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Abstract

We present a method of exploiting symmetries of discrete-time optimal control problems to reduce the dimensionality of
dynamic programming iterations. The results are derived for systems with continuous state variables, and can be applied to
systems with continuous or discrete symmetry groups. We prove that symmetries of the state update equation and stage costs
induce corresponding symmetries of the optimal cost function and the optimal policies. We then provide a general framework
for computing the optimal cost function based on gridding a space of lower dimension than the original state space. This
method does not rely on explicitly transforming the state update equations and can therefore be applied in circumstances
where this is difficult. We illustrate these results on two six-dimensional optimal control problems that are computationally
difficult to solve by dynamic programming without symmetry reduction.
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1 Introduction

The dynamic programming algorithm for computing op-
timal control policies has, since its development, been
known to suffer from the “curse of dimensionality” (Bell-
man, 1957). Its applicability in practice is typically lim-
ited to systems with four or five continuous state vari-
ables because the number of points required to grid a
space of n continuous state variables increases exponen-
tially with the state dimension n. This complexity has
led to a collection of algorithms for approximate dynamic
programming, which scale to systems with larger state
dimension but lack the guarantees of global optimality
of the solution associated with the original dynamic pro-
gramming algorithm (Bellman and Dreyfus, 1959; Bert-
sekas, 2012; Powell, 2007, 2016).

In practice, many real-world systems exhibit symme-
tries that can be exploited to reduce the complexity of
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system models. Symmetry reduction has found applica-
tions in fields ranging from differential equations (Clark-
sonz and Mansfield, 1994; Bluman and Kumei, 2013) to
model checking (Emerson and Sistla, 1996; Kwiatkowska
et al., 2006). In control engineering, symmetries have
been exploited to improve control of mechanical systems
(Bloch et al., 1996; Bullo and Murray, 1999), develop
more reliable state estimators (Barrau and Bonnabel,
2014), study the controllability of multiagent systems
(Rahmani et al., 2009) and to reduce the complexity
of stability and performance certification for intercon-
nected systems (Arcak et al., 2016; Rufino Ferreira et al.,
2017). Symmetry reduction has also been applied to the
computation of optimal control policies for continuous-
time systems in (Grizzle and Marcus, 1984; Ohsawa,
2013) and Markov decision processes (MDPs) in (Zinke-
vich and Balch, 2001; Narayanamurthy and Ravindran,
2007).

In this paper, we present a theory of symmetry reduc-
tion for the optimal control of discrete-time, stochastic
nonlinear systems with continuous state variables. This
reduction allows dynamic programming to be performed
in a lower-dimensional state space. Since the computa-
tional complexity of a dynamic programming iteration
increases exponentially with state dimension, this reduc-
tion significantly decreases computational burden. Fur-
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ther, our proposed method does not rely on an explicit
transformation of the state update equations, making
the method applicable in situations where a such a trans-
formation is difficult or impossible to find analytically.

We present two theorems that summarize our method
of symmetry reduction. Theorem 4 describes how sym-
metries of the system dynamics imply symmetries of the
optimal cost and optimal policy functions. Theorem 6
then describes a method of computing the cost function
based on reduced coordinate system that depends on
fewer state variables.

This paper builds on the work we presented in the confer-
ence paper (Maidens et al., 2017). The most substantial
improvement is the additional theoretical results pre-
sented in Sections 2.3 and 3.2. The conference version
presented an ad hoc symmetry reduction for a magnetic
resonance imaging (MRI) application, but did not pro-
vide a general methodology for computing the coordi-
nate reduction. This paper addresses this shortcoming
by presenting a general method based on the moving
frame formalism, which leads to the general symmetry
reduction formula presented in Theorem 6. Addition-
ally, the MRI example has been reworked to match this
new formalism, and the numerical implementation and
graphs of the numerical solution have been improved. We
have also included two new extensions of this formalism
to the case of equivariant costs in Section 3.3 and to the
synchronization problem of stochastic dynamic systems
on matrix groups in Section 5, along with examples to
illustrate the algorithm in these contexts.

This paper is organized as follows: in Section 2 we in-
troduce notation and provide background information
both on dynamic programming for optimal control, and
on the mathematical theory of symmetries. In Section
3, we derive our main theoretical results, that is, we
prove that control system symmetries induce symme-
tries of the optimal cost function and optimal control
policy, and then leverage the result to present a general
method of performing dynamic programming in reduced
coordinates. In Section 4 we apply symmetry reduction
to compute the solution of an optimal control problem
arising in dynamic MRI acquisition. In Section 5 we ap-
ply the algorithm to the problem of coordination on Lie
groups. Simulations are performed on a cooperative con-
trol problem for two Dubins vehicles. Code to reproduce
the computational results in this paper is available at
https://github.com/maidens/Automatica-2017.

2 Dynamic Programming and Symmetries

In this section, we first recall the main features of dy-
namic programming for optimal control of stochastic dis-
crete time systems. Then we introduce our problem and
provide the reader with a primer on the classical theory

of symmetries. We also introduce the notion of invariant
control systems with invariant costs.

2.1 Dynamic programming for optimal control of
stochastic systems

We consider a discrete-time dynamical system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (1)

where xk ∈ X ⊆ Rn is the system state, uk ∈ U ⊆ Rm is
the control variable to be chosen at time k, wk ∈ W ⊆
R` are independent continuous random variables each
with density pk, and N ∈ Z+ is a finite control horizon.
Associated with this system is an additive cost function

gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk)

that we wish to minimize through our choice of
uk. We define a control system to be a tuple S =

(X ,U ,W, p, f, g,N) where p =
∏N−1
k=0 pk is the joint

density of the random variables wk.

We consider a class of control policies π = {µ0, . . . , µN−1}
where µk : X → U maps observed states to admissible
control inputs. Given an initial state x0 and a control
policy π, we define the expected cost under this policy as

Jπ(x0) = E

[
gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)

]
.

An optimal policy π∗ is defined as one that minimizes
the expected cost:

Jπ∗(x0) = min
π∈Π

Jπ(x0)

where Π denotes the set of all admissible control policies.
The optimal cost function, denoted J∗(x0), is defined to
be the expected cost corresponding to an optimal policy.

An optimal policy π∗ and the optimal cost function J∗

can be computed using the dynamic programming al-
gorithm. We quote the following result due to Bellman
from (Bertsekas, 2005):

Proposition 1 (Dynamic Programming) For ev-
ery initial state x0, the optimal cost J∗(x0) of the basic
problem is equal to J0(x0), given by the last step of the
following algorithm, which proceeds backward in time
from period N − 1 to period 0:

JN (xN ) = gN (xN )

Jk(xk) = min
uk∈U

E

[
gk(xk, uk, wk) + Jk+1

(
fk(xk, uk, wk)

)]
k = 0, 1, . . . , N − 1,

(2)
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where the expectation is taken with respect to the prob-
ability distribution of wk. Furthermore, if u∗k = µ∗k(xk)
minimizes the right hand side of (2) for each xk and k,
then the policy π∗ = {µ∗0, . . . , µ∗N−1} is optimal.

2.2 Invariant system with invariant costs

We first recall the definition of a transformation
group for a control system, as in (Martin et al., 2004;
Jakubczyk, 1998; Respondek and Tall, 2002). See Olver
(1999) for the more general theory.

Definition 2 (Transformation group) A trans-
formation group on X × U × W is set of tuples
hα = (φα, χα, ψα) parametrized by elements α of a Lie
group G having dimension r, such that the functions
φα : X → X , χα : U → U and ψα : W → W are all C1

diffeomorhpisms and satisfy:

• φe(x) = x, χe(u) = u, ψe(w) = w when e is the
identity of the group G and

• φa∗b(x) = φa ◦φb(x), χa∗b(u) = χa ◦χb(u), ψa∗b(x) =
ψa ◦ ψb(x) for all a, b ∈ G where ∗ denotes the group
operation and ◦ denotes function composition.

To simplify notation we will sometimes suppress the sub-
scripts α. In the present paper, we will consider the fol-
lowing class of systems and cost functions.

Definition 3 (Invariant control system with in-
variant costs) A control system S is G-invariant with
G-invariant costs if for all α ∈ G, xk ∈ X , uk ∈ U and
wk ∈ W we have:

φ−1 ◦ fk(φ(xk), χ(uk), ψ(wk)) = fk(xk, uk, wk),

k = 0, 1, . . . , N − 1

gk(φ(xk), χ(uk), ψ(wk)) = gk(xk, uk, wk),

k = 0, 1, . . . , N − 1,

gN (φ(xN )) = gN (xN ), and

pk(ψ(wk))|detDψ(wk)| = pk(wk)

k = 0, 1, . . . , N − 1.

The rationale is simple: For any fixed α ∈ G, consider
the change of variables Xk = φα(xk), Uk = χα(uk),
Wk = ψα(wk). Then, we have

Xk+1 = fk(Xk, Uk,Wk), k = 0, 1, . . . , N − 1,

and for k = 0, 1, . . . , N−1 we have also gk(Xk, Uk,Wk) =
gk(xk, uk, wk). As a result, if u1, . . . , uN−1 is a series
of controls that minimize J(x0), then one can expect
U1, . . . , UN−1 to minimize J(X0), under some assump-
tions on the noise. As a result, the optimal control
problem needs only be solved once for all initial condi-
tions belonging to the set {φα(x0)|α ∈ G}, reducing the

initial n dimensional problem to a n − r dimensional
problem. The present paper derives a proper theory
for such symmetry reduction in dynamic programming,
and provides various examples of engineering interest.

2.3 Cartan’s moving frame method

To find a reduced coordinate system in which to per-
form dynamic programming, we will use the moving
frame method of Cartan (Cartan, 1937). In general, this
method only results in a local coordinate transformation
as it relies on the implicit function theorem. However, for
many practical problems the transformation computed
using this method extends globally. To simplify the ex-
posure we will present a “global” version of the method.

We briefly introduce the moving frame method following
the presentation in (Bonnabel et al., 2008). Consider
an r-dimensional transformation group (with r ≤ n)
acting on X via the diffeomorphisms (φα)α∈G . Assume
we can split φα as (φaα, φ

b
α) with r and n−r components

respectively so that φaα is an invertible map. Then, for
some c in the range of φa, we define a coordinate cross
section to the orbits C = {x : φae(x) = c}. This cross
section is an n−r-dimensional submanifold ofX . Assume
moreover that for any point x ∈ X , there is a unique
group element α ∈ G such that φα(x) ∈ C. Such α will
be denoted γ(x), and the map γ : X → G will be called
moving frame.

A moving frame can be computed by solving the nor-
malization equations:

φaγ(x)(x) = c.

Define the following map ρ : X → Rn−r as

ρ(x) = φbγ(x)(x).

Note that, for all α ∈ G we have ρ(φα(x)) = ρ(x), that
is, the components of ρ are invariant to the group action
on the state space. Further, due to our assumptions, the
restriction of ρ to C is injective. We denote this restricted
function ρ̄, and it will serve as a reduced coordinate sys-
tem to solve the invariant optimal control problem.

3 Main Results

In order to combat the “curse of dimensionality” asso-
ciated with performing dynamic programming in high-
dimensional systems, we describe a method to reduce
the system’s dimension by exploiting symmetries in the
dynamics and stage costs.
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3.1 Symmetries imply equivalence classes of optimal
policies

Theorem 4 (Symmetries of the optimal cost and
policy) Let G be a group and let S be a G-invariant
control system with G-invariant costs. Then the optimal
cost functions Jk(x0) satisfy the symmetry relations

Jk = Jk ◦ φα

for any k = 0, . . . , N and any α ∈ G. Furthermore, if
π∗ = {µ∗0, . . . , µ∗N−1} is an optimal policy then so is π̃∗ :=

{χα ◦ µ∗0 ◦ φ−1
α , . . . , χα ◦ µ∗N−1 ◦ φ−1

α } for any α ∈ G.

PROOF. First, note that

JN (xN ) = gN (xN ) = gN (φ(xN )) = JN (φ(xN )).

Now, suppose that for some k ∈ {0, . . . , N − 1} we have
Jk+1(xk+1) = Jk+1(φ(xk+1)) for all xk+1 ∈ X . Then for
any xk ∈ X, and uk ∈ U we have

E

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]

=

∫
W

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]
pk(wk)dwk

=

∫
W

[
gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(φ−1 ◦ fk(φ(xk), χ(uk), ψ(wk)))

]
pk(wk)dwk

=

∫
W

[
gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(fk(φ(xk), χ(uk), ψ(wk)))

]
pk(wk)dwk

=

∫
W

[
gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(fk(φ(xk), χ(uk), ψ(wk)))

]
pk(ψ(wk))|detDψ(xk)|dwk

=

∫
ψ(W)

[
gk(φ(xk), χ(uk), w̃k) + Jk+1(fk(φ(xk), χ(uk), w̃k))

]
pk(w̃k)dw̃k

=

∫
W

[
gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]
pk(wk)dwk

= E

[
gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]

Therefore,

Jk(xk) = min
uk∈U

E

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]

= min
uk∈U

E

[
gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]

= min
ũk∈χ(U)

E

[
gk(φ(xk), ũk, wk) + Jk+1(fk(φ(xk), ũk, wk))

]
= Jk(φ(xk)).

Thus J∗ = J∗ ◦ φ. Now, if π∗ = {µ∗0, . . . , µ∗N−1} is an
optimal policy and we denote x̃k = φ(xk) then for any

k ∈ {0, . . . , N − 1} we have

Jk(x̃k) = Jk(xk)

= E

[
g(xk, µ

∗
k(xk), wk) + Jk+1(fk(xk, µ

∗
k(xk), wk))

]

= E

[
gk(φ(xk), χ(µ∗k(xk)), wk) + Jk+1(fk(φ(xk), χ(µ∗k(xk)), wk))

]

= E

[
gk(φ(xk), χ ◦ µ∗k ◦ φ−1(φ(xk)), wk) + Jk+1(fk(φ(xk), χ ◦ µ∗k ◦ φ−1(φ(xk)), wk))

]

= E

[
gk(x̃k, χ ◦ µ∗k ◦ φ−1(x̃k), wk) + Jk+1(fk(x̃k, χ ◦ µ∗k ◦ φ−1(x̃k), wk))

]

Thus π̃∗ := {χ ◦ µ∗0 ◦ φ−1, . . . , χ ◦ µ∗N−1 ◦ φ−1} is an
optimal policy. 2

3.2 Dynamic programming can be preformed using re-
duced coordinates

Theorem 4 readily implies the problem can be reduced,
as all states along an orbit of G are equivalent in terms
of cost, and that there are equivalence classes of optimal
policies. So it suffices to only consider the cost corre-
sponding to a single representative of each equivalence
class, and to find a single representative of the optimal
policy within each class. This can now easily be done
using the injective map ρ̄ : C → Rn−r.

For x̄ ∈ ρ̄(C) ⊂ Rn−r, let z ∈ C be such that x̄ = ρ̄(z),
and define

J̄k(x̄) = Jk(z).

The following result shows that the functions Jk on the
n-dimensional space X ⊆ Rn are completely determined
by the values of J̄k on the subset ρ̄(C) of Rn−r.

Corollary 5 For any x ∈ X and k = 0, . . . , N , the cost
function Jk for the full problem can be computed in terms
of the lower-dimensional cost function J̄k as

Jk(x) = Jk(φγ(x)(x)) = J̄k(x̄),

where x̄ := ρ̄(φγ(x)(x)) is well defined as φγ(x)(x) ∈ C.

It is thus sufficient to have evaluated J̄ at all points of
ρ̄(C) ⊂ Rn−r to be able to instantly evaluate J at any
point of X .

Theorem 6 (Dynamic programming in reduced
coordinates) The reduced coordinates are in one to one
correspondance with the cross-section C. For any x̄, let
z ∈ C satistisfy ρ̄(z) = x̄. Then in the reduced coordi-
nates, the sequence J̄k can be computed recursively via

J̄k(x̄) = minuk∈U E
[
gk(z, uk, wk) + J̄k+1(ρ(fk(z, uk, wk)))

]
.
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PROOF. We have

J̄k(x̄) = Jk(z) = min
uk∈U

E

[
gk(z, uk, wk) + Jk+1

(
fk(z, uk, wk)

)]

= min
uk∈U

E

[
gk(z, uk, wk) + J̄k+1

(
ρ ◦ fk(z, uk, wk)

)]
. 2

3.3 Case of equivariant costs

So far, we have considered the costs to be invariant.
However, equivariance can obviously also be consid-
ered. Indeed, the cost gk is said to be equivariant if
there exists a family of diffeomorphisms ϕα such that
gk(φα(xk), χα(uk), ψα(wk)) = ϕα◦gk(xk, uk, wk). As we
want the cost function J to be equivariant too, we will
need ϕα(·) to be linear. Thus we will simply assume that
ϕα is of the form ϕα(J) = l(α)J , that is, it is a scaling
of the cost, where l : R>0 → R>0. For simplicity’s sake,
we consider here the problem to be noise free. Along the
lines of the preceding sections it is easily proved that

Jk(φ(x)) = ϕ ◦ Jk(x)

as already noticed in (Alvarez and Stokey, 1998) for
the case of homogeneous costs. Symmetry reduction can
then be applied. We now give two tutorial examples.

Example 1 Consider the linear system

xx+1 = Axk +Buk

with quadratic costs gk = xTkQxk + uTkRuk. The sys-
tem is invariant to scalings, φα(x) = αx, χα(u) = αu,
and the cost is equivariant letting ϕα(J) = αJ , where
α ∈ G = R>0. The unit sphere is a cross section to
the orbits, and the normalization equations yield γ(x) =
1/||x||. Applying the results above, we see that the controls
that minimize J(x0) are ||x0||u∗1, · · · , ||x0||u∗N−1, where
u∗1, · · · , u∗N−1 are those minimizing J( x0

||x0|| ). This agrees

with the well known fact that the optimal controller for
the problem above is the linear quadratic controller, and
is indeed of the linear form uk = −Fkxk.

Example 2 Consider the following system and costs

xx+1 = Axk +Buk, gk = h(xk) + ||uk||1

where ||uk||1 denotes the L1 norm of uk and h is a map
satisfying h(ax) = ah(x) for a > 0. Such costs may
arise when one tries to force some controls to zero to
create sparsity, a method known as L1 regularization.
This problem is challenging, particularly for nonconvex
h. But according to the theory above, it is sufficient to
solve it numerically for initial conditions lying on the
unit sphere of the state space.

4 Application to MRI Fingerprinting

Magnetic resonance imaging (MRI) has traditionally fo-
cused on acquisition sequences that are static, in the
sense that sequences typically wait for magnetization
to return to equilibrium between acquisitions. Recently,
researchers have demonstrated promising results based
on dynamic acquisition sequences, in which spins are
continuously excited by a sequence of random input
pulses, without allowing the system to return to equilib-
rium between pulses. Model parameters corresponding
to T1 and T2 relaxation, off-resonance and spin density
are then estimated from the sequence of acquired data.
This technique, termed magnetic resonance fingerprint-
ing (MRF), has been shown to increase the sensitivity,
specificity and speed of magnetic resonance studies (Ma
et al., 2013; Davies et al., 2014).

This technique could be further improved by replacing
randomized input pulse sequences with sequences that
have been optimized for informativeness about model
parameters. To this end, we present a model of MR spin
dynamics that describes the measured data as a function
of T1 and T2 relaxation rates and the sequence of radio-
frequency (RF) input pulses, used to excite the spins.

The following model was introduced in the conference
paper (Maidens et al., 2017). In this paper, an optimal
control was computed via dynamic programming on a
very sparse six-dimensional grid. Now using our sym-
metry reduction technique, we we exploit symmetry re-
duction to provide a much more accurate optimal input
sequence computed on a finer five-dimensional grid.

We model the spin dynamics via the equations

xk+1 = Uk


θ2 0 0

0 θ2 0

0 0 θ1

xk +


0

0

1− θ1

 (3)

where the states x1,k and x2,k describe the transverse
magnetization (orthogonal to the applied magnetic field)
and x3,k describes the longitudinal magnetization (par-
allel to the applied magnetic field). To simplify the pre-
sentation, off-resonance is neglected in this model. Con-
trol inputs Uk ∈ SO(3) describe flip angles correspond-
ing to RF excitation pulses that rotate the state about
the origin. Between acquisitions, transverse magnetiza-
tion decays according to the parameter θ2 = e−∆t/T2 and
the longitudinal magnetization recovers to equilibrium
(normalized such that the equilibrium is x0 = [0 0 1]T )
according to the parameter θ1 = e−∆t/T1 where ∆t is
the sampling interval.

We assume that data are acquired immediately following
the RF pulse, allowing us to make a noisy measurement
of the transverse magnetization. We also assume that the
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fk(xk, Uk, wk) =



0 0 0

Uk 0 0 0

0 0 0

0 0 0

0 0 0 Uk

0 0 0





θ2 0 0 0 0 0

0 θ2 0 0 0 0

0 0 θ1 0 0 0

0 0 0 θ2 0 0

0 0 0 0 θ2 0

0 0 1 0 0 θ1


xk +



0

0

1− θ1

0

0

−1



gk(xk, Uk, wk) = −xTk



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1
γ 0 0

0 0 0 0 1
γ 0

0 0 0 0 0 0


xk

(4)

measured data are described by a multivariate Gaussian
random variable

yk =

[
1 0 0

0 1 0

]
xk + vk

where vk is a zero-mean Gaussian noise with covariance[
γ 0

0 γ

]
. This model results from a time discretization

of the Bloch equations (Bloch, 1946; Nishimura, 2010)
under a time scale separation assumption that specifies
that the RF excitation pulses act on a much faster time
scale than the relaxation time constants T1 and T2. A
simplified two-state version of this model was considered
in (Maidens et al., 2016b), where the transverse magne-
tization was modelled using a single state describing the
magnitude of [x1,k, x2,k]T .

We see from the model (3) that magnetization in the
transverse direction decays while magnetization in the
longitudinal direction grows. However only the trans-
verse component of the magnetization can be measured.
Thus there is a trade-off between making measurements
(which leads to loss of magnetization) and magnetiza-
tion recovery. This is the trade-off that we hope to man-
age through the optimal design of an input sequence Uk.

We wish to quantify the informativeness of an acquisi-
tion sequence based on the information about the T1 re-
laxation parameter θ1 that is contained in the resulting
data set. More formally, we wish to choose Uk ∈ SO(3)
to maximize the Fisher information about θ1 contained
in the joint distribution of Y = (y0, . . . ,yN ). The Fisher
information I can be expressed as a quadratic function

of the sensitivities of xk with respect to θ1:

I =

N∑
k=0

∂

∂θ1
xTk


1/γ 0 0

0 1/γ 0

0 0 0

 ∂

∂θ1
xk

where the sensitivities ∂
∂θ1

xk satisfy the following sensi-
tivity equations:

∂
∂θ1

xk+1 = Uk


θ2 0 0

0 θ2 0

0 0 θ1

 ∂
∂θ1

xk + Uk


0 0 0

0 0 0

0 0 1

xk +


0

0

−1

 .

It should be noted that for system (3), the objective
function I has many local optima as a function of the in-
put sequence Uk. Thus, in contrast with (Maidens et al.,
2016a) which consider optimal experiment design for hy-
perpolarized MRI problems, for this model, local search
methods provide little insight into what acquisition se-
quences are good. In contrast with the MRI model pre-
sented in (Maidens and Arcak, 2016), where global opti-
mal experiment design heuristics are developed for linear
dynamical systems, in this model the decision variables
Uk multiply the state vector xk, making the output yk
a nonlinear function of the sequence U = (U0, . . . Uk−1).
Thus we must use dynamic programming to find a solu-
tion.
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4.1 Model

To present this problem in the formalism we have intro-
duced, we define an augmented state vector

xk =

[
xk
∂
∂θ1

xk

]
∈ R6.

We can write the dynamics of the augmented state as
a control system with f and g defined in Equation (4).
This system has a one-dimensional group of symmetries
defined by

φα(xk) =



cos(α) − sin(α) 0 0 0 0

sin(α) cos(α) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos(α) − sin(α) 0

0 0 0 sin(α) cos(α) 0

0 0 0 0 0 1


xk

χα(Uk) =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

Uk


cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1


ψα(wk) = wk

for any α ∈ R/2πZ.

4.2 Dynamic programming in reduced coordinates

To perform dynamic programming in a reduced coor-
dinate system, we begin by defining the cross-section
C = {x : x1 = 0, x2 > 0}, and computing the moving
frame γ(x). To do so, we solve

0 = φaγ(x)(x) = x1 cos γ(x)− x2 sin γ(x).

Isolating γ yields

γ(x) = atan2(x1, x2).

Next, we compute the invariants ρ(x) using

ρ(x) = φbγ(x)

=



sin(atan2(x1, x2)) cos(atan2(x1, x2)) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos(atan2(x1, x2)) − sin(atan2(x1, x2)) 0

0 0 0 sin(atan2(x1, x2)) cos(atan2(x1, x2)) 0

0 0 0 0 0 1


x

=



√
x2

1 + x2
2

x3

1√
x2
1+x2

2

(x2x4 − x1x5)

1√
x2
1+x2

2

(x1x4 + x2x5)

x6



Further, ρ restricted to the cross-section C is injective
with inverse ρ̄−1 : R+ × R4 → C given by ρ̄−1(x̄) =[
0 x̄1 x̄2 x̄3 x̄4 x̄5

]T
. The theory above tells us we can

thus solve the optimal stochastic control problem in a 5
dimensional state space, reducing the original 6 dimen-
sional problem of 1 dimension.

4.3 Results

To implement this algorithm, we discretize the reduced
five-dimensional state space and two-dimensional input
space via grids of size 6 × 10 × 15 × 15 × 15 and 16 ×
8 respectively. The code was written in the Julia lan-
guage and parallelized to allow evaluation of Jk in par-
allel across grid points (Maidens et al., 2016b). The im-
plementation is publicly available at https://github.
com/maidens/Automatica-2017.

Optimal input and state trajectories for the model cor-
responding to the initial condition at the equilibrium
x0 = [0 0 1 0 0 0]T are plotted in Figures 1 and 2.

Fig. 1. Optimal input sequence for the MR fingerprinting
model. The angles α, β and δ represent rotations about the
z, y and x axes respectively, resulting in an control input
Uk = Rz(αk)Ry(βk)Rx(γk).

In contrast with the results from (Maidens et al., 2016b)
where we considered a simplified version of the model,
for this full model we no longer find that the optimal flip
angle sequence converges to a cyclic pattern, rather it
appears irregular. However, state sequence of longitudi-
nal magnetizations and transverse magnetization mag-
nitudes appears to converge to a constant sequence. This
is likely because in this work we assumed Gaussian noise
in the inputs in contrast with the Rician noise assumed
in the previous work, therefore it is no longer necessary
to conserve magnetization across multiple time steps be-
fore generating a reliable measurement.

7



(a) Magnetizations

(b) Sensitivities

Fig. 2. Optimal state sequence for the MR fingerprinting
model. Here we have plotted the longitudinal and transverse
components of both the magnetization (states x1, x2, and
x3) and the sensitivities (states x4, x5, and x6) where the
transverse component is computed as the Euclidean norm of
the vectors (x1, x2) and (x4, x5) respectively.

5 Optimal Formation Control on Lie Groups

We now apply the theory presented in Section 2.2 where
the state space X ⊆ Rn is the Cartesian product of
matrix Lie groups. Note that, straightforward modifica-
tions arise along the way as the state space and noise
space are not vector spaces as in the theory above. The
methodology is then applied to the synchronization of
two non-holonomic cars in the presence of uncertainties.

5.1 General problem

We model the system as a collection of K agents, where
the state of each agent evolves on a r-dimensional matrix
Lie group G. We assume that the evolution of the state
of agent j proceeds according to the equation

Xj
k+1 = Xj

kM(ujk)W j
k (5)

where Xk, M(uk), Wk are all square matrices belong-
ing to G, uk is a control that lives in some finite di-
mensional vector space, and Wk is the noise. The con-
trol objective is to reach a desired configuration, that
is, a desired value for the relative configurations of the
agents (X1)−1X2, . . . , (XK−1)−1XK , see e.g., Sarlette
et al. (2010) for more information.

Systems of this form are naturally invariant to left mul-
tiplication of all Xj by some matrix A ∈ G:

φA(X) =


AX1

...

AXK


whereX = (X1, . . . , Xk) ∈ GK . Lettingχ(u1, . . . , uK) ≡
(u1, . . . , uK), ψ(W 1, . . . ,WK) ≡ (W 1, . . . ,WK), and
the costs be of the form g̃((X1)−1X2, . . . , (XK−1)−1XK)+
h(u1, . . . , uK), we get an invariant system with invariant
costs.

One can define a cross section to the orbits by letting the
first agent coordinates be equal to the identity matrix,
that is, C = {X ∈ GK : X1 = I}. The normalization
equation are given by I = φaγ(X)(X) = γ(X)X1, hence

the moving frame is given by γ(X) = (X1)−1. The in-
variants are computed as

ρ(X) = φbγ(X) =


(X1)−1X2

...

(X1)−1XK


The optimal stochastic control problem can then be
solved in the reduced coordinate system defined by ρ,
reducing the state space from dimensionKr to (K−1)r.

5.2 Application: cooperative formation control for two
stochastic Dubins vehicles

We consider two identical Dubins vehicles each with dy-
namics

zk+1 = zk + vk cos θk
yk+1 = yk + vk sin θk

θk+1 = θk +
1

L
vk tan sk + wk

where yk and zk denote the two-dimensional position of
the vehicle, θk denotes the heading of the vehicle, vk is
a velocity input, sk is a steering angle input, and wk
is independent, identically-distributed zero-mean Gaus-
sian noise with variance σ2, and L is a parameter that
determines the vehicle’s steering radius.
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These dynamics can be embedded in the three-
dimensional special Euclidean matrix Lie group
G = SE(2), by defining the state

Xk =


cos θk − sin θk zk

sin θk cos θk yk

0 0 1

 ,
input matrix

M(vk, sk) =


cos( 1

Lvk tan sk) − sin( 1
Lvk tan sk) vk

sin( 1
Lvk tan sk) cos( 1

Lvk tan sk) 0

0 0 1

 ,
and noise matrix

Wk =


coswk − sinwk 0

sinwk coswk 0

0 0 1

 ,
with state update equation of the form (5).

We wish to compute a control policy for a two-vehicle
system, with states X1 and X2, where the controls can
only take a finite number of values, and with terminal
cost

J(X1
0 , X

2
0 ) = E

[
gN
(
(X1

N )−1X2
N

)]
where gN (X) = arccos(X11)2 + |

√
X2

13 +X2
23 − 1|, that

is, we want the vehicles to have the same heading, and
follow each other at unit distance. Thanks to the theory
developed above, the stochastic control problem is re-
duced from problem with a six dimensional state space
to a problem with a three dimensional state space only.

For numerical simulations, the cost functions J̄k were
computed on a fixed grid of dimension 51 × 51 × 65
using turning radius parameter L = 1, input sets vk ∈
{−0.1, 0,−0.1} and sk ∈ {−1, 0,−1} Globally optimal
input and state trajectory sequences corresponding to

the initial condition x0 =
[
0.1 0 1

2π −0.1 0 3
2π
]T

are

shown in Figures 3 and 4. These are compared against
a deterministic version of the model with wk = 0 in
Figures 5 and 6.

6 Conclusion

We have presented a method of reducing the complexity
of dynamic programming for systems in which the state
dynamics, stage costs and transition probabilities are in-
variant under a group of symmetries. This allows us to
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Fig. 3. Optimal input sequence for cooperative stochastic
Dubins vehicle model with σ = 0.3.

�

���� ��� ��� ��� ���
����

����

���

���

���

�

Fig. 4. Optimal state sequence for the cooperative stochastic
Dubins vehicle model with σ = 0.3.

compute globally optimal control policies for systems of
moderate state dimension. We have applied this tech-
nique to compute globally optimal trajectories to a six-
dimensional original MRI model with a one-dimensional
group of symmetries and for a six-dimensional stochastic
Dubins vehicle model with a three-dimensional group of
symmetries by reducing the dimension of the state space
to five and three dimensions respectively. Since compu-
tation time for dynamic programming depends expo-
nentially on the state space dimension, this technique
enables the computation of optimal control policies for
systems in which it was previously infeasible.
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Fig. 5. Optimal input sequence for cooperative deterministic
Dubins vehicle model.
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Fig. 6. Optimal state sequence for the cooperative determin-
istic Dubins vehicle model.

References

F. Alvarez and N. L. Stokey. Dynamic programming
with homogeneous functions. Journal of economic the-
ory, 82(1):167–189, 1998.

M. Arcak, C. Meissen, and A. Packard. Symmetry re-
duction. In Networks of Dissipative Systems: Com-
positional Certification of Stability, Performance, and
Safety, pages 55–62. Springer, 2016.

A. Barrau and S. Bonnabel. The invariant extended
Kalman filter as a stable observer. Arxiv preprint,
page arXiv:1410.1465, 2014.

R. Bellman. Dynamic Programming. Princeton Univer-
sity Press, 1957.

R. Bellman and S. Dreyfus. Functional approximations
and dynamic programming. Mathematical Tables and

Other Aids to Computation, 13(68):247–251, 1959.
D. P. Bertsekas. Dynamic Programming and Optimal

Control, Volume I. Athena Scientific, 3rd edition,
2005.

D. P. Bertsekas. Dynamic Programming and Optimal
Control, Volume II: Approximate Dynamic Program-
ming. Athena Scientific, 4th edition, 2012.

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and
R. M. Murray. Nonholonomic mechanical systems
with symmetry. Arch. Rational Mech. Anal., 136:21–
99, 1996.

F. Bloch. Nuclear induction. Phys. Rev., 70:460–474,
1946.

G. Bluman and S. Kumei. Symmetries and Differential
Equations. Applied Mathematical Sciences. Springer,
2013.

S. Bonnabel, P. Martin, and P. Rouchon. Symmetry-
preserving observers. IEEE Transactions on Auto-
matic Control, 53(11):2514–2526, 2008.

F. Bullo and R. M. Murray. Tracking for fully actuated
mechanical systems: a geometric framework. Auto-
matica, 35(1):17–34, 1999.
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