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Probabilistic Prediction from Planning Perspective: Problem

Formulation, Representation Simplification and Evaluation Metric

Wei Zhan1, Arnaud de La Fortelle2, Yi-Ting Chen3, Ching-Yao Chan4, and Masayoshi Tomizuka1

Abstract— Accurate probabilistic prediction for intention and
motion of road users is a key prerequisite to achieve safe
and high-quality decision-making and motion planning for
autonomous driving. Typically, the performance of probabilistic
predictions was only evaluated by learning metrics for approx-
imation to the motion distribution in the dataset. However,
as a module supporting decision and planning, probabilistic
prediction should also be evaluated from decision and planning
perspective. Moreover, the evaluation of probabilistic predic-
tion highly relies on the problem formulation variation and
motion representation simplification, which lacks a summary
in a comprehensive framework. To address such concerns, we
provide a systematic and unified framework for the analysis of
three under-explored aspects of probabilistic prediction: prob-
lem formulation, representation simplification and evaluation
metric. More importantly, we address the omitted but crucial
problems in the three aspects from decision and planning
perspective. In addition to a review of learning metrics, metrics
to be considered from planning perspective are highlighted,
such as planning consequence of inaccurate and erroneous
prediction, as well as violations of predicted motions to planning
constraints. We address practical formulation variations of
prediction problems, such as decision-maker view and blind
view for viewpoint, as well as reactive prediction for interaction,
so that decision and planning can be facilitated.

I. INTRODUCTION

The behavior of traffic participants is full of uncertainties

in the real world. Autonomous vehicles need to well estimate

such uncertainties to increase driving quality (time-efficiency,

comfort, etc.) and safety level for the decision-making

and motion planning. To drive safely, autonomous vehicles

should predict possible intentions and motions of other road

participants, and avoid collisions accordingly. To enhance

driving quality, autonomous vehicles should take threats of

high probability seriously, yet not overreact to threats of

low probability. Therefore, probabilistic intention and motion

predictions are inevitable for safe and high-quality decision-

making and motion planning for autonomous vehicles.

A typical structure of probabilistic prediction is shown

in Figure 1. Most of the research efforts on probabilistic

prediction [1] were focused on prediction algorithm design
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Fig. 1: Typical structure and data flow for probabilistic prediction.
Observations are generated via feature extraction of historical
motions in the dataset combined with maps from prior knowledge.
Prediction algorithm provides predicted distribution according to the
observation input by incorporating prior knowledge such as traffic
rules, vehicle models and maps. Since the motion representation in
the predicted distribution is often simplified, the representation of
the future motions in the dataset should be homogenized so that
the ground truth can be used to evaluate the performance of the
algorithm by appropriate metrics.

for specific scenarios. Some recent works addressed incor-

porating prior knowledge to construct prediction frameworks

which can deal with a variety of scenarios [2] [3]. Arbitrary

solutions for other parts in Figure 1 were typically adopted,

which lacks sufficient investigation.

A. Evaluation metric

Evaluation metrics are required to measure the perfor-

mance of predictions. Distance-based trajectory similarity

metrics were investigated and employed in [4] [5] [6] [7].

Comprehensive reviews on distance-based metrics were pro-

vided and novel measures were proposed in [8] [9]. Distance-

based metrics are well applicable to evaluate deterministic

predictions. However, the evaluation of probabilistic predic-

tion cannot be provided by using distance-based metrics di-

rectly. A variety of learning metrics were used to evaluate the

performance of probabilistic prediction models on whether

the distribution in the dataset is well approximated, such as

area under the curve (AUC) [10], root mean square error

(RMSE) [11], likelihood [12], and Kullback-Leibler (KL)

divergence [13].

The executed motion of a vehicle typically satisfies plan-

ning constraints on feasibility (vehicle model) and safety

(collision avoidance). However, small perturbations making

a trajectory infeasible or unsafe, can hardly make a large

difference for learning and distance-based metrics. The afore-
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mentioned problem has not been sufficiently addressed for

evaluation. Moreover, the ultimate goal of the probabilistic

prediction model is to support decision-making and planning.

Several practical aspects should also be considered from

such perspective. The potential consequence of inaccurate

predictions to safety and driving quality should be taken into

account. It is also a concern for the decision and planning

module whether accurate prediction is provided timely with

sufficient preview horizon. Neither the learning metrics nor

distance-based ones can take into account these aspects.

The performance of probabilistic predictions should be

evaluated by appropriate metrics so that it can best ap-

proximate the distribution in datasets, while avoid infeasible

and unsafe motions in the prediction, and desirably provide

indications to the subsequent decision and planning modules.

Thus our primary motivation is to provide a summary of

learning metrics, and address the crucial but omitted aspects

on prediction evaluation from the perspective of decision-

making and planning, so that novel metrics can be inspired.

B. Representation simplification

Indicators are commonly used to simplify the motion

representation to enable the probabilistic description of the

predictions since the original space of trajectories can be

extremely high with continuous variables. As shown in

Figure 1, the representation of future motions should be

homogenized so that same indicators are used for comparing

the predicted distribution and the ground truth to make the

evaluation metric meaningful. Motion patterns such as route

[14] and pass-yield [15] patterns, as well as spatiotemporal

representations such as prototype trajectory [16] and reach-

able set [17], were used as indicators, which need to be

summarized.

Intention is one of the most common indicators for

simplification. However, the meaning of “intention” can be

twofold, namely, original desire and executed motion pattern.

In highly interactive scenarios, an entity may not be able to

achieve its original desire due to the motion of others. In

fact, the decision and planning module checks the potential

collision with others according to their possible motions to

execute, but not the original desire. Moreover, the original

desire cannot be labeled as the ground truth in datasets.

Instead, only the executed motion patterns can be labeled.

Therefore, the difference between pattern and desire should

be clarified. Thus our second motivation is to summarize

methods for motion representation simplification, and to

clarify the distinction between motion pattern and desire.

C. Problem formulation

The variation of the assumptions and settings for the

input and output of the prediction algorithm can signifi-

cantly change the forms of the observation and predicted

distribution in Figure 1. It is hard to compare algorithms

with different problem formulations due to the viewpoint and

interaction-involvement of the input, as well as the number

of predicted entities and motion representation of the output.

Such variation can also completely change the problem

complexity, as well as model practicability for decision-

making and planning of the host vehicle.

For instance, NGSIM dataset [18] provides bird’s-eye view

of the dynamic scenes so that the surroundings of a predicted

vehicle are fully observable. However, autonomous vehicles

in the real traffic can only obtain local view, which means

that the surroundings of a predicted vehicle are partially

observable with uncertainties. Thus our third motivation is to

summarize the variations of input and output for the problem

formulation of probabilistic prediction from decision and

planning perspective so that the difficult but practically

significant problems can be addressed.

The main contributions of this paper can be summarized

as follows. First, we address the under-explored but crucial

aspects to formulate, simplify and evaluate probabilistic

prediction from decision-making and planning perspective.

Second, we provide a systematic framework to summarize

the assumptions and settings for problem formulation, indica-

tors for motion representation simplification, and metrics for

performance evaluation. Third, existing probabilistic predic-

tion works are reviewed from the three highlighted aspects,

instead of methodologies and scenarios, in order to inspire

novel evaluation metrics.

II. PROBLEM FORMULATION

Suppose xi is an input observation in Figure 1, which

contains the extracted features from historical motions in

the dataset with map context. ŷi denotes representation of

the future motion of the predicted entity in the prediction

algorithm corresponding to xi. yi is the ground truth of the

future motion from dataset homogenized to the same form

of ŷi. X and Y are the corresponding random variables.

Then the problem is to design prediction algorithms so

that the predicted distribution p(Y |X) can best approximate

the distribution in the dataset q(Y |X). Note that typically

q(Y |X) can only be obtained or represented by ground

truth data points (xi, yi). There are several variations of the

original problem by changing the input and output of the

model.

A. Input variation 1: viewpoint

An important variation of the observation input is the

viewpoint. The main distinction for different viewpoints

lies in occlusions, such as whether the surroundings of the

predicted entity is occluded to the prediction module, and

whether the predicted entity itself is occluded.

1) Bird’s-eye view (host prediction): The viewpoint is

a bird’s-eye view when the surroundings of a predicted

entity are fully observable. An algorithm designed with such

viewpoint is actually predicting the motion of a host vehicle

(first-person viewpoint), since only the sensors equipped on

the predicted vehicle can fully observe its surroundings. The

most representative bird’s-eye view vehicle motion dataset is

the NGSIM, which was utilized by many recent works on

probabilistic prediction [11] [12] [15] [19].



2) Local view (surrounding prediction): The viewpoint is

a local view when the surroundings of a predicted object

are partially observable due to occlusions. An algorithm de-

signed with such viewpoint can be used to predict the motion

of a surrounding vehicle (third-person viewpoint). Although

the data used in many existing works were collected in local

view, probabilistic prediction with partial occlusion has not

been sufficiently investigated by researchers yet.

3) Blind view (occluded entity prediction): The predicted

entity can also be partially or fully occluded by vehicles or

buildings, which leads to a blind view. Algorithms designed

with such viewpoint can provide prediction for blind corner

decision-making [20] [21] [22] or occluded object tracking

[23].

B. Input variation 2: interaction

Another input variation is interaction. The main distinction

lies in whether the behavior of the predicted vehicle is

influenced by the surrounding entities. Another distinction is

whether there is a decision-maker asking “what if my motion

is like this in the future”.
1) Independent prediction: The “maneuver-based” predic-

tion model was defined in [1] as the behavior of the predicted

vehicle is independent from others. Since the word “maneu-

ver” was used in some literatures for behaviors influenced by

others, we use independent prediction to describe the same

problem.

2) Interdependent prediction: The “interaction-aware”

prediction model was defined in [1] when the behavior of

the predicted entity is influenced by others. In this paper we

emphasize whether the behavior is impacted by historical

or future motions of the surroundings. When only historical

surrounding motions are used as the input, the problem can

be defined as interdependent prediction, namely, the motions

of the entities are only historically interactive.

3) Reactive prediction: From the host vehicle decision-

making and planning perspective, the most desirable predic-

tion for a highly interactive scenario is an algorithm that

can answer the question “what if my motion is like this

in the future”. Therefore, we define reactive prediction as

the problem to obtain the algorithm whose input can take

into account the future motion of a host vehicle or a pattern

(simplification) of the motion, and provide the distribution

of the predicted entity accordingly.

C. Output variation 1: number of predicted entities

The number of predicted entities as the output can change

the formulation of the prediction problem.
1) Single-entity prediction: Most of the recent works are

focused on single-entity prediction, where the future behavior

of only one entity is provided.
2) Situation prediction: The combinatorial decision and

planning [24] of the host vehicle may strongly depend on

the possible behavior of several entities as a group in com-

plicated scenarios. However, it is hard to directly combine

the predictions of single entities since the future motions

may be exclusive. Instead, situation prediction [25] [26] can

provide the joint distribution of the motions of surroundings.

D. Output variation 2: motion representation

The original and intuitive representation of predicted mo-

tion is to use continuous trajectories. However, due to the

high dimension and difficulty in describing distribution for

continuous random variables, the motion representation is

often simplified in order to describe the probability dis-

tribution for complicated scenarios. Detailed discussion on

representation simplification is provided in Section III.

III. REPRESENTATION SIMPLIFICATION

As discussed in Section II, the representation of long-

term motions is usually simplified by indicators since it is

intractable to directly use continuous trajectories to describe

the distribution of predicted motions in complicated sce-

narios. In this section, the most commonly used indicators

are categorized as continuous motions, motion patterns or

spatiotemporal indicators. We also categorize motion pat-

terns according to the hierarchy from decision and planning

perspective. Moreover, the spatiotemporal indicators are dis-

cussed based on whether motion patterns are considered.

A. Continuous motions

A sequence of positions and yaw angles [27], as well

as velocities [15] and accelerations [19] [11] are typically

used as the continuous motions. Such representation is rel-

atively more applicable in car following [19] [28] [29] and

ramp merging [11] [15] scenarios, where only longitudinal

motions need to be considered. When the preview horizon

is relatively long, it is intractable for a model to directly

output the distribution of long-term motions. Instead, the

models can output the distribution for one step look ahead,

then structures such as Bayesian filtering [27] [28] [30] and

long short-term memory (LSTM) [19] can be employed to

propagate the motion to the long-term future.

B. Motion patterns with hierarchical categorization

For decision-making and planning of the host vehicle,

the destination to reach is the first to be considered. A

corresponding route can be planned offline, which is typically

independent from the situation encountered in real time.

Then the local decision-making and planning module can

deal with the specific situation, such as whether to pass a

conflict region before or after another entity. Such hierar-

chical architecture also applies for prediction, namely, the

route pattern and pass-yield pattern are hierarchical. One

example for such hierarchy is predicting potential right turn

with pedestrian yielding at an intersection [31], in which

route patterns were turn right and go straight, and the pass-

yield patterns were go and stop for straight, and turn and

yield for turn right. Another example is predicting routes

and right-of-way at a four-way-stop intersection [32]. The

route patterns were turn left/right and go straight, and the

pass-yield pattern was the right-of-way at intersections.

Moreover, there are also subtle motion patterns which

cannot be defined as route or pass-yield patterns, such as

slow down, go as expected, accelerate, etc. A comprehensive

example for the hierarchy of route, pass-yield and subtle



patterns is predicting potential left turn with proceeding and

oncoming vehicles at an intersection [10]. The route patterns

were go straight and turn left. The pass-yield patterns were

go in front and yield for the oncoming vehicle when turning

left. The subtle patterns were free drive and influenced for the

proceeding vehicle, and full stop and slow down for yielding

oncoming vehicle when turning left.

1) Route pattern: Route pattern (intention) denotes the

discrete pattern shaped by the spatial road structure, such

as road branches, lanes and parking lots. It depicts which

parking lot the entity wants to occupy, or which branch

of road it wants to take at nodes such as intersections,

roundabouts, exit ramp, etc. Dedicated lanes (left/right turn

only) at these nodes are decisive to estimate the intention.

Route pattern were estimated for vehicle [12] and cyclists

[33] with probabilistic models. Also, probabilistic models for

route patterns of vehicles at intersections were also proposed

along with other motion patterns [31] [10] [14] [32]. When

all the temporal factors are neglected and only the final target

lane to change is considered for performance evaluation [34]

[35], lane change intention can be regarded as route pattern

since the final execution is not influenced by surroundings.

2) Pass-yield pattern: Pass-yield pattern depicts which

entity occupies the conflict region first when the potential

routes of two entities have a overlap (conflict). Similar

concept was also used in cooperative driving as homotopy

class [36]. Such pattern was predicted for ramp merging [15],

pedestrian yielding [31], oncoming vehicle yielding for left

turn [10], four-way-stop right-of-way [32], etc. The patterns

such as pass or stop during yellow light, red-light violation

or stop [37], and stop or violate the stop sign [38] [39] can

also be categorized as pass-yield pattern.

3) Subtle pattern: Subtle pattern denotes the motion

patterns which cannot be explicitly categorized via spa-

tial road structure or conflict region for two entities. For

example, there can be several motion patterns for vehi-

cles near stop signs such as conservative/normal stop and

rolling/moderate/severe violation [38], which can be clus-

tered via unsupervised learning. The longitudinal motions

of vehicles can be simplified as acceleration, deceleration

and expected behavior pattern [25]. In [10], the motion of

the predicted vehicle impacted by the proceeding one was

simplified as free drive and influenced, and the left-turn

motion yielding the oncoming vehicle was simplified as full

stop and slow down.

C. Distinctions between pattern and desire

In literatures, terminologies such as “intention”, “maneu-

ver” and “behavior” are often used for motion clusters.

However, the meaning of motion clusters can be twofold.

One is “motion pattern”, which clusters the motions executed

by the entities, and it can be observed or labeled in the

motion data to serve as the ground truth. The other is “motion

desire”, which is the motivation inside the mind of humans,

and it cannot be fully observed or labeled in the motion

data. In fact, the desire in the human minds can rapidly

change from time to time with the dynamic behavior of

surroundings.

In previous works, using the terminologies such as “in-

tention” is ambiguous to express the distinctions between

pattern and desire. It is acceptable to mix pattern and desire

for route since the final desire of the object related to route is

typically not influenced by surroundings so that the desire in

the data can be time-invariant. However, for pass-yield and

subtle patterns, the corresponding desires may jump from

one to another rapidly, and the surroundings may restrict the

predicted entity to achieve its desire, especially in highly

interactive scenarios. Therefore, the ground truth cannot be

labeled for such desires in the data, and only motion patterns

can be labeled.

D. Spatiotemporal indicators

Motion patterns can be incorporated in the spatiotemporal

domain by two kinds of indicators, namely, prototype trajec-

tory and reachable set. The spatiotemporal domain can also

be represented without considering any motion patterns and

semantic meaning by using occupancy grid.

1) Prototype trajectory: The terminology “prototype tra-

jectory” was defined in [1] for one or a set of trajectories

which can represent a motion pattern. It was employed in

[32] [40] [16] to represent possible motions.

2) Reachable set: Reachable set is a widely used motion

representation describing the area which may be occupied

by the body of an entity. Stochastic reachable set [17] can

represent the probabilistic prediction and take into account

information from motion patterns. It is also more direct to

indicate drivable area for the planning module.

3) Occupancy grid: Occupancy grid divides the spatial

domain [41] [42], or other domains of motion variables such

as velocity [42] [14], into discrete grids evenly. It can provide

a uniform representation of the environment regardless of

the number of entities in the scene, which is favorable for

learning models such as deep neural networks [41] [42], and

for complex scenarios with a number of entities interacting

with each other [43].

IV. EVALUATION METRICS

In many recent works, probabilistic prediction was re-

garded as a pure machine learning problem, that is, to find a

learning model which can best represent the distribution in

the dataset in the sense of some training metrics. However,

distribution learned from data alone for prediction is not

sufficient to support high-quality and safe decision-making

and planning. In this section, the most commonly used

learning metrics are summarized. Also, we discuss potential

metrics based on prior knowledge on planning constraints,

and aspects of metric construction which are crucial for

decision-making and planning.

A. Learning metrics

Typical classification and regression metrics are widely

used to evaluate the performance of learning models for

probabilistic prediction. Despite the most intuitive metric,





accuracy, the following metrics are also widely used for

evaluation of probabilistic predictions.

1) Receiver operating characteristic (ROC) curve: ROC

curve is typically used to illustrate the performance of a

binary classifier with different thresholds of discrimination.

The area under the curve (AUC) is often used as a quantitive

metric. ROC and AUC were employed to evaluate the

classification performance of intention estimation, such lane

change [44] [35] and intersection maneuvers [10] [45] [31],

as well as situation prediction [25].

2) Root mean square error (RMSE): RMSE is one of the

most widely used metric for regression evaluation. Some

variations in different literatures evaluate the performance

from similar perspective, such as root-weighted square error

(RWSE) [19] [11] [13], mean absolute error (MAE) [44]

[41], Mean Error (ME) [33]. RMSE is mostly used to repre-

sent the errors of continuous motions between the (sampled)

prediction and ground truth, such as acceleration [29] [46],

velocity [19] [11] [13] [14], as well as position and distance

[44] [13] [14]. A special implementation of RMSE is for

evaluating the error of discretized probability weighted by

the corresponding occupancy grid distance [41].

3) Likelihood: Likelihood is commonly used metric for

training probabilistic models [19] [11] [41] [15] [47] [30],

although it is not used as widely to evaluate the performance

of the trained models since the likelihood values are not well

interpretable. Likelihood is used as an evaluation metric in

[33] [13] [12].

4) Kullback-Leibler (KL) divergence: KL divergence is

a widely-used metric in machine learning field to measure

discrepancies between two probability distributions. In fact,

the ultimate goal for probabilistic prediction is to obtain

some distribution p(Y |X) which can best describe that

of the motions in the dataset q(Y |X). Therefore, metrics

aiming at quantifying how much a probability distribution

diverges from another is more direct than other metrics in

the sense of the ultimate goal. KL divergence is used as an

evaluation metric for probabilistic prediction in [19] [13]. KL

divergence is also employed in [48] to assess the similarity of

data observation and provide the value of additional motion

data.

B. Prior metrics

The decision-making and planning module of the host

vehicle need to take into account feasibility constraints ac-

cording to vehicle kinematics and dynamics, as well as safety

constraints for collision avoidance and hard traffic rules.

The predicted motions have similar requirements as planned

motions, although the requirements are not as strict. A small

perturbation of a trajectory may change it from a safe and

feasible one to an unsafe or infeasible one, especially when

the trajectory is near the constraint boundary. However, such

perturbation may not make a large difference on learning

metrics or other distance-based metrics. Therefore, in order

to achieve a comprehensive evaluation of predicted motion

distribution, prior metrics based on planning constraints

should also be considered, which is rarely mentioned in

existing works.

1) Feasibility violation: Some prediction methods or

frameworks can inherently guarantee feasibility. For instance,

[49] incorporated Rapidly-exploring Random Tree (RRT)

into the prediction frameworks so that the generated motions

can be dynamically feasible. It is an ideal case if the gen-

erated motions are sampled from obtained distributions via

approaches with feasibility guarantee. Otherwise, violation

verification and evaluation are necessary, except for rare

cases when one can recognize a driver completely losing

control of the vehicle.

2) Safety violation: The requirements on safety are differ-

ent for prediction and planning. The planned motions for the

host vehicle need to consider safety as the top priority, and

try its best to guarantee safety if possible. On the contrary,

the most important aspect for prediction is to be human-

like. Collisions and hard traffic rule (red light, stop sign,

etc.) violations are not common in realistic human driving,

but is not extremely rare. Therefore, it is not appropriate to

forbid all unsafe motions in predictions, but some obviously

unrealistic collisions or violations should not be generated.

Values of negative distance headway and negative speed were

employed in [19] to evaluate unrealistic motions generated.

Collision rate and average distances between the host and the

closet merging cars are used as the metric for safety violation

and margin of the predicted motions in [15].

C. Decision-related metrics

The learning and prior metrics can help us evaluate how

human-like the generated prediction is. There are still several

aspects to be considered to evaluate predictions according to

the consequences when the prediction is adopted by decision-

making and planning modules.

1) Fatality: The consequential fatalities of different in-

accurate or incorrect predictions can be completely different

when they are adopted by the decision and planning module.

The inaccuracy and incorrectness should not be treated

equally in the metric. Fatality and criticality differences

should be revealed.

2) Defensiveness and conservatism: It is crucial for the

safety and driving quality of the host autonomous vehicle

to survive in the worst case (defensive driving strategy),

yet not overreact to threats of low or zero probability

(non-conservative strategy) [39]. In order to achieve such a

non-conservatively defensive driving strategy, the decision

and planning module requires the prediction module to

acquire the following two capabilities. One is to enhance

defensiveness, namely, to provide all possible future motions

(completeness), including possible violations to the traffic

rules, and possible careless or dangerous behaviors, so that

the host vehicle can drive defensively to potential threats. On

the other hand, conservatism should be reduced, that is, to

provide zero probability (or a safe to pass indicator) when the

corresponding motion is impossible, so that the host vehicle

can proceed without hesitation. Similar evaluations were also
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Fig. 2: Summary of highlighted aspects for probabilistic prediction which were under-explored, which is extended from Figure 1. Feature
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maps in prior knowledge. The future motion of the host from the dataset is used as the input for reactive prediction (Section II-B.3).
Representation homogenization aims at homogenizing the representation of the prediction motion and the ground truth by choosing the
same the output variations according to the choices for the predicted algorithm.

[26] as miss detection rate corresponding to defensiveness

and false alarm rate corresponding to conservatism.

3) Timeliness: Decision and planning module expect cor-

rect and accurate predictions to be provided timely, especially

for those causing potential fatal accidents. Correct and accu-

rate predictions are meaningless if such motion has already

been completed or an accident is inevitable. Therefore, time-

to-event (TTE) [33] and time-to-intersections (TTI) [10]

variables were used as the horizontal axis with learning

metrics as the vertical axis, so that the timeliness of accurate

predictions can be revealed. Distance-to-event variables were

also employed in [32], in which specific quantile, mean

and standard deviation of distance until correct classification

(DCC) were used as metrics. [26] also addressed timeliness

from threat estimation perspective as time-to-collision when

dangerous situation is correctly classified.

4) Preview horizon: The length of the preview horizon is

crucial for a motion planning module. Long-term horizon is

preferred for safety and driving quality. Accordingly, the pre-

dicted motion should have the same horizon as required by

the planning module. Therefore, the ideal case is to provide

the distribution of the predicted motion within a long-term

horizon, and compare the accuracy over the horizon length,

as was illustrated in [44] [28] [3].

5) Computational cost: When a probabilistic method

serves as an online prediction module, the host vehicle

requires it to provide results in real time. The computational

cost should be considered as a metric, especially when the

size of the model is relatively large. Computational time was

provided in a few recent works [35] for comparison.

V. CONCLUSION AND FUTURE WORK

In this paper three under-explored aspects of probabilistic

prediction were highlighted for on-road autonomous driving

from decision and planning perspective. A systematic and

unified framework for analysis of prediction problems and

methods was provided (summarized in Figure 2). Practical

input and output variations for decision and planning, such

as local and blind view, reactive prediction, and situation pre-

diction were addressed for problem formulation. Indicators

for motion representation simplification were summarized

as continuous motions, motion patterns and spatiotemporal

indicators. The distinctions between pattern and desire were

clarified based on ground truth existence. In addition to

reviewing learning metrics which were commonly used for

model evaluation, we also recommended omitted but crucial

metrics to be considered according to the prior knowledge

and requirements from the decision and planning module.

It was emphasized that the predicted motion should avoid

feasibility and safety violations, and decision-related factors

should be taken into account, such as fatality, defensiveness

and conservatism, timeliness and horizon, as well as compu-

tational cost.

Our future work is focused on constructing appropriate

evaluation metrics and conducting corresponding motion

dataset processing by considering the aspects addressed

in this paper. For a given observation input, the ground

truth is expected as a distribution of some representation

of the future motions, although only a single sample can

be directly obtained from data. Since the ultimate goal

of the evaluation of probabilistic prediction is to compare

distributions of the prediction and dataset, we tentatively



adopt KL divergence as a baseline for metric construction.

The data should be processed to provide appropriate ground

truth, and KL divergence is modified to adapt samples and

is weighted by the decision-related metrics. Prior knowledge

is also incorporated to avoid the bias of the limited data and

achieve realistic prediction according to feasibility and safety

considerations.
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