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Abstract

Dropout is a regularisation technique in neural network training where unit activations are randomly
set to zero with a given probability independently. In this work, we propose a generalisation of dropout
and other multiplicative noise injection schemes for shallow and deep neural networks, where the random
noise applied to different units is not independent but follows a joint distribution that is either fixed or es-
timated during training. We provide theoretical insights on why such adaptive structured noise injection
(ASNI) may be relevant, and empirically confirm that it helps boost the accuracy of simple feedforward
and convolutional neural networks, disentangles the hidden layer representations, and leads to sparser
representations. Our proposed method is a straightforward modification of the classical dropout and does
not require additional computational overhead.

1 Introduction

The tremendous empirical success of deep neural networks (DNN) for many machine learning tasks such
as image classification and object recognition (Krizhevsky et al. 2017) contrasts with their relatively poor
theoretical understanding. One feature commonly attributed to DNN to explain their performance is their
ability to build hierarchical representations of the data, able to capture relevant information in the data
at different scales (Bengio et all [2013; |Tishby and Zaslavskyl 2015; Mallatl [2012). An important idea to
create good sets of representations is to reduce redundancy and increase diversity in the representation, an
idea that can be traced back to early investigations about learning (BARLOW] |1959) and that has been
implemented in a variety of methods such as independent component analysis (Hyvérinen, [2013) or feature
selection (Peng et al., [2005). Explicitly encouraging diversity has been shown to improve the performance
of ensemble learning models (Kuncheva and Whitaker| [2003; Dietterichl [2000]), and techniques have been
proposed to limit redundancy in DNN by pruning units or connections (Hassibi and Storkl [1993}; LeCun
et al., |1990; Mariet and Sra, 2016) or by explicitly encouraging diversity between units of each layer during
training (Cogswell et al., 2015; Desjardins et al., 2015; Rodriguez et al., 2016; Luo, 2017).

Dropout (Hinton et al., 2012} |Srivastava et al., 2014) is a recent and popular regularisation techniques in
deep learning that exploits the idea of creating diversity stochastically while training, by randomly setting
to zero come units or connections during stochastic gradient optimization. Proposed by Hinton et al.| (2012])
as a way to prevent co-adaptation of units and to approximately combine exponentially many different
DNN architectures efficiently, it has improved DNN performance in many benchmark datasets. Dropout
can also be interpreted as a regularization technique (Baldi and Sadowski, |2013; [Wager et al., |2013; Maedal,
[2014; [Helmbold and Long), 2017)), however its impact on learning a good representation of the data remains
elusive. Several variants of the original dropout model have been proposed to adapt the algorithm to other
models (e.g.,|Gal and Ghahramani, [2016)), or to modify the distribution of the stochastic noise.
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(2013)) propose that the dropout rate of a unit should depend on its magnitude and dynamically adapt the
dropout rate of each unit activation during training. Another variant is to group units together because
of their proximity in a map (Tompson et al., [2014; DeVries and Taylor, [2017)) of because they are strongly
correlated (Aydore et al.l|2018]), before applying dropout jointly on the units in a group. This can equivalently
be interpreted as applying dropout to individual units, but constraining the stochastic dropout noise in units
within a group to be perfectly correlated.

In this work, we extend and generalize the idea to modify the noise distribution, and analyse both
theoretically and empirically the effect of different choices. In particular, we study the impact of creating
correlations among noise in the units of a given layer, generalizing the ideas of 'Tompson et al.[(2014); DeVries
and Taylor| (2017)); |Aydore et al.| (2018) to a general covariance structure. We depart from binary dropout
noise to the more flexible multiplicative Gaussian noise model, which allows to specify any covariance structure
without the need to explicitly cluster units into groups, and highlight the role of the noise correlation matrix
in the regularization effect of this structured noise injection procedure. We show in particular that borrowing
the covariance of the units to create the covariance of the noise can decrease redundancy among the units, a
phenomenon we confirm empirically that leads to better representations and classification accuracy.

2 Dropout and multiplicative noise

Let us first set notations to describe a standard neural network for inputs in R? with H layers of respective
dimensions dy, . ..,dy. For any layer [ € [1, H] let WO ¢ RIxd™ 4nd 5O ¢ R denote respectively the
matrix of weights and the vector of biases at layer I, with the convention d(®) = d, and let § = (W, b)),y

denote the set of parameters of the network. The network defines a function fg : R — R given for any
z € R by fo(x) =y, where y) is defined recursively for I = 0,..., H by y(© =z and, for [ € [1, H]:

A0 Wy =1 40
YO = gW(z0),

where o) is an activation function at the I-th layer, such as the RELU function o(t) = t1(t > 0) for t € R,
applied entrywise if its input is a vector.

Given a training set D of N labelled inputs (z1,%1),.-.,(zn,yn) € RY x RP, and a loss function L :
R x RP — R, training the neural network amounts to fitting the parameters 6 by trying to minimize the

average loss over the training set:
N
1
HgHNZ;L(fa (i) yi) (1)

usually by some form of stochastic gradient descent (SGD) using backpropagation to compute gradients. For
example, when the label is a scalar (p = 1), then one can use d!) = 1 and the squared error L(u,v) = (u—v)?
for u,v € R.

A popular way to improve the training of neural networks is to use dropout regularisation, where during
training the units of the input and hidden layers are stochastically omitted during the back-propagation
algorithm (Srivastava et al.,[2014). Dropout is a particular case of multiplicative noise, which we can formalize
as follows. Given a sequence of vectors r = (r(o), e ,T(H’l)) e RY x ... x Rdm_l), of total dimensions
D =d® + ... +d¥ =Y we create the modified function fy(x,r) = y#) where ®) = x and, for [ € [1, H]:

gD = =1 g =1
(1) =Wwhgl=1 4 p1)
y® = oW (z1),

where ® denotes the Hadamard or element-wise product. We then define a set of independent and identically
distributed (i.i.d.) random variables (R;);=1,..  ~ with values in RP (the “noise”) and train the network by
solving

N
mein%Z]EL (fo (i, Ri) ,yi) - (2)
i=1



With these notations, the standard dropout approach of (Srivastava et al 2014) with parameter p € [0, 1]
is obtained by taking a noise distribution with i.i.d. entries across the dimensions taking the value 1/p with
probability p, and 0 with probability 1 — p.

3 Structured noise injection (SNI)

We propose to create new learning schemes by learning with multiplicative noise, as described above, where
the noise distribution of R is not i.i.d across the units (while we keep the noise samples Ry, ..., Ry ii.d.
according to the noise distribution). For simplicity, we focus only on Gaussian noise:

R~N(1p,\%), (3)

where 1p is the constant D-dimensional vector with all entries equal to 1, A > 0 is a regularization parameter
and ¥ € RP*P is a symmetric positive semidefinite covariance matrix. When A = 0, R is almost surely
constant equal to 1, and we recover the standard learning without noise injection . When A >0and ¥ =1
we learn from i.i.d. multiplicative Gaussian noise, a variant of dropout that was proposed by |Srivastava et al.
(2014)) and shown to perform very similarly to dropout. When ¥ is diagonal but not necessarily constant on
the diagonal, the amount of noise can vary among units, but the noise is still independent across units.

Our focus in this paper is on non-diagonal covariance matrices 3, which create correlations between the
noise at different units. We call this setting structured noise injection (SNI). In the case of multilayer neural
network, it is natural to create correlations within layers, and not between layers, which translates to a block-
diagonal structure for X, where each block corresponds to the units of a given layer. We further consider two
flavors of SNI.

3.1 SNI with fixed noise covariance

The basic flavor of SNI is when we fix the noise covariance X a prior: and independently from the data, using
for example the structure of the network as prior knowledge. This is a way to input prior knowledge about
the problem in the learning algorithm, and has already been proposed as a promising technique in different
settings, particularly with binary noise. For example, Tompson et al. (2014) proposed the SpatialDropout
method, where entire feature maps corresponding to adjacent pixels are randomly discarded together instead
of individual pixels, corresponding to binary SNI with a block-diagonal covariance matrix with constant
blocks equal to 1 for each set of pixels in a feature map. Similarly, DeVries and Taylor| (2017) applies binary
SNI at the input layer of a convolutional network by masking contiguous sections of inputs rather than
individual pixels, yielding new state-of-the-art results in image classification. Implementing a SNI strategy
with fixed, block-diagonal covariance matrix at the layer level, is only a slight generalization of standard
parameter inference with SGD and backpropagation. For example, Algorithm [I] illustrates the forward pass
between layers [ — 1 and [ with SNI regularization, where ©(=1 is the block of ¥ corresponding to layer [ — 1.

Algorithm 1 Feed-forward pass with SNI at layer [

Input: Mini-batch of outputs from the previous (I —1)-th layer y%lil), e ,ygfl) € Rd“fl% regularization

parameter A € R, covariance matrix of the noise »i-=1
Output: The mini-batch of outputs from the [-th layer

: for i =1 ton do
Sample rl(l_l) ~ N (L1, ABED)
ggzq) o 0D 5 y(lfl)

20 O 40
v e o(z!)

end for l

return ygl), ceey yg) c R




3.2 Adaptive SNI

Another SNI approach is to define a noise structure with covariance (D, #) which may depend on the data
and on the model parameters. We refer to this situation as adaptive structured noise injection (ASNI). An
example of ASNI approach, where 3 depends on the data D but not on the model parameters 6, was recently
proposed by |Aydore et al| (2018): they first use the data D to identify groups of correlated features, and
then perform dropout at the group level, reporting promising empirical results. In other words, they impose
a block diagonal correlation structure on the noise, where each block corresponds to a group of correlated
features, and the correlation of the noise within a group is 1. While grouping is needed when one wants
to perform dropout by group, more general correlation matrices are possible when the noise in Gaussian.
An obvious extension of the work of |Aydore et al.| (2018)) is to impose over the noise the same covariance
structure as observed in the data. When a single-layer linear model is considered, as in |Aydore et al.| (2018]),
then ¥ depends only on the data D, but not on the model parameters 6. In the case of multi-layer networks,
the covariance of the units at a given internal layer not only depends on the data distribution, but also on
the parameters 6 of the models; as a result, the covariance of the noise in internal layers depends on both D
and 6 when we impose that is equals that of the units in the layer.

To solve with ASNI, we can still follow a SGD approach where at each step a minibatch of examples
is randomly chosen, and a realization of the noise on these examples is sampled. One difficulty in ASNT is
that the law of the noise depends on the data themselves, and on the parameters of the DNN which evolve
during optimization. Similarly to the procedure used in batch normalization (loffe and Szegedy, [2015), we
propose to re-estimate the covariance of the noise at each SGD iteration from the mini-batch itself, before
sampling the noise on the mini-batch using this structure. Algorithm [I] details the feed-forward pass for one
layer, in the case where X is block diagonal with a block for each layer equal to the covariance of the units
in that layer.

We note that in order to sample the noise with a given covariance matrix 3, one typically needs to factorize
¥ = UUT by spectral decomposition or Cholesky decomposition (Gentle, 2009), and then get the samples
as Ue where € ~ N(1,I). This can create significant computational burden, since this must be performed at
each SGD iteration, and is one of the reasons why, for example, batch normalization only scales each feature
but does not perform whitening (loffe and Szegedyl, [2015). In the particular case of ASNI where X is the
covariance of the data, we can get an important speed-up since the estimate of ¥ on a mini-batch is already
factorized as & = YTY where Y is the n x d~1 matrix of mini-batch outputs, centered and divided by
v/n. In other words, the estimation of »U=1 in line 1 of Algorithm [2| can be completely bypassed, and the
matrix U in line 4 replaced by Y. We note that this is particularly efficient when the mini-batch size n is
not larger than the number of umts. Finally, a further important speed-up is possible by sampling a single
noise vector for each sample in a mini-batch, instead of sampling a different vector for each sample. In other
words, we can move lines 3 and 4 of Algorithm [2] outside of the ”for” loop, between lines 1 and 2. This may
come at a price of more iteration, since it increases the variance of the stochastic gradient, but we found in
our experiments that it did not significantly affect the number of iterations needed and brought a significant
overall speed-up.

Algorithm 2 Feed-forward pass with ASNT at layer [

Input: Mini-batch of outputs from the previous layer y(l 1), ey y,(Ll D e Rra'™?

eter A € Ry
Output: The mini-batch of outputs from the I-th layer
1. Bstimate £(-1 = UUT with U € R%'™"”X40 from the batch
2: for i =1 ton do
3:  Sample ¢, ~ N (14,,1)
Z(lfl) — VMUg;
%l n (l Do y(l 1)
l) - W z)%l 1) 4+
: (l) —o(z (l))
8: end for
9: return ygl), ceey y,(ll) R

, regularization param-

4
5:
6:
7




4 Regularization effect

It is well known that learning with noisy data can be related to regularization. For example, adding uncor-
related Gaussian noise to data in ordinary least squares regression is equivalent, in the case of squared error,
to ridge regression on the original data |Bishop| (1995). The following result clarifies how correlations in the
noise impacts this regularization. We consider a setting with no hidden layer and no bias term, i.e., a simple
linear model of the form f(x) = w 'z where w € R? is the vector of weights of the model.

Lemma 1. Given a training set (x1,y1),...,(Tn,Yn) € R? x R with centred inputs (> i, x; = 0), and
given Ry, ..., Ry i.i.d. random variables following N (u, A\X) for some A > 0 and covariance matriz 3, the
following holds for any w € R%:

N
2 1 T
i g E TRy ®x;) — yZ =N g wlz; — yZ —|—)\w (CoX)w

where C = 1 ZZ 1% x] is the covariance matriz of the data. Furthermore, if L : R? — R is a general loss
function and for any y € R, the function u € R — £, (u) = L(u,y) twice-differentiable, then the following
holds:

N
A
—ZEL (R ©xy),y1) = Z w' i, y; +§wT(J(w)®E)w+o(/\),

where
1
= N Zf’y'i (waZ) xzxZT .
i=1

The proof of these results follows standard arguments (e.g. |[Wager et al., [2013). They show how the
structure in the noise can be interpreted as a particular regularization. Depending on the noise covariance
>, we derive several interesting situations:

e In the case of standard dropout regularization with i.i.d. nodes (X = I), we recover known results of
Wager et al.| (2013); [Baldi and Sadowski| (2013)).

e When X = 1d1:1'—, i.e., when the noise is the same for all units, then ¥ is the neutral multiplication of
the Hadamard product. This implies that the regularization boils down to Aw " Cw in the least squares
regression case, and to Aw'.J(x)w/2 in the more general case. Interestingly, in the least squares
regression with centered data, we have the following:

Lemma 2. Given a training set (1,y1), ..., (Tn,Yn) € RY x R with centred inputs (3, x; =0), and
given Ry, ..., Ry i.i.d. random variables following N (i, /\ldlg) for some A > 0, the following holds
for any w € R%:

N
(R ® x;) — yZ = waz yZ +)\'LDT1D,

an

N . ) ) _ . ) ,
where C' = %Zi:l x;x; s the covariance matriz of the data, ¥; is a whitened version of z; for i =
1,...,n, and W is the whitened version of w.

In other words, SNI on centered data is equivalent in the case of squared error to standard ridge
regression on the whitened data. Remember that whitening data is obtained by multiplying each vector
by a whitening matrix Z € R?*? that satisfy Z'Z = C~!. There exist an infinite number of possible
whitening matrix, a standard choice being Z = C~1/2 for ZCA whitening. Hence, in Lemma T =Zx;
and W = Zw, and the proof of Lemma [2| results from simple algebric manipulations of the results of
Lemmal|l]l Interestingly, when noise injection is done per layer, then Lemma [2| shows that injecting the
same noise to all units of a given layer is equivalent to data whitening at the layer input, combined
with ridge regularization (a.k.a. weight decay in the neural network terminology). Data whitening is
usually associated with high computational cost associated to diagonalization of the covariance matrix,



and is replaced in practice by batch normalization which only normalizes the variance of each unit;
our analysis suggests that SNI with strong noise correlation within a layer provides a computationally
efficient approach to obtain the same result as complete data whitening.

e Finally, we propose ¥ = C as another interesting structure for ASNI, which generalizes the idea of
Aydore et al|(2018) to creating noise correlation on correlated units and in case of non-linear models.
In the case of least square regression, this is equivalent by Lemma [1| to a regularization by w ' C®?w.
While detailed analysis of this choice is complicated by the fact that the eigenstructure of C®? is not
easily related to the one of C'; we show empirically below that it leads to promising results.

5 Effect on learned representation

While Lemma [1] interprets SNI as regularization in the one-layer, linear model case, the same analysis can
be done at each layer of a multi-layer network. In that case, though, both the inputs of the layer (i.e., the
z;’s in Lemma [1)) and the weights w are jointly optimized, since the inputs depend on the parameters of the
previous layers. Hence SNI may affect the representation learned by a multi-layer network.

Let us take the case of least squares regression as an example, where SNI is equivalent to a regularization
by Aw' (C' ® ¥)w according to Lemma [I] When ¥ = 141, we have seen that SNI is equivalent to ridge
regression on the whitened data. Hence, any rotation of the inputs has no impact on the model learned,
since both the whitening of the z;’s and the ridge penalty on w are invariant by rotation. As a consequence,
SNI in that case does not promote independence of the units in a layer, since any rotation of the units can
change the correlation between units without affecting the objective function of SNI regression.

The situation is different for the standard dropout (X = I) and ASNI with ¥ = C, as the penalty
w' (C ®¥)w is not invariant by rotation anymore. Interestingly, the following holds:

Lemma 3. For ¥ =1 or ¥ = C, where C is the covariance matriz of a set of points x1,...,x, € R%, it
holds that:

1. Vij € [1.d],(COx), >0,

2. Zj,j:l (Co Z)ij is tnvariant by rotation of the points.

Proof. For the first point, just notice that for 3 = I, the entries of C' ® X are C;; > 0 on the diagonal, and 0
elsewhere; for ¥ = C, the entries of C' ® X are C’fj > 0. For the second point, note that for ¥ = I, the sum
considered is just the trace of the covariance matrix C, which is invariant by rotation (sum of eigenvalues);
for ¥ = C, the sum considered it the squared Frobenius norm of C', which is also invariant by rotation (sum
of the squares of eigenvalues). O

As the penalty induced by SNI is

d
" (CoOD)w=XDY (CoOI),;ww,, (4)

ij=1

Lemma |3| suggests an interplay between the optimization of the inputs (which impact C ® ) and the
optimization of w. If we fix w and just optimize over a rotation of the inputs, then the penalty is just a
linear function in C' ® X, which according to Lemma [3]stays in a linear polyhedron defined by linear equalities
and inequalities, and one might expect the best rotation to push C ® 3 near the boundary of that polyhedron,
where some entries are 0. Of course a more careful analysis is needed to make this reasoning rigorous (in
particular, w should also be rotated, and C ® ¥ can not span the whole polyhedron), but it may hints that
both dropout and ASNI with ¥ = C tend to create representations with small values in C' ® . While this
only concerns variance terms for usual dropout, a possible benefit of ASNI with ¥ = C'is that it involves all
off-diagonal terms Cizj as well, suggesting that ASNI may create less correlated representations by penalizing
the correlation among units of a given layer. We study this effect more precisely in the experiments below.



6 Experiments

6.1 Simulation

In order to study the performance of ASNI on a toy model, we use the classical simulation setting proposed
by |Guyon et al.[(2007) for the MADELON dataset. In short, we generate 100 samples for training and 10 000
test samples from 2 balanced classes, and train a linear model on the same training set using (1) no dropout,
(2) i.i.d Gaussian dropout with different values of A, and (3) ASNI using ¥ = C with different values of
A. The MADELON procedure allows to vary total number of features, as well as the number or redundant
features. We report in Tables [I] and [2] the test accuracies of the different models, when we vary the total
number of features on the one hand, and when we vary the number of redundant features on the other hand.

Table 1: Best average test classification score of a linear model without noise injection, with i.i.d Gaussian
dropout, and with ASNI on the MADELON simulation with 10% useful features and no redundant features:
varying the total number of features.

Redundant No drop. i.i.d Gauss. ASNI

10? 66.6 £2.6 68.3 +£2.0 68.0 £2.0
10? 68.1 £2.3 68.6 £2.0 68.9 £2.2
10* 55.6 £2.5 54.9 £2.8 56.2 £2.6

Table 2: Best average test classification score of a linear model without noise injection, with i.i.d Gaussian
dropout, and Structured dropout (ASNI) on the MADELON simulation with 1000 features and 100 useful :
varying the number of redundant features .

Features No drop. i.i.d Gauss. ASNI

0 66.6 £2.3 68.3 +£2,0 68.0 £2.0
100 65.8 £1.6 67.6 £1.3 68.2 £1.3
800 68.9 £1.6 69.1 £1.6 71.6 £1.6

We notice that in most settings ASNI performs best, particularly when the total number of features
grows. This suggests that ASNI acts as an effective regularizer even for linear models. It also significantly
stands out in the presence of redundant features. An intuition is that ASNI allows us to use the weights of
the redundant features in accordance to the useful features they are created from and minimises prediction
disagreement among single weights (since it ties weights in the regularisation).

6.2 MNIST

We now assess the performance of ASNI on image classification, using the classical MNIST benchmark. For
simplicity, we train a network with only 2 dense ReLU-activations hidden layers. We do not expect to obtain
state-of-the-art results as we do not perform any data augmentation or other regularisation. The goal of this
set of experiments is mainly to study the difference of performance and the effect of ASNI on a hidden layer
activations compared with independent noise injection. The number of the second hidden layer units d® is
fixed to the number of classes (10 here), and we vary the number of units in the first hidden layer ON

We summarize in Table [3| the test accuracy defined as the proportion of well classified examples from the
test set, after training the 2 hidden layer network with varying number of units. Figure[2|shows the evolution
of this test error during the training process of the model with 256 units in the hidden layer, as a function of
the number of SGD iterations.

We see from Table [3] that all methods involving noise injection tend to outperform the baseline approach
without no regularization, which confirms the benefits of noise injection for performance. Second, we notice



Table 3: Best average classification score on the MNIST dataset of a 2 hidden layer without noise injection,
with i.i.d noise injection (Gaussian and Bernoulli dropout), and with ASNI, when we vary the number of

units in the first hidden layer.

d® No drop. iid Gauss. iid Bern. ASNI
32 93.7+ 0.2 942 +08 944+09 958+ 04
64 95.8+£ 0.6 954 +0.7 95.9+06 96.6+0.7
256 96.1 £ 0.6 97.0+ 0.7 974 +0.7 97.8 0.7
512 96.5 £ 0.1 975+0.1 976 £0.1 98.1+£0.1
1,024 96.2+£0.1 976 +£0.1 976 +0.2 98.1+0.3

that among the three methods that perform noise injection, ASNI constantly outperforms both Gaussian
and Bernoulli i.i.d dropout for small and large number of units. The 2 hidden layers, that seems to overfit
even for a small number of units in both hidden layers, has however a better accuracy with larger number of
units, which indicates that there is still information to be gained from the data. The network with 64 units
however, with ASNI regularization, seems to capture more information than the network without dropout
with 1024 units, which can be largely explained by the quality of representation learnt by structured dropout,
as we will show below. Figure [2| also shows that ASNI leads to faster convergence, an effect observed as well
in batch normalisation (loffe and Szegedy! [2015)).
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Figure 1: Test classification during training for a 2-hidden layers MLP trained without noise injection, with
i.i.d. noise injection or with ASNI (with the best regularisation hyper-parameter), with 256 units in the
hidden layer.

To see the effects of ASNI on units co-adaptation we measure the total correlation of the units’ activations
at a layer [ as the Frobenius norm of the activations correlations matrix 7" defined as:

217‘7
VEZii%is
where Y. is the covariance of the unit activations introduced in methods description. The evolution of this
quantity is shown in Figure[2] for the network with 1,024 units in the hidden layer. We see that for all methods,

correlations among units tends to decrease during optimization, which confirms that better performance is
obtained when units are less redundant. We also see that adding noise has a dramatic effect on the decrease
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Figure 2: Correlation matrix norm of the first hidden layer activations during training for a 2-hidden layers
MLP trained without noise injection, with i.i.d. noise injection or with ASNI (with the best regularisation
hyper-parameter), with 1,024 units in the first hidden layer.

of correlation, as all three methods regularized by noise injection see their units’ correlations decrease much
faster and much lower than the unregularized baseline. Gaussian and Bernoulli i.i.d. noise injection lead to a
very similar curve, confirming that both methods behave very similarly. Finally, we observe that ASNI lead
s to faster decrease of the correlation matrix norm, and that it reaches after 10% iterations a lower value than
all other methods. This empirically confirms the active role played by non-i.i.d. noise injection, in particular
ASNI, in promoting non-redundant representations.

To further study the quality of the representations learned by different methods, we visualize the vectors
of hidden layer activations on the test set using t-SNE in order to assess how well the different classes are
separated. Figure [3| (right panels) shows the 2-component t-SNE embeddings of the second hidden layer
activations (32 in this case) applied on a sample of 1,000 test samples, trained respectively without noise
injection, with i.i.d. Gaussian or Bernoulli dropout, and with ASNI. Visually, we see that the class are
better separated in the representation learned by ASNI than by the other methods. To quantify this visual
impression, we measure the quality of the representation by computing the Silhouette coefficient of each
t-SNE embedding (Rousseeuwl, [1987). A larger Silhouette value indicates that the representation is better
at recovering the known classes of images (Chen et al., 2002). We report in Table [4f the mean silhouette
coefficients over all test samples for 10 clusters with respectively 32, 256 and 1,024 units in the first hidden
layer. These results confirm what we qualitatively observed in Figure 77, namely, that noise injection improves
the quality of the representations compared to the non-regularized version, and more importantly that ASNI
clearly outperforms i.i.d. noise injection in all settings.

Table 4: Average Silhouette coefficient scores of the last hidden layer t-SNE embeddings on MNIST test
dataset, without noise injection, with i.i.d Gaussian and Bernoulli dropout, and structured dropout (ASNI).

d®Y  No drop. iid Gauss. iid Bern. ASNI

32 0.60 0.57 0.53 0.69
256 0.58 0.63 0.63 0.72
1024 0.58 0.73 0.74 0.80

In order to further investigate which layers are decorrelated by ASNI, we train the same 2 hidden layers



architecture on MNIST, but we apply independent noise injection or ASNI only on a single layer for each
experiment (input, first hidden or second hidden layer). The evolution of the first and second hidden layer’s
correlations during training (represented again by the Frobenius norm of the activations correlation matrix
at iteration t) for each experiment is shown in Figure We see that i.i.d. Bernoulli and Gaussian dropout do
not necessarily reduce the correlations between units, and thus do not always prevent co-adaptations in terms
of activations correlations. ASNI, on the other hand, forces units to be more independent when it is applied
on that layer, but does not reduce cross-correlations completely to 0 since the norm of the correlation matrix
continues to decrease during the training. In this sense, ASNI is different from the whitening techniques
mentioned in the introduction in that it does not explicitly change the input and does not force units to be
independent such as batch normalisation and its decorrelated variants, but rather encourages units through
the structure of dropout to be more independent. Interestingly, Figure [] also shows that in the case of dense
multilayer networks, applying ASNI on one layer does decorrelate the activations of that layer but not of the
next layers. However, applying ASNI on the second hidden layer decorrelates both its activations and the
activations of the first hidden layer.

Finally, we assess whether ASNI regularization has an effect on the sparsity of activations. Figure [5|shows
the histogram of the activation values after training the same 2 hidden layers network without dropout, with
i.i.d. gaussian or Bernoulli dropout, or with ASNI. It confirms the findings of |Srivastava et al.| (2014]) that
dropout may lead to sparser representations. However, we can see that ASNI provides a sparser activations
distribution than dropout, while improving on accuracy as previously shown in Table [3 We also notice that
Bernoulli dropout and its gaussian variant result in a similar level of sparsity, in this experiment at least,
which leads to think that this effect is independent from the sparsity of the multiplicative noise itself.

6.3 CIFAR10 and CIFAR100

Finally, we compare ASNI to i.i.d. noise injection on a more realistic setting, namely, a LeNet convolutional
network architecture with 4 convolutional layers followed by 2 dense layers tested on the CIFAR10 and
CIFARI100 datasets. We again compare the different noise injection schemes applied on the 2 dense hidden
dense layers, without data augmentation or additional regularization.

Table [5|summarizes the test accuracy reached by the different training procedures. We again observe that
all noise injection methods outperform the baseline, that Gaussian and Bernoulli i.i.d. dropout behave very
similarly, and that ASNI has the best performance for these datasets. We also notice that ASNT has less
variance in performance compared to all other methods, which might be explained by the faster convergence
observed already in MNIST experiments.

Table 5: Best average test classification score of LeNet on CIFAR10 without noise injection, with i.i.d. noise
injection (Gaussian and Bernoulli dropout), and with ASNI on CIFAR10 and CIFAR100 benchmarks. .

Data No drop. iid Gauss. iid Bern. ASNI
CIFAR10 66.5+ 0.1 679+03 67.7+04 68.3=£0.2
CIFAR100 3294+0.2 338+0.5 338405 34.4+0.3

As for the MNIST experiments, we also measure the amount of correlations between unit activations,
evaluated by the Frobenius norm of the correlation matrix, and show how it evolves over training for the
different methods in Figure [f] We notice that standard Bernoulli dropout has a weaker effect on reducing
correlations than other methods on CIFARI10, but that overall all methods significantly reduce correlation
during training. After convergence, ASNI keeps a small advantage on both datasets in terms of correlation
level reached. As shown in Table [6] the representation learned by ASNI has also a larger Silhouette than
other methods on the test sets.
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Table 6: Average Silhouette coefficient of LeNet’s last hidden layer t-SNE embeddings on CIFAR test datasets,
without noise injection, with i.i.d Gaussian and Bernoulli dropout, and with ASNI. .

Data No drop. iid Gauss. iid Bern. ASNI
CIFARI10 0.38 0.43 0.42 0.48
CIFAR100 0.35 0.37 0.36 0.38

7 Conclusion

We proposed new regularization schemes that generalize dropout, by creating correlations between the noise
components. We focused particularly on ASNI, an adaptive approach that replicates the structure of the
data correlation in the noise correlation. We showed both theoretical and empirical results suggesting that
ASNI improves the representation and performance of shallow and deep neural network, while maintaining
computation efficiency. The ASNI framework opens new research directions. First, one way consider different
ways to create the noise correlation structure, using for example the structure of the network, or may
even think about learning it. Second, while Gaussien noise is convenient to impose a particular correlation
structure, discrete noises such as binary noise can be computationally advantageous; sampling binary random
variables with a given covariance matrix is however not an easy task (Leisch et al., [1998; [Preisser and Qaqishl
2014)), and progress in that direction may be directly useful for DNN regularization.

8 Availability

All code concerning the real data experiments is available at https://github.com/BeyremKh/ASNT
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Figure 3: Silhouette plots (left) for the t-SNE embeddings (right) of the first hidden layer activations on 1,000
MNIST test images (2 hidden layers MLP with 32 units on the first layer). We compare, from the top to
the bottom row, a network trained without noise injection, with i.i.d. Gaussian dropout, with i.i.d Bernoulli
dropout, and with ASNI. The points are colored and numbered according to the class of the images.
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Figure 4: Correlation matrix norm of the first (left figures) and second (right figures) hidden layer activations
during training for a 2-hidden layers MLP with no noise injection, with iid noise injection and ASNI, applied
on the first hidden layer only (above), on the the second hidden layer only (middle) or on the input layer
only (below).
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Figure 5: First layer activations after training our 2 hidden layers network on MNIST, without dropout, with
ii.d. gaussian dropout, i.i.d. Bernoulli dropout or structured dropout (ASNT). With 256 units (above) and
1024 units (below).
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Figure 6: Correlation matrix norm of the first dense hidden layer activations with LeNet, with either no noise
injection, iid noise injection or ASNI, during training on CIFAR10 (left) and CIFAR100 (right).
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