capture and refine the mesh in the wake. As may be seen from Table III, all tests
except the first one are in a 1% range of error, which confirms that it is appropriate to solve the RANS
equations by combining stabilized Finite Element methods and mesh adaptation. The influence of
the mesh adaptivity criteria is also well highlighted. Indeed, using only the velocity field as a criteria
shows higher error for the drag coefficient. Finally, the solutions and meshes obtained in Test 2 are
shown in Figure 11 and seem to be in agreement with similar tests in the literature. The mean aspect
ratio for the anisotropic elements is O(1:1000).

4.5. Analysis of turbulent flow past a drone

In the last numerical test case, the aim is to assess the capability of our numerical method to simulate
the turbulent flow past a complex 3D geometry, namely a UAV. We seek to reproduce experimental
results obtained for several angles of attack (0, 5, 10, 15) with a set-up pictured in Figure 12. The



(a) Test #1 (b) Test #2

(c) Test #3

Figure 10. The obtained meshes using (a)50, 000, (b)100, 000 and (c) 150, 000 elements.

Table III. Summary of test cases.

Reference Test #1 Test #2 Test #3 Test #4
No. elements ×105 0.5 1.0 1.5 1.5
Adaptation using v & νt v & νt v & νt v
CD × 10−3 8.155 ± 0.35 7.90 8.12 8.16 7.7
Relative error 3% 0.3% 0.1% 4.5%

model has a span of 300 mm and a total length of 300 mm. The inlet velocity is set to 10 m/s,
yielding a span-based Reynolds number of Re = 2× 106.

The model is placed in a computational domain of length 3m and width 1m. Similarly to the
preceding test cases, flat velocity and turbulent viscosity (ν̃ = 3ν) profiles are prescribed at the
inlet boundary, a pressure condition is imposed at the outlet, and slip conditions are used on the
boundaries parallel to the flow. At the UAV wall, no-slip boundary conditions for the velocity as
well as homogeneous Dirichlet conditions for the turbulent viscosity ν̃ are specified. Again, time
marching is performed until the steady-state is reached. The non-dimensional time step is set to
∆t = 10−4. Figure 13 gives a general view of the computational domain.

All the 3D simulations have been conducted in parallel on 64, 2.4Ghz Opteron cores and have
required 12.5 hours of computational time. On average, 4 nonlinear iterations were required to reach
convergence.

In the initial configuration, the UAV is simulated at zero angle of attack. The mesh is adapted
every 10 time steps while marching in time. When steady state is reached, the configuration is
instantaneously rotated to the following prescribed angle of attack. Figure 14 shows the steady-state
mesh for zero angle of attack in the vicinity of the UAV.
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Figure 11. Final plots for Test # 2.

Figure 12. The experimental setup: the drone inside a wind tunnel

Results obtained for the drag are presented in Figure 15. The agreement between the numerical
and the experimental results is satisfying despite the discrepancies between the experimental setup
and the numerical simulations. Note that three experiments were made for each case and the
averaged value is considered here. In particular, the surface roughness of the model obtained by
additive manufacturing may be the cause of the higher drag, due to the increased turbulent skin
friction. Figure 16 shows a visualization of the flow past the UAV by means of streamlines and
pressure distribution.



Figure 13. The immersed drone inside the numerical wind channel

Figure 14. Zoom on the adapted mesh around the immersed drone



Figure 15. Comparisons for the drag of the UAV at 10m/s



Figure 16. Streamlines past the UAV from 0 deg (top) to 15 deg angle of attack (bottom)



5. CONCLUSION

An adaptive anisotropic mesh methodology for performing accurate numerical simulations of
turbulent flows past complex geometries was presented. It couples a stabilized Variational
Multiscale Navier-Stokes solver, a Spalart-Allmaras turbulent model with a dynamic anisotropic
mesh adaptation algorithm. The benefit from using an edge-based error estimator with a multi-
criteria functional that estimates the error on a combination of several variables including the
velocity norm, all the velocity components as well as the turbulent viscosity is shown on different
challenging cases in 2 and 3 dimensions. All the main directional features, characterizing the
turbulent flows past immersed solids, are well detected and captured. The comparison with the
literature show that despite a low number of nodes, simulations do not suffer any instabilities and
a good accuracy is obtained. Further investigations will take into account the performance of the
presented adaptive method in terms of the computational cost, the speed-up and the frequency of
remeshing in a massively parallel environment.
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