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ARTICLE

A computational framework to study sub-cellular
RNA localization
Aubin Samacoits1,2, Racha Chouaib3,4, Adham Safieddine3,4, Abdel-Meneem Traboulsi3,4, Wei Ouyang 1,2,

Christophe Zimmer 1,2, Marion Peter3,4, Edouard Bertrand3,4, Thomas Walter 5,6,7 & Florian Mueller 1,2

RNA localization is a crucial process for cellular function and can be quantitatively studied by

single molecule FISH (smFISH). Here, we present an integrated analysis framework to ana-

lyze sub-cellular RNA localization. Using simulated images, we design and validate a set of

features describing different RNA localization patterns including polarized distribution,

accumulation in cell extensions or foci, at the cell membrane or nuclear envelope. These

features are largely invariant to RNA levels, work in multiple cell lines, and can measure

localization strength in perturbation experiments. Most importantly, they allow classification

by supervised and unsupervised learning at unprecedented accuracy. We successfully vali-

date our approach on representative experimental data. This analysis reveals a surprisingly

high degree of localization heterogeneity at the single cell level, indicating a dynamic and

plastic nature of RNA localization.

DOI: 10.1038/s41467-018-06868-w OPEN

1 Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 28 rue du Docteur Roux, 75015 Paris, France. 2 C3BI, USR 3756 IP CNRS, 28 rue du
Docteur Roux, 75015 Paris, France. 3 Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. 4 Equipe
labellisée Ligue Nationale Contre le Cancer, Paris, France. 5MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 75006 Paris,
France. 6 Institut Curie, PSL Research University, 75005 Paris, France. 7 INSERM, U900, 75005 Paris, France. Correspondence and requests for materials
should be addressed to E.B. (email: edouard.bertrand@igmm.cnrs.fr) or to T.W. (email: thomas.walter@mines-paristech.fr)
or to F.M. (email: muellerf.research@gmail.com)

NATURE COMMUNICATIONS |          (2018) 9:4584 | DOI: 10.1038/s41467-018-06868-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0291-926X
http://orcid.org/0000-0002-0291-926X
http://orcid.org/0000-0002-0291-926X
http://orcid.org/0000-0002-0291-926X
http://orcid.org/0000-0002-0291-926X
http://orcid.org/0000-0001-9910-1589
http://orcid.org/0000-0001-9910-1589
http://orcid.org/0000-0001-9910-1589
http://orcid.org/0000-0001-9910-1589
http://orcid.org/0000-0001-9910-1589
http://orcid.org/0000-0001-7419-7879
http://orcid.org/0000-0001-7419-7879
http://orcid.org/0000-0001-7419-7879
http://orcid.org/0000-0001-7419-7879
http://orcid.org/0000-0001-7419-7879
http://orcid.org/0000-0002-9622-4396
http://orcid.org/0000-0002-9622-4396
http://orcid.org/0000-0002-9622-4396
http://orcid.org/0000-0002-9622-4396
http://orcid.org/0000-0002-9622-4396
mailto:edouard.bertrand@igmm.cnrs.fr
mailto:thomas.walter@mines-paristech.fr
mailto:muellerf.research@gmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Non-random sub-cellular RNA localization is important for
cellular function and its misregulation is linked to a
number of diseases1,2. Initially observed in highly polar-

ized cells such as oocytes or embryonic fibroblasts, more recent
studies revealed diverse and wide-spread RNA localization in
other systems3, including bacteria4, yeast5, and developing
embryos of fruitfly, ascidians and zebrafish3,6. RNA localization
also occurs in cultured mammalian cell7–9. Besides the particular
case of neurons where a large number of mRNAs localize in
cellular processes, mRNA localization also occurs in regular cell
lines to regulate gene expression at the spatial level. Secreted and
mitochondrial proteins are often translated at the endoplasmic
reticulum and mitochondria, respectively, while mRNA repressed
for translation can accumulate in P-bodies or stress granules.
More specific examples of localization include mRNAs that
accumulate at the tip of cellular extensions9, localize at the cell
periphery10, or DYNC1H1 mRNA that accumulates in foci
representing dedicated translation factories11. With the rapid
development of high-throughput techniques, it is likely that many
more localized RNAs will be discovered. However, validated
analysis tools to identify and classify such RNA localization
patterns are currently lacking.

Imaging technologies, especially single molecule FISH7,12,13

(smFISH), allow to observe single RNA molecules in their native
cellular environment. This technique is now easy to implement
and can be performed at low cost13. It provides unique quanti-
tative spatial information2,7 and thanks to recent advances, can be
performed at large scale in cell lines and embryos7,10,12,14,15.
Image analysis then allows to discover genes displaying non-
random localization patterns. While many localization patterns
are distinguishable by visual inspection3,8, manual annotation can
be biased, is often not quantitative and influenced by confound-
ing factors such as RNA expression level. In addition, compre-
hensive manual annotation at the single cell level hardly seems an
option for larger scale studies where thousands of cells are imaged
in a single experiment. Indeed, the benefits of automatic analysis
of smFISH data7,16 include scalability and reproducibility,
allowing for an accurate and quantitative description of the
spatial aspects of gene expression.

In smFISH images, individual RNA molecules appear as bright
diffraction-limited spots, which can be localized in 3D with
published image analysis tools12,14. In contrast to the analysis of
cellular phenotypes17 and protein localization18, smFISH data can
be treated as point clouds. The smFISH signal inside a cell can
thus be represented by features describing this spatial distribution
of points, such as the mean nearest neighbor distance between
spots or their average distance to the nuclear envelope. These
features can then be used to group cells based on similarity in
their RNA localization patterns, using supervised or unsupervised
machine learning methods7. However, one of the main difficulty
in this approach is the absence of a ground truth for RNA
localization in smFISH data, making it impossible to assess use-
fulness of features and performance of the classification workflow.
Hence, as of today, there is no rigorously validated method to
analyze smFISH data at the cellular level.

Here, we present a simulation framework to create a synthetic
ground-truth data set to perform this validation. Such simulated
ground-truth data provide a number of key advantages to the
traditional strategy relying exclusively on manual annotation17–21.
Manual annotation of 3D point clouds irrespective of their
number and reference volume is time consuming, difficult, error
prone and tends to be subjective, in particular for subtle differ-
ences. In addition, we can only annotate already observed pat-
terns from already identified example genes. This encouraged us
to build a simulation framework in order to complement or
replace manual annotation. We generated point patterns from

known localization rules to create large amounts of ground-truth
data. This allowed us to also control the parameters of the gen-
erative model in order to study robustness and limitations of the
automatic algorithms. We show that the simulation of a large set
of images enables designing and validating workflows for unsu-
pervised and supervised analysis of smFISH data, which are
capable of detecting a large variety of localization classes. We
applied this approach to experimental data and successfully
detected the different manually annotated localization classes. We
also implemented a metric to quantitatively analyze heterogeneity
of localization patterns. Application of this metric to our
experimental data set revealed a surprisingly high degree of
localization heterogeneity.

Results
Simulating realistic ground-truth data. We designed a simula-
tion framework capable of generating ground-truth data closely
mimicking experimental smFISH images. First, we acquired
fluorescence microscopy data to determine the 3D volume of cells
and nuclei, as well as the typical smFISH background signal. We
then placed individual RNAs with realistic signals according to
pre-defined localization rules inside these cellular volumes. This
set of simulated images allowed us to validate the entire analysis
workflow from RNA detection to the identification of localization
classes. Our approach to generate such synthetic smFISH images
consists of four main steps (Supplementary Note 1):

First, we inferred accurate 3D cellular shapes from experi-
mental data22. To do so, we performed an smFISH experiment in
HeLa cells using Cy5-labeled probes against the highly expressed
GAPDH mRNA. We defined the 3D cellular outline as the
conforming boundary containing all detected mRNAs (Fig. 1a, b).
We further used our observation that GAPDH mRNA was largely
absent from the nucleus (Fig. 1a) to determine the average height
and position of nuclei in the cells (Fig. 1b). This provided us with
a collection of cellular and nuclear volumes, where RNAs can be
placed. For each cell, we also acquired another channel with rea-
listic background from a mock smFISH experiment, using Cy3-
labeled probes against a not-expressed reporter gene. In addition,
we acquired images for 2D segmentation of cells and nuclei
(CellMaskTM and DAPI, respectively), as they are used in
standard screening applications. The open design of our workflow
makes it possible to add additional marker channels, e.g., P-
bodies, for more specific screening applications.

Second, we defined different RNA levels. It is well known that
expression levels can vary greatly between genes and even
between clonal cells for a single gene. Ongoing efforts identify
stochastic noise in transcription and extrinsic factors such as
cellular microenvironment or cell volume as the molecular and
environmental origins of these cell-to-cell variations22,23. In
contrast, an analysis workflow of RNA localization has to be
independent of RNA levels, because different cells should be
grouped together based on similarity in their RNA localization
patterns, and not in their expression levels. We defined RNA
density as a free parameter, and the absolute number of RNAs
was assumed to be proportional to the cell volume, as shown in
recent studies22,23 (Supplementary Note 1). We simulated four
regimes of expression, each regime with constant RNA density
modulated with an additional Poisson noise term, which when
pooled cover a large range of expressions levels in agreement with
a recently observed large-scale screen (Fig. 1c)7. Lastly, we also
considered a scenario with very high expression levels to test the
potential limitations of the classification approaches.

Third, we simulated realistic images of individual RNA
molecules. Each RNA was simulated as a point-spread-function
(PSF) with sub-pixel localization and intensities from an
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experimentally measured distribution (Fig. 1d, Supplementary
Note 1). Together with the realistic smFISH background, this
simulation strategy also allows testing the performance of RNA
detection algorithms 12,14 (Supplementary Note 2).

Fourth, we placed RNAs within the 3D cellular volume either
randomly (Fig. 1e) or according to one of seven specific
localization patterns (Fig. 1f–g). We designed these patterns to
either mimic experimental data or to generate so far unobserved,
yet plausible localizations. The patterns correspond to RNAs
localizing to the tip of cellular extensions, around the cell
membrane in 2D or 3D, with a polarized pattern, in foci, and
around the nuclear envelope in 2D or 3D. Each pattern
corresponds to a set of rules defining the spatial distribution of
RNA molecules. For each pattern, there is a set of fixed
parameters that define the nature of the localization pattern. In
addition, we define one parameter (pattern strength) to control
how extreme a pattern is (e.g., for the nuclear envelope
localization, the pattern strength corresponds to the fraction of
RNA in proximity of the envelope). For low pattern strength, the

distribution approaches spatial randomness. For more details we
refer to Supplementary Note 1. For this study, we defined three
strengths, with the intermediate corresponding to a typically
observed experimental pattern as assessed by a human observer
(for an example see Fig. 1g, where the localization of RAB13
mRNAs in cellular extensions9 is compared to simulations). The
pattern strength can be used to study the sensitivity of the
workflow in discriminating localized and non-localized RNAs.
Taken together, we can simulate realistic images with different
RNA expression levels and pattern strength.

Analysis of simulated data with existing approaches. We first
generated data with little heterogeneity for both the pattern
strength and expression level. We used simulated images with
moderate pattern strength and an average of 200 RNAs per cell
(100 cells per condition), to assess the performance of previously
published analysis methods aiming at identifying RNA localiza-
tion patterns. Our first analysis was based on a recent publication
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Fig. 1 Simulation of smFISH images. a smFISH experiment against GAPDH (probes labeled with Cy5) in HeLa cells shown as a maximum intensity
projection along Z (MIP). Cell segmentation (green) was performed with CellMaskTM, nuclear segmentation (yellow) with DAPI signal. Projections of
detected GAPDH mRNAs located between the dashed lines are displayed as indicated by the arrows as side panels. b Final 3D polygon of a cell (yellow)
and its nucleus (blue). c Cumulative histogram of pooled expression level. d mRNA intensity distribution extracted from experimental data (KIF1C mRNA).
Histogram is fitted with a skewed normal distribution (red). e Example of a simulated cell with random mRNA localization shown as a MIP. Outline of cell
and nucleus in green and yellow, respectively. Scale bars 10μm. f Cartoon illustrating the simulated seven non-random localization patterns. g Outlines of a
cell and nucleus with mRNA positions of the pattern cell extension: experimental data (RAB13 mRNA) (left), simulated data with low mRNA density and
moderate pattern strength (right)
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presenting a very comprehensive analysis workflow7,24. Here, 32
localization features are calculated from a mRNA detection per-
formed on a maximum-intensity projection of the smFISH ima-
ges (Supplementary Note 4).

In order to visualize the feature distributions for the simulated
patterns, we projected these features onto two dimensions by t-
Distributed Stochastic Neighbor Embedding (t-SNE)25. While
half of the patterns were reasonably well separated, the other half
was inseparable (Fig. 2a). The inseparable patterns were RNA
localizing in cellular extensions, in foci, at the cell membrane in
3D or randomly. k-means clustering yielded the same set of
indistinguishable patterns (50% accuracy, Fig. 2b). This encour-
aged us to improve RNA detection in 3D and to design new
features describing their spatial distribution.

RNA detection and localization features. Large-scale studies
have shown that accumulation of RNA in cytoplasmic foci is a
predominant localization pattern3. Despite their biological rele-
vance, previous analysis approaches were not designed to cor-
rectly identify these foci. We hypothesized that this might be due
to problems during RNA detection in existing methods, where an
accumulation of very close RNAs is detected as a single molecule.
We hence designed an analysis method based on Gaussian
Mixture Models (GMM), where these foci are decomposed into
individual RNA molecules. We detail the validation of this
approach on simulations and experimental data in Supplemen-
tary Note 2.

We then designed new feature families based on established
concepts from spatial statistics and image analysis. First, we used
Ripley’s L-function, which provides information about homo-
geneity of spatial density. We assumed that this would be
particularly useful for detection of patterns like foci and polarized
RNAs. Second, we used morphological operators to extract
cellular extensions from the 2D mask of the cells and used the
enrichment ratio of RNA counts in these extensions as a feature.
Third, we developed features capturing RNA localization with
respect to the cell membrane. This is challenging, since usually no
information about the 3D cellular shape is available in standard
smFISH experiments. By using our mock smFISH experiment, we
could show that the estimated background of wide-field smFISH
images was correlated with the cell height (Supplementary
Note 3). We thus defined as a feature the correlation of the
measured z-positions of RNAs and the background intensity
(approximation for cell height). Lastly, we normalized the
features describing distances between RNAs and cellular
structures by the expectation of those distances under complete
spatial randomness. Using our simulated data, we found that this
normalization reduced the impact of cellular shape on the feature
distributions, as compared to previously proposed normalization
schemes7 (Supplementary Note 3). We also added two previously
published features for the description of polarized mRNA
localization (Polarization and dispersion index)16. Altogether,
we defined a new set of features (14 new and 9 previously
published, Table 1).

We then analyzed the simulated data with this new feature set
and the new RNA detection scheme in 3D including the GMM.
This greatly improved the identification of localization patterns:
all localization patterns were distinguished in an unsupervised
setting with an overall accuracy of 90% (Fig. 2c, d, Supplementary
Note 4).

Robustness of classification toward heterogeneity. We next
investigated the robustness of this classification toward increased
heterogeneity. First, we pooled the three pattern strengths defined
above and found that the classification results remain good

(accuracy 79%; Supplement Note 4). We then pooled data
simulated with RNA densities from an average of 50–400 RNAs
per cell (Supplement Note 4), corresponding to the range recently
measured in a large-scale smFISH study 7. This test is crucial,
since the analysis should identify cells with similar RNA locali-
zation patterns independently of variations in their expression
level. We found that in a t-SNE plot, cells remained separated
based on their localization pattern (Fig. 2e), showing that the
features are stable with respect to expression heterogeneity. We
also analyzed simulated cells with a very high expression level
(average of 800 RNAs per cell). Here, we found that 7 out of 8
patterns could still be correctly identified (Supplementary
Note 4). Only RNA foci were confounded with random, which
can be explained by the increased local density of genes expressed
at very high levels. However, we expect such extreme levels to be
rare.

We then compared various clustering strategies (Supplemen-
tary Note 4) and found that k-means applied to a six-dimensional
t-SNE analysis gave the best results (88% accuracy, Fig. 2f). If the
number of clusters is not known, it can be inferred from the data
with traditional methods such as the silhouette score or an
analysis of the within-class variability (Supplementary Note 4).

Lastly, we tested whether our simulations could also be used to
analyze the extent by which two spatial distributions must differ
to be still detectable as being different. This is particularly
interesting in the context of drug perturbation experiments.
Specifically, we can use our simulation framework to perform a
sensitivity analysis. We simulated data with a large range of
pattern strength and investigate the impact of the pattern strength
on the accuracy of the analysis (Supplementary Note 4).

Overall, we designed a workflow for the unsupervised analysis
of localization patterns, that we validated on simulated data with
varying degrees of both pattern strength and expression
heterogeneity. Our results indicate that, while some localization
patterns are easier to detect than others, all these localization
patterns could be detected with good accuracy.

Detection of localized mRNAs in experimental data. Motivated
by these results, we analyzed experimental data from 10 genes in
HeLa cells (150–400 cells per gene, 2600 cells in total; Supple-
mentary Note 5). Three mRNAs were manually annotated as
random (KIF20B, MYO18A, PAK2), and seven were chosen
because of their non-random localization. RAB139 and KIF1C
mRNA accumulate in cell extensions. DYNC1H111 and BUB1
mRNA concentrate in cytoplasmic foci. The last three mRNAs
display a localization associated with the nucleus: the ATP6A2
protein is synthesized on the endoplasmic reticulum and its
mRNA concentrate in the perinuclear region; SPEN mRNA form
a rim that decorates the nuclear edge; while CEP192 mRNA
concentrates inside the nucleus. Some of these patterns were not
explicitly included in our simulated classes (e.g., perinuclear and
intranuclear), but they were nevertheless included to test whether
our feature set would be general enough to enable classification of
novel patterns. It is also important to note that, for any of
these genes, we typically observe different cellular sub-
populations with different spatial distributions of the encoded
transcripts. Gene-level annotation therefore describes only a
tendency and cannot be considered as a single-cell annotation.

We applied the workflow that we had benchmarked on the
simulated data to the experimental data and extracted localization
features for each cell. We represented the extracted localization
features as a t-SNE plot (Fig. 3a, Supplementary Note 5). We also
created a more detailed version of this plot where each point was
replaced by a thumbnail representation of the cell, showing
outlines of cells and nuclei and the detected RNAs. The plot can
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be viewed at https://muellerflorian.github.io/locFISH_deepzoom/
#results/tsne_exp (for examples of the thumbnails see Fig. 3a).
The tools to generate such plots are part of the provided Matlab
source code. This zoomable t-SNE plot gives a clear picture of
what the localization patterns in different regions of the feature
space look like.

We found that cells from different genes with the same or
similar manually annotated localization pattern showed an
important overlap in the t-SNE plot. Conversely, we found that
cells from genes with different manual annotations tended to
populate distinct regions (Fig. 3a). This shows that the
localization features are well suited to describe mRNA
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localization from experimental data. This result was confirmed by
the analysis of a different cell line (C2C12) (Supplementary
Note 5). These cells are larger than HeLa cells (600 vs. 200 μm2)
and also more elongated. We found that C2C12 cells with three
different manually annotated localization patterns (DYNC1H1 -
foci, KIF1C - cellular extension, ACTN1 - random and polarized)
were well separated.

Interestingly, the t-SNE plot also captures the heterogeneity we
had observed during visual inspection of the data. First, for genes
with non-random localization, not all cells have a distinct mRNA
localization. For instance, most CEP192 cells form a clearly
separated cluster with a strong intra-nuclear localization (Fig. 3a,
region 2), while other CEP192 cells are random and grouped
together with genes also showing a random localization pattern
(Fig. 3a, region 1). Similar observations can be made for all other
genes annotated as having non-random RNA localization.
Interestingly, the intra-nuclear localization pattern of CEP192
transcripts was not among the patterns used for simulation. This
shows that the features we have designed are informative beyond
the simulated patterns and in principle capable of adequately
describing other patterns as well. Second, some spatial RNA
distributions appear to be pattern mixtures. For instance,
DYNC1H1 mRNAs form foci11, which are displayed in the upper
part of the t-SNE plot (Fig. 3a, region 3). However, in some cells
these foci are located toward the nuclear envelope, and these cells
are positioned in close proximity with other cells displaying
nuclear localization in the t-SNE plot (Fig. 3a, region 4). We
conclude that our features are capable of capturing the complex
structure in the data, and that t-SNE visualization allows to
explore the heterogeneous localization patterns displayed by
different cell populations.

Supervised classification of RNA localization. Next, we inves-
tigated whether we can infer different clusters of subcellular
localization at the single-cell level. k-means with 4 classes cor-
rectly separates the manually annotated localization classes
(random, cellular extension, foci, and nuclear-associated) but
failed to isolate a small cluster of cells with strong intra-nuclear
localization (Fig. 3b). In contrast, spectral clustering was able to
find this cluster but fused larger localization patterns (Fig. 3b,
Supplementary Note 5). Thus, unsupervised learning with fixed
number of clusters can be used in order to identify localization
patterns. These results further suggest that it is important to
explore the data structure in detail and in particular the large

clusters. This then allows to tailor the level of detail in the analysis
to the biological question.

Next, we applied hierarchical clustering (Supplementary
Note 5). This approach arranges the data based on similarity
and does not require a pre-definition or inference of the number
of classes. Importantly, this allows to visually explore the
substructure of large clusters. It also permits to inspect which
features are similar among sub-groups, providing a basis for a
more informed bio-physical interpretation of clusters and sub-
clusters. Hierarchical clustering revealed diverse and subtle
localization patterns. For instance, we observed highly specific
sub-clusters of nuclear-associated patterns corresponding to
intra-nuclear localization (Fig. 3c). We also observed distinct
pattern mixtures for RNA foci, with localization either towards
the cell membrane or the nuclear envelope (Fig. 3d).

In summary, we show that the developed workflow is capable
of describing the different manually annotated localization
patterns in real experiments. We also illustrate how different
non-supervised clustering methods can be used to explore the
data.

Supervised classification of experimental data. We next
addressed the question of whether the simulation framework can
be used in a supervised setting. Unlike unsupervised methods,
supervised learning allows to impose prior knowledge in the form
of a training set, i.e., to give the algorithm the opportunity to
learn which feature combinations are relevant for a biologically
meaningful distinction between patterns. We found that due to
the realistic nature of our simulations (Supplementary Note 5),
we could train a classifier (here: Random Forests26 on simulated
data, and successfully detected the correct localization patterns in
experimental data (Fig. 4a, Supplementary Note 5). As a further
validation, we compared the performance of this classifier and a
classifier trained on manually annotated data and found nearly
identical performance (Supplementary Note 5). These results
show that the feature distributions of simulated and real data are
close enough to allow to train a classifier with simulated data
without a notable loss in performance.

Heterogeneity in mRNA localization. Interestingly, with this
analysis we can study heterogeneity in RNA localization in detail.
As described before, such heterogeneity can correspond to the co-
existence of several cellular subpopulations with pure patterns, or
a mixture of patterns within individual cells. To distinguish
between these two scenarios, we turned to the posterior prob-
abilities for single cells, i.e., the probabilities of a cell to belong to
each of the patterns (Fig. 4b, c, Supplementary Note 5). From
these posterior probabilities we can calculate the Gini impurity at
the single-cell level, which gives an indication of the purity of the
pattern for that particular cell (low values indicating a very pure
pattern). The Gini impurity can also be calculated on the popu-
lation level, i.e., on the average posterior probabilities, indicating
the heterogeneity at the population level. By plotting the Gini
impurity for the population against the intracellular Gini
impurity (Fig. 4d), we can further investigate the nature of the
heterogeneity. This reveals that some genes are characterized by
rather low heterogeneity both at the cellular and the population
level, such as RAB13 and KIF1C, the two mRNAs accumulating in
cell extensions. For other genes, we observed low heterogeneity at
the cellular level and high heterogeneity at the population level.
This is the case for CEP192, and it indicates the existence of pure
subpopulations and suggests the co-existence of different locali-
zation states (Fig. 4c). Other genes are characterized by a high
intra-cellular heterogeneity, i.e., a mixture of patterns, such as
DYNC1H1 (Fig. 4c). Both population and intra-cellular

Table 1 List of localization features used in Figs. 3 and 4

Feature ID Feature description

1 Ripley: maximum
2 Ripley: max gradient [0,max]
3 Ripley: min gradient [max,end]
4 Ripley: value at mid-point between center and boundary
5 Ripley: Spearman correlation between Ripley and radius
6 Ripley: radius of max value
7 Polarization index
8 Dispersion index
9–12 Morph opening–enrichment ratio: 15, 30, 45, 60 pixels
13 Cell height: Spearman correlation with ZmRNA

14 Cell height: R2 with ZmRNA

15 Cell membrane: distance – mean
16-19 Distance membrane: quantile 5%, 10%, 20%, 50%
20 Nucleus: distance – mean
21 Cell centroid: distance – mean
22 Nucleus centroid: distance – mean
23 Ratio: mRNAs inside nucleus/outside nucleus
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heterogeneity could imply a high degree of plasticity in mRNA
localization mechanisms, possibly because of the need to rapidly
adapt to changes in cell shape and cellular micro-environment.
This also shows that cell-to-cell variations in gene expression
occur not only on the expression level as often noted23, but also
extends to the spatial dimension.

mRNA localization in different experimental conditions. We
finally tested how our workflow could be used to investigate
changes in RNA localization. Such an analysis can allow to infer
the biological relevance of an observed pattern, for instance by
performing perturbation experiments. In a recent study, we
reported that DYNC1H1 displays RNA foci11. We further showed
that these foci do not overlap with P-bodies or stress granules, but
are translation factories. To test the role of translation of the
formation of foci, we treated cells with Puromycin, a terminator
of translation elongation. Visual examination indicates that the
foci disappeared after a brief puromycin treatment (30 min).
When analyzing these data with our GMM RNA detection
approach, we could successfully quantify this change in locali-
zation pattern, and also show a change in the localization classes
with both unsupervised and supervised approaches (Supple-
mentary Note 5).

Discussion
In this study, we present a framework for the simulation of
smFISH images with non-random mRNA localization patterns
and methods for their computational analysis. The realistic
simulations allow to: (i) benchmark computational workflows
aiming at studying RNA localization; (ii) assess the descriptive
power of features; and (iii) evaluate the overall performance of
clustering and classification methods. We developed a set of 23
localization features that could group cells based on seven
simulated localization patterns with unprecedented accuracy. We
further analyzed experimental data and correctly identified
manually annotated localization classes. Importantly, we also
demonstrate that simulated smFISH data can be used to train
classifiers in a supervised setting, which when applied on real
smFISH data allow to observe and quantify heterogeneity in RNA
localization.

Manual annotation of smFISH images is complicated, time-
consuming and subjective. When manually annotating RNA
localization patterns, one typically would like to label cells with
respect to the rule according to which RNAs are placed in the cell
(e.g., localization close to a membrane or polarized localization).
While visually solving this problem can be challenging, it is
straightforward to generate images using this rule by simulation.
With this, we do not only overcome the shortcomings of manual
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annotation, but we can also use these simulations to identify
limitations of the methods and to evaluate the robustness with
respect to confounders, such as the density of transcripts or the
shape of cells. While we cannot exclude differences between
synthetic and real images, we demonstrate that synthetic and real
images are similar enough to be used for benchmarking and
training.

We explore several different ways of analyzing simulated and
experimental data and illustrate how the richness of RNA loca-
lization can be explored and quantified by different established
statistical approaches. First, we used a qualitative exploration with
t-SNE. This analysis not only provides important insights about
predominant RNA localization patterns but is also informative
about the subtleties in these patterns. For instance, it can show
the existence of small sub-groups of cells with a very specific
localization pattern, or mixtures of different patterns. Second, we
used different unsupervised classification approaches (k-means,
spectral clustering, and hierarchical clustering). k-means provides
a good global view over the predominant localization classes but
is not well suited to detect small sub-populations, even if they
have a strong signature in their features. Here, spectral-clustering
provides better sensitivity. Complementary to this, hierarchical
clustering allows performing a detailed inspection of the data. In
this analysis, the number of classes is not pre-defined or inferred
and the structure of the data can be investigated to discover sub-
clusters. An additional benefit is the interpretability of the fea-
tures, allowing attribution of biophysical properties to the iden-
tified clusters. Lastly, we applied supervised classification with

Random Forests. We used the high quality of the simulated data
to train a classifier, which could then be applied to experimental
data. Supervised classification allows imposing prior biological
knowledge and an advantage is to find rare localization classes
that can be missed by unsupervised approaches. We also propose
a way to quantitatively analyze the localization heterogeneity at
the population and intra-cellular level. Which approach is used
for a particular data set depends on the underlying biological
question and the required level of detail necessary to answer this
question.

Automatic analysis of an experimental data set consisting of 10
genes revealed different levels of heterogeneity in terms of RNA
localization: heterogeneity at the population and intra-cellular
level have different origins and have to be interpreted accord-
ingly. The existence of different localization patterns in different
cellular subpopulations for a given gene could be indicative of
different biological states, and the localization pattern could be
the approximation of these cellular states. Interpretation of pat-
tern mixtures within a single cell is more complicated. If the
patterns are mutually exclusive (for instance, if a fraction of RNA
localizes at the nuclear envelope and another subset of RNA at
the cell membrane), this may point to a double function of the
encoded protein or a very high localization dynamic. If the pat-
terns are not mutually exclusive (for instance organization into
foci, where foci can be at different locations in the cell), this rather
indicates the existence of subclasses, i.e., subtleties inside the
defined classes, that have not been defined as separate classes.
These subtleties could potentially bare important information, as
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they might be indicative of different biological functions, e.g., by
interaction with different cellular components. An important case
corresponds to mRNA accumulating in foci. This generic locali-
zation class represents one of the most frequently observed pat-
terns in Drosophila3, but occurs in other model systems as well.
Such foci are likely implicated in different biological processes,
such as storage in P-bodies27, vesicles28, or specialized translation
factories11. Their function can then be investigated by perturba-
tion experiments, additional markers, or secondary criteria such
as sub-cellular position.

While we validated and applied the workflow mainly in HeLa
cells, we also successfully identified RNA localization patterns in a
different cell line (C2C12 cells, Supplementary Note 5). The
presented methodology should thus be applicable to other model
systems. Recent studies show wide-spread RNA localization in
organisms such as Drosophila embryos3. While patterns occur-
ring at the scale of the entire embryo (or tissue) would require an
extension of the proposed workflow, namely the addition of other
landmarks and probably other localization features, there are
number of intra-cellular localization patterns where our metho-
dology could essentially complement these studies.

In this work, we integrated two generic cellular landmarks,
namely the cytoplasm and the nucleus, which we believe are
important for any large-scale localization screen. Such a screen
could then reveal interesting localization patterns that are
investigated in targeted follow-up experiments employing other
markers tailored to the hypothesis inferred from the large-scale
screen. For instance, RNA foci have been observed for a number
of genes3, but their functional role still needs to be elucidated.
Such an analysis requires perturbation experiments and/or the
inclusion of additional makers (Supplementary Note 5). We
showed previously that DYNC1H1 foci are neither P-bodies nor
stress granules, but act as specialized translation factories. The
open design of our approach allows integration of additional
markers to discriminate cellular compartments.

In summary, we provide a framework for simulation of syn-
thetic smFISH images and validated methods and tools for the
analysis of intracellular RNA localization. We validated this
workflow on simulated data and demonstrated how different
statistical approaches can be used to investigate the complexity
and richness of smFISH images and therefore provide methods
and tools to explore the spatial dimension of gene expression
inside cells.

Methods
Cell culture. HeLa and C2C12 cell lines were obtained from ATCC and grown in
DMEM medium (Gibco) supplemented with 10% FCS (Sigma). HeLa cell lines
stably transfected with GFP-tagged BAC29 were a kind gift from Anthony Hyman
laboratory (MPI-CBG, Dresden, Germany) and were grown in DMEM medium
supplemented with 10% FCS and 0.4 mg/ml G418 (Gibco).

smFISH probes. smiFISH probes were purchased from Integrated DNA Tech-
nologies. smFISH probes were synthesized by J.M. Escudier (SPCMIB, Toulouse,
France) and labeled with Cy3 mono-reactive dye pack (GE Healthcare). Probe
sequences are available in Supplementary Data 1.

smFISH experiments for cell shape. Single molecule FISH (smFISH) and our
recently published inexpensive variant (smiFISH13) were performed as follows.
Briefly, cells were fixed with 4% paraformaldehyde (Electron Microscopy Sciences)
for 20 min at RT, and permeabilised in 70% ethanol overnight at 4 °C.

smiFISH against GAPDH, RAB13, KIF1C, DYNC1H1, ACTN1 was performed
in HeLa or C2C12 cells against the endogenous mRNAs, using two types of probes:
(i) 24 unlabeled primary probes containing both a mRNA targeting sequence and a
shared sequence (FLAP); (ii) a secondary probe conjugated to two Cy5 moieties
(for GAPDH) or two Cy3 moieties (for RAB13, KIF1C, DYNC1H1, ACTN1), pre-
hybridized in vitro at 65 °C to the primary probes via the FLAP sequence. For all
other mRNAs, HeLa cell lines stably expressing a GFP tagged version of the gene of
interest, which was expressed from a bacterial artificial chromosome (BAC)29, were
used. These BACs carry the entire gene regulatory sequences and in particular the

mRNA untranslated regions often required for proper mRNA localization. smFISH
was performed against the GFP-IRES-Neo sequence of the BAC, with a pool of 40
oligonucleotide probes, carrying up to four Cy3 fluorophores each. For BUB1,
RAB13, KIF1C, a CellMaskTM channel was additionally recorded. Mock-smFISH
was performed in HeLa cells with the above cited pool of probes, targeting an
artificial sequence (GFP-IRES-Neo), not expressed in the cells.

All FISH experiments were performed overnight at 37 °C in a buffer containing
1X SSC, 15% formamide (Sigma), 10% dextran sulfate (Sigma), 0.34 mg/ml tRNA
(Sigma), 0.2 mg/ml BSA (Roche Diagnostics), 2 mM VRC (Sigma). The next day,
the samples were washed at 37 °C in 1× SSC, 15% formamide. In the specified
cases, the cells were labeled with HCS CellMaskTM Green Stain (Molecular Probes)
diluted to 50 ng/ml in PBS, for 5 min following FISH. Cells were subsequently
washed with PBS, and mounted with Vectashield mounting medium with DAPI
(Vector Laboratories).

Imaging to infer cell shape. Three-dimensional image stacks were captured on a
wide-field microscope (Zeiss Axioimager Z1) equipped with a 63 × 1.4 NA objec-
tive and a scMOS camera (Zyla 4.2 MP, Andor Technology) and controlled with
Metamorph (Version 7.8.8.0; Molecular Devices).

Image analysis to infer cell shape. 2D segmentation of nuclei and cells was
performed with the DAPI and CellMaskTM channels with the open-source software
CellCognition19 using a standard segmentation workflow: Otsu and watershed
separation for nuclei in the DAPI channel. Each nucleus then serves as a seed for a
watershed segmentation to obtain the cells in the CellMaskTM channel. Individual
GAPDH mRNA molecules were localized with FISH-quant14 in 3D. The Matlab
function boundary was used to determine the conforming 3D boundary around the
mRNAs, corresponding to the 3D cellular outline. GAPDH is predominately
excluded from the nuclei. To infer the positioning and height of the nuclei, the z-
positions of mRNAs localized in small region in the center of the nuclei were
analyzed. mRNAs were automatically separated into two groups above and below
the nucleus by k-means clustering. This allowed inference of the average 3D height
and position of the nuclei. For more information, see Supplementary Note 1.

mRNA detection and localization in simulations. mRNA detection in 2D was
performed with the MATLAB script provided in Battich et al.7.

mRNA detection in 3D was performed with a standard spot detection approach
in FISH-quant14. In short, an approximation of the second derivative of the images
was first calculated with a LoG filter. mRNAs were pre-detected with a local
maximum detection with a manually determined intensity threshold. After
detection, spots are fitted with a 3D Gaussian function and the GMM approach
applied as detailed in Supplementary Note 2. In short, the algorithm reconstructs
the mRNA foci in multiple single mRNA by using the average signal of a single
mRNA as a reference.

For each cell, the different localization features are calculated in Matlab, and
saved as a text file that can be further analyzed. Ripley-K function calculation was
implemented from scratch. The Matlab functions pdist and p_poly_dist (from
Matlab file exchange) were used to compute the distance between mRNAs and a
reference point (cell centroid, nucleus centroid) and mRNA and a polygon (cell
membrane, nuclear envelope). The Matlab function imopen was used to perform a
morphological opening on the cellular outlines. The normalization coefficients
were calculated using the bwdist function that compute the distance map of a
binary mask.

Statistical methods to analyze localization features. t-SNE projections were
performed using the tsne function implemented in MATLAB available at https://
lvdmaaten.github.io/tsne/. k-means classification was performed using the Matlab
function kmeans using 50 replicates; spectral clustering with the function Spec-
tralClustering from Matlab file exchange; hierarchical clustering with the Matlab
function clustergram with linkage method ward. Random forest (RF) classification
was performed with the Matlab function treebagger. 100 trees were trained on
simulated cells with moderate and high pattern strength and mRNA densities
corresponding to an average of 100 and 200 mRNAs/cell. Gini impurity was cal-
culated from the posterior probabilities for the RF classification: either from the
mean probability per mRNA (population impurity) or the mean impurity for all
cells of a mRNA (intracellular impurity).

Cell segmentation for mRNA localization. Automated nuclear and cell seg-
mentation was performed with a custom algorithm based on the U-net30 deep
convolutional network. Nuclear segmentation was performed with the DAPI
channel, cell segmentation was performed either with CellMaskTM (if present) or
with the actual smFISH image. For segmentation, 3D images were projected into
2D images with a recently described approach13.

mRNA detection and feature calculation. Analysis of experimental smFISH data
was performed as described for simulated data. Except that the detection intensity
threshold was determined for each experiment (mRNA) separately. We imple-
mented a simple Matlab user interface FQ_detect, which is now part of FISH-
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quant, to facilitate the determination of this threshold. It proposes an automatically
calculated threshold based on Otsu thresholding, based on empirically determined
criteria. We refer to the FISH-quant documentation for more details.

Code availability. We provide the entire Matlab code for the analysis described in
this paper, which we integrated into our smFISH analysis package FISH-quant14

available at https://bitbucket.org/muellerflorian/fish_quant

Data availability
Data used to simulate images are available on Zenodo https://doi.org/10.5281/
zenodo.1413488. Additional experimental data supporting the findings of this
study are available from the corresponding authors upon reasonable request.
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