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ABSTRACT
We introduceAnUnscentedHound forWorkingMemory (AUHWM),
a new framework for the real-time tracking of human Working
Memory (WM) that can be used to adapt computer interfaces to
users’ available cognitive resources. WM is the part of human cog-
nition responsible for the short term storing and handling of infor-
mation; it can, in stressful situations, under information overload,
or when suffering from dementia-like diseases, become severely
limited, possibly leading to poor decision making. Our preliminary
results suggest that AUHWM can provide a precise and timely
assessment of WM capacity, so that the cognitive load a specific
task imposes on users can be adapted, e.g., at the User Interface
(UI) level.

AUHWM is based on a low-level stochastic discrete model of hu-
man WM dynamics, implemented as a Gradient-Boosting-derived
deterministic algorithm that simulates users’ oblivion. AUHWM
also performs Unscented Kalman filtering to track users’ WM-
specific parameters in real time, thus providing a dynamic assess-
ment of their cognitive resources. Our approach has been tested and
validated using data collected fromMatch2s, a visual memory game
played by 18 users in another study. Going beyond real-time WM
tracking, AUHWM is intended to also be used for WM prediction,
paving the way to the adaptation of tasks and their UIs in real time
as a function of users’ cognitive abilities; we detail an example of
such an adapted system, and provide experimental evidence this
approach has the potential to lead to enhanced WM-adapted UIs in
the future.

CCS CONCEPTS
•Human-centered computing→ User models; • Computing
methodologies → Modeling and simulation; • Applied com-
puting → Consumer health;
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1 INTRODUCTION
Working memory (WM) is the part of human cognition responsible
for the storing and processing of short-term information [2]. It is
essential for daily activities, ranging from having a conversation
to following instructions to problem solving. WM is known to be
extremely restricted, being limited by the amount of information
that can be stored [8] as well as the period of time during which
such information is available [17]. Its capacity is responsible for
the biggest differences in cognitive abilities [10] and is usually
associated with fluid intelligence [7]. Deficit in WM capacity can be
linked to life-altering problems in learning, language understanding
and many others activities. One of the main drivers of WM capacity
weakening is dementia, usually linked to the onset of Alzheimer-
like diseases in the elderly.

In this article, we present An Unscented Hound for Working
Memory (AUHWM, pronounced "om"), a new cognitive framework
capable of estimating in real time a person’s WM capacity through
interaction with a computer system.WM capacity is often described
by the fixed number of information items, or “chunks”, that can
be stored at the same time in memory [4]. In the case of complex
information storage, this limit fluctuates around four [4]; while
performing simpler tasks, the capacity can increase up to seven [8].

AUHWM is able to dynamically track a user’s WM cognitive
capabilities over both short- and long-term time intervals. One key
component of AUHWM is a simple, general and yet well-validated
low-level cognitive model of human Working Memory (see Sec-
tion 3) that abstracts, via a single integer parameter, a user’s mem-
ory capacity. A second key feature behind AUHWM is Unscented
Kalman filtering (see Section 5.1), a control theory tool used here
to track this parameter as the user interacts with an AUHWM-
equipped system. Building upon such well-understood mechanisms
allows cases that could not be previously handled to be now tackled.
For instance, AUHWM-based applications can be used with differ-
ent populations without going through the burdensome process of
collecting personalized training data that plagues typical Machine
Learning-based systems. Also, by having a clear understanding of
what AUHWM modelling parameters stand for, high-level explana-
tions of the system choices can be provided.

We believe that the AUHWM framework for cognitive tracking
can be of extreme importance when developing User Interfaces (UI)
that are sensitive to the user’s reasoning and memorizing abilities.
Knowing how taxing in cognitive capacity a task is would allow
its UI in stressful situations to be simplified, providing the user
with only the necessary information to the task at hand. One can
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think of aircraft interfaces in crisis situations as a clear application
domain of our approach.

AUHWM could also represent a significant contribution in the
area of assistive technologies as it has the potential to be of great
benefit to individuals suffering from memory deficits. By adjusting
the UI to the user’s cognitive capacities, it could render computer
interfaces more accessible to the elderly population suffering from
dementia-linked diseases. AUHWMcan provide aswell data specific
to the user’s evolving cognitive capacities. Beyond its clear rele-
vance in the design of simpler user interfaces for computer-assisted
daily-life activities, such information can be used by caregivers
as signals suggesting a possibly setting-in of neurodegenerative
diseases. It can also be used to track the gradual temporal decline
of cognitive abilities as the disease progresses.

To summarize, our paper includes four major contributions:
• AUHWM, a new framework for the dynamic, real-time mod-
elling, tracking and ultimately prediction of human WM
performance, which uses a quanta-based stochastic model
of memory and Unscented Kalman filtering;

• a Gradient Boosting-based, deterministic, approximate im-
plementation of this stochastic memory model, for perfor-
mance-efficiency purposes;

• an experimental evaluation of AUHWM ability to track WM
capacity, using pre-existing data extracted from the visual
memory game Match2s, played by 18 players;

• a new AUHWM-based framework for automatic UI task
adaptation, using previously tracked WM parameters as es-
timates for future performance, and its evaluation using the
same data set.

The structure of the paper is as follows.We introduce in Section 2
the previous works related to our research. Section 3 describes the
Markov Decision Process-based model used to probabilistically ab-
stract the WM maintenance dynamics. We show in Section 4 how
this stochastic system can be well approximated by a much more
efficient Gradient Boosting-based algorithm. AUHWM, introduced
in Section 5, builds upon this deterministic version to track users’
WM parameters via Unscented Kalman filtering. We provide ex-
perimental evidence of the validity of AUHWM in Section 6, using
actual user interactions with Match2s. Section 7 describes how
AUHWM can be used to predict future WM performances, which
thus paves the way to the temporal adaptation of UIs. We discuss
possible future work in Section 8, before concluding in Section 9.

2 RELATEDWORK
Cognitive Load Theory [6] posits that a person has a finite amount
of cognitive resources, and that different tasks apply different cog-
nitive loads, resulting in more or less available resources for the
consecutive tasks and therefore different performance. Cognitive
Load Theory provides the basis for a number of different studies
related to the measurements and compensation of working mem-
ory limitations. Most of these works deal with problem-solving
activities such as learning or decision making.

Long Short-Term Memory networks are used in [12] to learn
different patterns of sequential behavioural data in order to classify
dynamically user’s behaviour into either (1) under cognitive load or
(2) not. The approach is based on data collected from users playing a

memory game as well as data generated using a theoretical memory
model whose parameters were set so that the generated data closely
resemble the collected one.

In [5], authors learned a HiddenMarkovModel (HMM) from data
where the hidden states correspond to different levels of cognitive
load. Here the user’s reaction time, accuracy and error signal are
used to infer the hidden states. Once the user’s cognitive load
is known, the proposed model is used to adapt the collaboration
between humans and software agents.

Closer to our goal of adapting systems to user’s cognition, [19] de-
scribes the design of a data-driven Socially-Assistive Robot system
for personalized robot-assisted training. In this work, interactive re-
inforcement learning is used to adapt the robot’s behavior to users’
performance. Data corresponding to users’ electroencephalogra-
phy (EEG) signals, performance and engagement is collected and
analized in order to find clusters. These clusters of users are then
used to create simulation models and learn user-specific policies
through reinforcement learning.

Most of these systems are data-based. The neural network learned
in [12] might work poorly when presented to a different population,
as would the HMM in [5] and the user models of [12]. Deep learning
and machine-learning tools work effectively when the data used
for learning is comprehensive enough to create a representation
of the use case, as they try to fit a function capable of performing
meaningful association. This can be problematic when the system
is used with different populations that are not represented in the
data, say people with cognitive deficits, for instance, resulting in
a lack of flexibility and adaptability. Our approach uses an online
filtering technique able to adapt smoothly to any user’s specific
capabilities, even in the presence of scarce data.

Moreover, trustworthiness is widely recognized as crucial for the
acceptance of "intelligent" systems in diverse domains [16]. Being
able to explain a system’s choice of action is crucial for building
trust, in particular when dealing with assistive technologies, where
the user has to trust the system’s decision for it to be effective. This
is, for now, critically lacking when dealing with black-box classi-
fiers such as neural networks. Our approach, which uses clearly
separable, well-understood and interpretable components, helps
here.

3 WORKING MEMORY MODEL
The WM model at the core of AUHWM was proposed by J.W. Su-
chow in [18][17]. The evolution dynamics of the information stored
in the WM is considered as a Moran process [9], a stochastic for-
malism often used to describe the dynamics of finite populations
in biology. At each instant where the state of the population may
change, an individual, chosen at random, dies and another is chosen
for reproduction, ensuring a constant yet varying population.

Suchow models the evolutionary dynamics of information in
WM as the evolution of a finite population of “memory quanta”. A
number of quanta is allotted to a each information item in the WM:
the more quanta assigned to an information there is, the better
encoded it is and therefore the easier it is to be retrieved. Although
the authors in [17] are non-committal about what these quanta
represent (they could take a number of forms, such as clusters of
neurones in the prefrontal cortex, cycles in time-based refreshing
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processes or other elements), they make it clear that this is a limited
commodity whose availability affects performance. Logically, the
total number of quanta is positively correlated to the cognitive
capacity of an individual. The more available quanta, the better the
quality and stability of memory.

Following the rules of Moran processes, at each time step, a
random quantum assigned to an information “dies” while the WM
maintenance mechanism selects another quantum to “reproduce”.
The quantum chosen for reproduction can be related to the same in-
formation as the dead one, thus ensuring the persistence in memory
of this information. If, however, the quantum selected for reproduc-
tion isn’t one allotted to the degraded information, but to a different
one, the latter is then reinforced in detriment of the former. This
dynamics results in a competition for quanta, i.e., for fixation in
memory. This model also uses a stability threshold L: any informa-
tion associated to less than L quanta is considered forgotten and
cannot be restored via reproduction.

3.1 MDP Formulation
Suchow’s WM dynamics is modeled as a Markov decision process
(MDP). A MDP is used to model decision making in partially sto-
chastic environments, where an agent (or decision maker) selects
actions to optimize a cost (or reward function) [21]. Formally, a
MDP is defined by a state space S , a set of actions A, a probabilistic
transition function τ : S × A → P(S) to move to the next state
s ′ given the present state s and a selected action a and finally, a
reward (or cost) function ρ : S ×A → R that yields the immediate
consequence the agent taking an action in a given state gets – in
some extended MDP models, the reward also depends on the next
state the agent finds itself in. The goal when using a MDP is to
find the optimal policy Π∗ : S → A that maps a given state s to
the optimal action a the agent should take in order to maximize (or
minimize) its accumulated reward (or cost).

In Suchow’s model, the WM maintenance mechanism acts as
the MDP agent. The state space corresponds to all the possible
allocation of Q quanta to k information bins: s = [n1, . . . ,nk ] ∈ S ,
where

∑k
i=1 ni = Q . Each action ai from A represents the selec-

tion of a quantum from a specific memory bin bi for reproduction.
Following Moran’s principle, at each system iteration, one ran-
domly selected quantum from a bin, say bi , decays (i.e., dies), with
probability P = ni/Q , while the maintenance mechanism chooses
a specific action, say aj , to have one of the quanta of bin bj re-
produced; so, if the system is at state s = [n1,n2, . . . ,nk ] and the
agent selects action a1, the probability of the agent landing in state
s ′ = [n1 + 1,n2 − 1, . . . ,nk ] , given by τ (s,a1), is P(s ′ |s,a1) = n2/Q ,
which is the probability that one quantum from the second bin was
selected to decay.

Regarding the reward function ρ, the behaviour of the main-
tenance mechanism handling the information stored in the WM
might vary along the user’s goal; information items can be remem-
bered or forgotten intentionally. Thus ρ is clearly task-dependent.
Here, we posit that the reward corresponding to the specific use-
case task of this study, i.e., playing the Match2s visual memory
game (see Figure 2 and Section 6 for more details) favours storing
as many information items as possible for the longest period of

time; ρ thus positively correlates with the number of bins with L
quanta or more.

3.2 Optimal Policy
The authors in [18] suggest that the optimal policy of the previously
defined MDP can be approximated by a simple strategy known as
Luce’s choice axiom. This axiom states that when faced with a
choice, the decision maker will mostly base his/her decision on the
perceived values of the various options at the time of choice, in a
"greedy" fashion. Therefore the probability P(a) of selecting action
a from a set of alternatives A is given by

P(a) = v(a)σ∑
x∈A v(x )σ ,

where v(x) stands for the strength of the signal generated by ac-
tion x , and σ is the sensibility of the decision maker1. By varying
the value of σ for a fixed definition of v , Suchow shows that one
obtains different macroscopic behaviors for the WM maintenance
mechanism, adapted to different tasks, and draws attention to five
specific values of sensibility: 0, 1,−1,+∞ and −∞.

Choosing σ = 0 leads to an unconditional policy, i.e., action
choice is independent of the current state and insensitive to the
perceived signals. If σ = 1, the policy will give preference to actions
that have the highest perceived value, while the opposite occurs
when σ = −1. Finally, when σ = +∞, the maintenance mechanism
will always choose the action that has the strongest perceived signal,
while when σ = −∞, the weakest one will be selected.

4 OBLIVION SIMULATION
Keeping track of users’ WM capacity to model information recall
and oblivion relies on the simulation of the MDP defined above;
this requires the setting of six parameters, given in Table 1, and the
definition of the strength function v . One also needs to specify an
initial state s0 = [n1, . . . ,nk ] representing the default distribution
of quanta between information items.

Table 1: MDP simulation parameters for Suchow’s WM
model.

Q Number of quanta in WM
k Number of information items in WM
L Stability threshold [number of quanta]
δt Time step between actions [ms]
T Total simulation time [ms]
σ Sensibility of the decision maker

Following [17], we set L and δt
2 to 7 and 10 respectively. We

present below two simulation strategies: a straightforward stochas-
tic implementation and a deterministic, approximated-yet-efficient
version.

1Care must be taken to avoid divisions by zero; we don’t address these details here.
2If need be, these two parameters could be set to different values in the user interfaces
that rely on AUHWM for personalization, possibly yielding a better model of the user’s
WM.
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Figure 1: Recall probability r (t) for different numbers, k , of
items (Q = 60, L = 7, δt = 10 ms, T = t )

4.1 Stochastic Simulation
As said before, WM management is task-dependent. The setting
of the initial state s0 and the definition of the signal generated
by the possible actions v and the sensibility parameter σ , which
characterise the Luce choice axiom underlying the MDP policy
used in AUHWM, depend thus on the task. In this paper, we are
interested in simulating the WM of a user performing the specific
use-case task Match2s. In Match2s, players score higher if they
are able to retain the maximum number of information items for
the longest period of time possible. One can then assume that, on
average, players will try to remember as much information as they
possibly can, without giving particular preference to a particular
stimulus. Accordingly, s0 is set by distributing the Q quanta in the
k bins homogeneously; ifQ is too small to fill each bin with at least
L quanta, the maximum number of bins are filled with L quanta,
and the remaining ones are distributed randomly across bins. Also,
we define v(ai ) = ni , i.e., the strength of information fixation in
bin bi , while setting σ = −1. The probability of choosing action
ai that reinforces bin bi will thus increase proportionally to 1/ni ,
i.e., when the number of quanta in bi is low. This ensures that the
maintenance mechanism will focus on the least stable information
in order to try to keep it in memory as long as possible, which is
the natural way to obtain a good performance in Match2s. Using
AUHWM with other types of tasks will require finding the best
setting accordingly.

Once the initial state and the simulation parameters are set, one
can perform various stochastic simulations of memory degradation,
using the optimal policy specified above. They yield recall curves
r (t), with time t varying from 0 to T , by increments of δt . At each
time t , the number of bins with more than L quanta divided by k
represents the recall probability r (t) of a given information item
in the WM at time t . Given the stochastic nature of the model, a
large number of simulations is necessary to average the recall curve.
Figure 1 presents the average recall curves of 100 simulations for
different values of k .

4.2 Deterministic Simulation
Unfortunately, running stochastic simulations is very time consum-
ing; this is not acceptable for our goal of tracking, in real time, the
user’s cognitive capacity. Thus, we propose to implement an ap-
proximation of our adaptation of Suchow’s model using a gradient-
boosting (GB) approach for regression. To do so, we first sampled
from uniform distributions over the key simulation parameter lim-
its:Q ∼ U(0, 120), k ∼ U(1, 8) andT ∼ U(0, 2500). The limits for k
andT come from the set of possible configurations for the Match2s
parameters, while the minimum and maximum values for Q where
identified as pertinent in a previous study where validation data
was collected (see [15] for more details). The sampled parameters
were then used to generate simulation data, from which we trained
our GB for regression using the GradientBoostingRegressor class
from sklearn [11]. The gradient-boosting modelling finds the rela-
tionship between Q , k and T , thus providing an approximate recall
probability f (Q,k,T ) = rQ,k (T ). With this approach, we are able
to retrieve user- and task-dependent recall performance with good
accuracy (0.93 ± 0.02 on average in 10-fold cross-validation) with-
out having to go through a large number of expensive stochastic
simulations.

5 AN UNSCENTED HOUND FORWORKING
MEMORY

In this section, we go into the details of how AUHWM is imple-
mented and how it’s able to track users’ cognitive capacity. Subsec-
tion 5.1 reviews the concepts behind Unscented Kalman Filtering,
while Subsection 5.2 describes our tracking framework.

5.1 Unscented Kalman Filter
An Unscented Kalman Filter (UKF) is a standard estimation tool
mostly used in nonlinear dynamic systems or in probabilistic pa-
rameter estimation [20]. Much as the traditional Kalman Filter (KF),
which however only works for systems with linear dynamics [14],
a UKF also provides estimations of a system’s current state by prop-
agating the previous estimation through a dynamic system model,
getting evidence from sensors, and updating the system’s state
belief with the new data [14].

An UKF works by applying the Unscented Transformation (UT),
which is a method for calculating statistics of random variables
undergoing nonlinear transformations. The UT relies upon carefully
selected “sigma points”, i.e., chosen sample points from an initial
Gaussian random variable (GRV), that wholly capture its mean and
covariance, and having them undergo a nonlinear transformation.
The resulted points are used to reconstruct a newGRV. For Gaussian
inputs, UT is accurate to the third order (in Taylor series expansion).

A UKF nonlinear system model relies on a transition function
F and an observation function G, both assumed to be known. The
sampled sigma points from the prior state (xt−1) go through the
transition model as F (xt−1)+ut , whereut is an added process noise;
the resulted points are used to approximate a predicted state GRV
(x̄t ). They then go through the observation model G(x̄t ) +vt , with
measurement noise vt , generating ȳt , a predicted observation GRV.
Using the real observation value yt from the sensor, the predicted
state is updated as xt = x̄t + K(yt − ȳt ), where K is the Kalman
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gain. We recommend [20] for information about the Kalman gain
and a more detailed discussion about UKF.

When used for parameter tracking instead of state estimation,
UKF requires some slight modeling modifications. The estimated
state xt becomes the parameterwt to be tracked, modeled as a GRV.
The modeled observation becomes G(wt , zt ) + vt , viewed as an
observation ofwt , linked to an application-specific input zt .

5.2 AUHWM Unscented Kalman Filter
We have observed in Section 3 that strong links exist between the
number Q of quanta a person has available and WM performance.
AUHWM is thus designed to track a single paramerwt = Qt , which
corresponds to the persons’ cognitive capacity at time t and which
drives the evolution of the recall curve, which we will be observing.

Fluctuations of a person’s available cognitive capacity are bound
to happen during the day, given factors such as motivation, atten-
tion or fatigue [3]. A more constant and long-term degradation
might also happen with the onset of neurodegenerative diseases.
Our UKF transition function F for the parameter Q is thus set such
that Qt = Qt−1 + ut , meaning that those fluctuations on the avail-
able quanta are driven by a process noise, ut (but see Section 8 for
possible extensions).

Using the previous notations of Section 5.1, the input zt for
the observation of the state Qt corresponds to the application-
dependent tuples (kt ,Tt ). The observation function G(wt , zt ) driv-
ing the nonlinear evolution ofQt is the recall probability rQt ,kt (Tt ),
computed by our GB model as f (Qt ,kt ,Tt ), which deterministi-
cally enforces the relation rQt ,kt (Tt ) = f (Qt ,kt ,Tt ); measurement
noise vt is supposed null. This UKF for the estimation of Q over
time was implemented using the pykalman library for Python [13].

6 AUHWM EXPERIMENTAL VALIDATION
We present preliminary results obtained when experimentally as-
sessing how well AUHWM actually tracks the cognitive capacities
of human users.

6.1 Data
We tested AUHWM with data collected in [15]. The data set corre-
sponds to 18 participants (7 females), ranging in age between 18
and 40 (26.10 ± 5.37) playing the visual memory game Match2s. In a
series of consecutive turns, the game consists of (1) displaying some
squares (maximum 8) of different colors during 500 ms to the player,
(2) hiding then the colors using yellow boxes with a “?” during a
variable time twait , and (3) having the player answer a popup box
asking to click on the hidden square of a determined color. Figure 2
depicts a typical turn where seven colors are presented at once
(note that, for this turn, since seven colors are presented, one of
the eight squares remains gray); the player is then asked to click
on which box s/he thinks contained the determined color before
the hiding phase, thus testing his/her memory capabilities.

Every participant played the game for 125 turns; the first 5 were
used to familiarize them with the game’s mechanics. For the next
120 turns, at every batch of 20 turns, the number of presented colors
(that corresponds to our k) as well as the hiding time twait (our
T ) changed according to the player’s performance (see [15] for a
detailed description of the feedback mechanism used then). The

Figure 2: Example of a Match2s game turn

player’s actual recall probability r for each batch is then computed
asn/20, wheren is the number of successful answers for the queried
colors. Overall, this resulted in a dataset of six (120/20) data points
((k,T ), r ) for each of the 18 players, which we are using to provide
estimates of the WM capacity, in numbers Q of quanta, of each
player.

6.2 Results
We applied the UKF of AUHWM to the data of the 18 players, start-
ing with an initially quite loose state GRV estimateQ0 ∼ N(100, 32).
One example of a tracked Qt , defined by its mean and standard
deviation for each "time" t (t being a batch number), for one player
is shown in Figure 3. One can see that AUHWM is able to zoom in
on this user’s cognitive capacity, here around a somewhat steady
70 quanta at the time this game was played.

Figure 3: Example of the means and standard deviation bars
of UKF-predicted states Qt , as tracked by AUHWM, for one
Match2s player.

Once equipped with the estimated numbers of quanta Qt pro-
vided by AUHWM, we can use our GB model to estimate the recall
probabilities each user should have had for each batch, based on Su-
chow’s memory model and the actual (kt ,Tt ) values, remembering
that the recall probability is given by f (Qt ,kt ,Tt ). Figure 4 depicts
(dashed line in red) the evolution of the recall probability the same
player displayed when presented with 6 different combinations of
kt andTt as well as the recall probability obtained using the number
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of quanta estimated by AUHWM, together with the corresponding
values for kt and Tt , as input to the GB model f (Qt ,kt ,Tt ).

Figure 4: Actual vs. estimated recall curves generated by the
GB model, using the quanta estimates in Figure 3.

One can see that after the first two batches, AUHWM is correctly
assessing the number of quanta that corresponds to the player per-
formance, that is, is tracking reliably the player’s cognitive capacity.
Figure 5 depicts the evolution of the Root-mean-square error (RMSE)
of the estimated recall probabilities with respect to the actual 18
players’ performance per batch. The last three estimations present
a mean RMSE error of approximately 10%, therefore showing that
after the initial batches, AUHWM is indeed finding accurate quanta
numbers for each player in each batch, thus providing additional
support for its validity.

Figure 5: Evolution of the RMSE for the recall probability of
all the 18 Match2 players, per batch.

7 UI ADAPTATION
Wehave provided experimental evidence that suggest that AUHWM
enables the real-time tracking of a person’s cognitive capacity when
observing his/her performance on a task. There are many possible
applications of such a system. A direct, health-motivated one is
the assessment of a user’s cognitive decay over time. Another one
could be the quantitative determination of the load a given task in-
duces on someone’s abilities; this could, for instance, be measured
by comparing the estimated numbers of available quanta when
performing a given task to the values found when performing a
supplementary task before it, similarly to the experiment in [12].
However, we discuss below AUHWM intended application, namely
the personnalization of UIs.

7.1 Oblivion Adaptation
Asmentioned in the introduction, AUHWM’s estimations aremostly
intended to be used in adapting task-specific UIs to users’ cogni-
tive limitations in real time. We introduce in Figure 6 a possible
AUHWM-based framework for real-time UI adaptation.

Figure 6: AUHWM-based UI adaptation of a task to users’
cognitive capacity Qt at time t .

In such a framework, a task-specific parameter πd must be speci-
fied by the task manager; this parameter corresponds to the desired
performance one wants the user to have when performing the
task. For instance, in the context of Match2s, this parameter cor-
responds to the probability of recall; if set to 1, one wishes the
user to get a perfect score in Match2s; if set to 0.5, the user global
performance would show 50% successful answers, on average. At
a given time step t , the Adaptive Optimizer (see Figure 6) is re-
sponsible for finding the task parameters zt that will ensure that,
on average3, the user will perform with performance πd , given
the initial quanta estimation Qt−1. Once again, in the context of
Match2s, zt would correspond to kt and Tt , that is, the number of
information items presented as well as the duration of time dur-
ing which the player has to hold this information in his/her WM.
These optimized parameters are therefore the ones that ensure the
constraint rQt−1,kt (Tt ) = πd . Once given zt , the task is adapted
accordingly and presents its possibly updated UI to the user. The
3Finding a proper zt could be done, for instance, by searching the task-parameter
space for the combination of values that would result in the desired performance (or
its closest approximation).
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user’s measured performance πm is then used by AUHWM to esti-
mate the next stateQt , corresponding to the updated assessment of
the user’s cognitive capacity. As the user interacts with the interface
over time, as depicted in Figure 3, AUHWM generates ever more
precise and real-time-updated WM estimations, therefore resulting
in a better adaption of the task execution.

Moving beyond the context of Match2s-like games, zt could
correspond to the period of time before the UI refreshes a previously
presented information, ensuring the user will be able to perform
a task without forgetting more than (1 − πd ) of the information
content. In the context of decision-making processes, the UI could
make sure that the user is solving a problem while considering all
the essential information. For assistive technologies, zt could stand
for the number of presented information items; this would enable
patients suffering from Alzheimer’s disease to interact with the
adapted UI autonomously, without the help of family or caregivers,
restoring some of their lost autonomy.

7.2 UI Adaptation Experimental Evaluation
We tested the adaptation framework introduced in Figure 6 using
the data from the 18 Match2s users, once again. In order to do so,
instead of having the Adaptive Optimizer find the optimal task
parameters zt that would result in the performance πd , we assume
thatTt and kt , i.e., the hiding time and number of squares presented
at batch t , are already the optimal parameters. Therefore the user
measured performance πm must be equal to πd . This corresponds
to having a perfect Adaptive Optimizer that even when presented
with faulty quanta estimations, finds the optimized task parameters.

Therefore, if AUHWM correctly predicts the user’s current cog-
nitive capacity, the previously estimated quanta number output
by AUHWM, Qt−1, together with the corresponding task param-
eters Tt and kt , when run through our GB model, should result
in πm . In practice, this means running the same test as the one of
Section 6, but while “looking ahead”, that is, using the state Qt−1
to predict the recall probability rQt−1,kt (Tt ) of the next turn. Once
again, AUHWM is initialized with a stateQ0 ∼ N(100, 32), and run
to obtain the players’ quanta estimates according to the measured
performance πm .

Using the obtained quanta-number estimates as well as the cor-
responding task parameters as inputs of the GB model, one obtains,
for one of the 18 players, the recall probability curve presented
in Figure 7. Remember that in this configuration, we are “look-
ing ahead”, and thus the recall curve is given by f (Qt−1,kt ,Tt ).
Of course, since the initial guess for Q0 is very generic, Figure 7
shows that the system takes at least two interactions to zoom to-
wards the user’s capacity; also, the performance predictions are
not as accurate as the ones in Figure 4, which provide a posteriori
estimations.

To assess more globally the performance of this adaptation frame-
work, we computed the RMSE of the actual vs. estimated recall
probabilities for all 18 players, by batch. The resulting curve is
presented in Figure 8. This time, the mean of the last three errors is
slightly more than 33%, which is considerably worse than the result
obtained when assessing the quanta locally (that is, the result pre-
sented in Figure 5). The reason for this performance deterioration

Figure 7: Example of predicted (using last quanta estimate)
vs. actual recall probabilities for one Match2s player.

is that there are a number of factors that result in performance vari-
ation other than cognitive capacity. For instance, from one batch to
the next, some players lost motivation, due to the task being repeti-
tive and therefore became less attentive (remember that motivation
and attention are key factors capable of modulating WM). More-
over, some players started developing better strategies, or became
used to Match2s, resulting in better scores and therefore apparent
higher cognitive capacities. The used model of memory dynamics
doesn’t take all these factors into consideration (but see Section 8),
which consequently leads to fluctuations on the estimated quanta
numbers from batch to batch.

Figure 8: Evolution of the recall probability RMSE for the 18
Match2s players, per batch, when “looking ahead” (predic-
tion based on previous batch quanta number).
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8 FUTUREWORK
At the fundamental level, it would be interesting to look at ways
to improve the UKF transition function for Qt . For instance, a
quantitative estimate of a user’s attention to the task at hand would
clearly impact positively the assessment of the short-term evolution
of her cognitive retention capabilities. A first approach to such an
estimation process could be via the use of dedicated sensors, as
brain computer interfaces (BCI) such as the EEG-based headband
Muse4, which can be used to assess attention estimates in real time.
Even though this doesn’t constitute a workable solution in the long
term for obvious usability reasons, such a study could nonetheless
provide ways to refine the AUHWM memory capacity tracking
process, and spur further research into finding more pragmatic
ways to assess users’ attention. In practice, this would result in
having attention estimates entering the AUHWM and Adaptive
Optimizer modules in Figure 6. AUHWM would then be able to
assess changes in concentration in real time by the use of the BCI
device. Therefore, instead of having the quanta estimates changing
from batch to batch as seen in Section 7, the quanta estimations
could be modulated by changes in concentration levels, increasing
or decreasing the predicted performance accordingly. The Adaptive
Optimizer could also take into account local changes in attention to
adjust the task parameters and better adapt the interface (or could,
for instance, issue sounds to demand a certain attention level).

Looking at practical applications, future work should focus on
applying AUHWM to more meaningful UI-adaptation use cases
than Match2s. For instance, a framework such as AUHWM could be
adapted to perform scaffolding in intelligent tutoring systems [1].
By adding a theoretical transition model of learning and taking
into account users’ accuracy and reaction times into its observation
model, AUHWM could be used to track a second parameter cor-
responding to the user’s mastery of the knowledge being tutored.
Therefore, complex applications such as Photoshop or CAD soft-
ware, which are daunting for novice users, could be personalized
by increasing the complexity and amount of information presented
according to the user’s competence and/or cognitive capacity.

9 CONCLUSION
We introduced AUHWM, a new paradigm for tracking human WM
that we posit could be a key component for the adaptation of UIs
to users’ cognitive limitations. AUHWM employs a model of WM
dynamics implemented as a GB model, and is able to assess in
real time users’ memory recall abilities. The time adaptation of
WM is based on UKF-tracked estimates of users’ memory capacity,
measured in numbers of memory quanta. AUHWM has been exper-
imentally proven successful when tracking the cognitive capacity
of 18 players in an existing visual memory game, thus providing a
strong degree of assurance about the model pertinence.

Short-term fluctuations of users’ motivation, attention and fa-
tigue, not taken into account yet, usually result in significant changes
on cognitive abilities. However, preliminary experiments suggest
that current AUHWM-tracked quanta estimations already provide
some crude prediction capability for the assessment of users’ fu-
ture performance, up to about 33%. Given the UKF’s capability of
improving its estimations through sensor fusion, AUHWM could
4https://choosemuse.com

clearly be enhanced through the use of BCI devices. They would
help modulate the quanta estimations according to users’ concen-
tration and other key factors that drive WM capacity, therefore
improving further the automatic adaptation of UIs.

We believe that AUHWM can thus be of great value when devel-
oping UIs that are sensitive to users’ cognitive abilities. More specif-
ically, in the context of assistive technologies, adapting interfaces to
patients’ capabilities would be of great benefit to individuals suffer-
ing frommemory deficits. Moreover, a memory tracking framework
such AUHWM can assess if a person is tired, and therefore not in
her best capacity for optimal decision making, or can perform the
adaptation of an interface in order for the user to be able to fully
grasp and consider what is being presented.
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