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Guaranteeing Consistency in a Motion Planning and Control
Architecture Using a Kinematic Bicycle Model

Philip Polack1, Florent Altché1,2, Brigitte d’Andréa-Novel1 and Arnaud de La Fortelle1

Abstract— Planning and control for autonomous vehicles are
often treated as two independent problems in the literature.
However, due to their level of abstraction and modeling, they
are in fact highly intertwined: for example, the controller tracks
the output trajectory of the motion planner without taking into
account the surrounding obstacles. Therefore, an ill-designed
planning and control architecture of the vehicle might lead to
hazardous situations such as infeasible trajectories to follow.
Some existing works in the literature have considered both
problems simultaneously, but usually they either lack some
guarantees on the feasibility of the computed trajectory or
are non robust to modeling errors. Therefore, the present
paper proposes to combine a 10Hz motion planner based on a
kinematic bicycle Model Predictive Control (MPC) and a 100Hz
closed-loop Proportional-Integral-Derivative (PID) controller to
cope with normal driving situations. Its novelty consists in
ensuring the feasibility of the computed trajectory by the
motion planner through a limitation of the steering angle
depending on the speed. This ensures the validity of the
kinematic bicycle model at any time. The architecture is tested
on a high-fidelity simulation model on a challenging track with
small curve radius, with and without surrounding obstacles.

I. INTRODUCTION

As research on autonomous vehicles is getting more
and more mature, the question of consistency between its
different layers, namely perception, localization, planning
and control, is becoming crucial to ensure the safety of the
vehicle at all time. An ill-designed vehicle architecture might
be very critical for its safety, even though each layer is well-
designed independently.

In this paper, we propose to focus on the problem of
consistency between planning and control. Motion planning
and control problems are two different but highly related
problems. The first consists in computing a feasible trajectory
(in terms of vehicle’s dynamics) for the vehicle avoiding the
surrounding obstacles such as other vehicles, pedestrians, or
non moving objects. The second is acting on the actuators,
i.e. the gas pedal, brake pedal and steering wheel, in order
to track the trajectory obtained by the motion planner, while
ensuring the stability of the system and, if possible, a smooth
drive. Therefore, the properties of the design of each layer
are quite different.
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de La Fortelle are with Center of Robotics, Mines ParisTech,
PSL Reasearch University, 60 boulevard Saint-Michel, 75006
Paris, France {philip.polack, florent.altche,
brigitte.dandrea-novel, arnaud.de la fortelle}
@mines-paristech.fr
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For motion planning purpose, the algorithm will have to
explore the space of feasible solutions, which is computa-
tionally expensive. Thus, it requires both a rather simple
model of the vehicle, such as a point-mass [1] or a kinematic
bicycle model [2], and a rather low-frequency (around 5-
10Hz). On the contrary, control is usually operating at high-
frequency (around 100Hz) to ensure a good tracking of the
reference trajectory and to be robust to modeling errors and
disturbances. Moreover, the level of abstraction also differs:
dealing with obstacles is one of the main task of the motion
planner while the controller usually completely ignores them;
the trajectory given by the motion planner is assumed to be
safe within a certain margin and the goal of the controller
is then to follow as well as possible the given trajectory,
without considering the obstacles. Therefore, if the motion
planner is planning outside the validity domain of its model,
it might compute unfeasible trajectories from a dynamical
point of view as shown in Figure 1. Then, the controller
will not be able to follow the trajectories, putting the whole
system in jeopardy!

Fig. 1: Dynamic feasibility of motions considered as “admis-
sible” for a kinematic bicycle model at a given speed V0 in
the physical space.

The problem of consistency, also referred to as “proper
modeling” in the literature [3], arises with the need for simple
models for motion planning: there is a trade-off between the
complexity (i.e. the computational time) and the accuracy of
the model. It has been studied in the literature by comparing
simple models with more complex ones. For example, [4]
compares a motion planner and control MPC using a 2
Degrees of Freedom (2 DoF) linear-tire dynamic bicycle
model with a 14 DoF vehicle model. The validity of this
dynamic bicycle model is guaranteed by constraining the
lateral acceleration to 0.5g on normal road conditions, con-
dition which has been derived in [5]. However, the practical
implementation of this system on a real vehicle is limited as
it assumes a constant velocity. [6] compares the performances
of MPC using a kinematic bicycle model and one using
a linear-tire dynamic bicycle model. The authors conclude
that the kinematic bicycle model works better in most cases,
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except at high-speed, and suggests a further investigation on
the impact of different lateral accelerations on the validity
of the kinematic bicycle model. This has been done in our
previous work [7] by comparing it to a high-fidelity 9 DoF
vehicle model on constant radius curves. The conclusion was
that the lateral acceleration should always remain lower than
0.5µg, where µ is the road friction coefficient.

In the literature, many works can be found on motion
planning and control architectures. They can be classified
into two categories [8]. In the first category, motion planning
and low-level control are unified into one unique MPC for-
mulation using different vehicle models, such as in [9], [10]
and [11]. However, they are not robust to modeling errors,
disturbances and parameter uncertainties as they lack a real-
time feedback controller (the frequency of recomputing is
rather low for low-level control). Thus, for stability reasons,
it is preferable to use a high-frequency closed-loop controller.
The second category separates motion planning from low-
level control to overcome this problem (see for example
[12], [13]). However, in that case, there are no guarantees
on the feasibility of the planned trajectory as the model
used for motion planning might be unable to capture the
admissible motions of the vehicle. This problem has not been
encountered yet as the number of tested kilometers with such
architecture is small and the driving strategy chosen often
very conservative, but it is very critical for the vehicle safety.

Therefore, this paper proposes a simple planning and
control architecture for normal driving situations that guar-
antees the dynamic feasibility of the planned trajectory while
being robust to parameter uncertainties and disturbances.
The motion planner relies on a 10Hz kinematic bicycle
Model Predictive Control approach, while the low-level
closed-loop control signals are computed at a high-frequency
(every 10ms) and are mainly based on Proportional-Integral-
Derivative (PID) controllers. The motion planner is always
planning a valid dynamic reference trajectory (green region
of Figure 1) according to our previous work [7], by con-
straining the lateral acceleration to be less than 0.5µg. Our
architecture is also less conservative than other ones: a local
velocity planner based on the lateral acceleration constraint
was designed in order to compute a heuristic speed for the
motion planner, that pushes the vehicle’s architecture towards
its operational limits, while remaining safe.

The paper is organized as following: first, the kinematic
bicycle model with constrained lateral acceleration to en-
sure its validity is presented. Then, the consistent planning
and control architecture chosen is explained in Section III.
Section IV presents the 9 Degrees of Freedom (9 DoF)
model used for our simulations. Section V shows the results
obtained in simulation with the proposed consistent planning
and control architecture on a track with and without obsta-
cles. Finally, Section VI concludes this paper.

II. THE KINEMATIC BICYCLE MODEL

In the kinematic bicycle model, the two front wheels (resp.
the two rear wheels) of the vehicle are lumped into a unique
wheel located at the center of the front axle (resp. of the

Fig. 2: Kinematic bicycle model of the vehicle.

rear axle) such as illustrated on Figure 2. For smoothness
reasons, the control inputs correspond to the acceleration
u1 and the steering rate of the front wheel steering angle
u2 of the vehicle, when assuming that only the front wheel
can be steered. The kinematic bicycle model1 can then be
written [14] as:

Ẋ = V cos(ψ +β (δ )) (1a)
Ẏ = V sin(ψ +β (δ )) (1b)

ψ̇ =
V
lr

sin(β (δ )) (1c)

V̇ = u1 (1d)
δ̇ = u2 (1e)

where X and Y are the global coordinates of the vehicle, ψ
the yaw angle, V the speed and δ the front steering angle.
The slip angle β at the center of gravity depends on δ :

β (δ ) = atan
(

tan(δ )
lr

l f + lr

)
(1f)

This model does not take into account the vehicle’s dy-
namics such as slipping and skidding. Therefore, when used
for planning problems, it might plan unfeasible trajectories
(black region of Figure 1) which are not acceptable for the
safety of the vehicle as explained in Section I. However,
in previous work [7], we have shown that constraining the
lateral acceleration of the vehicle under 0.5µg ensures the
validity of the model (green region of Figure 1).

This constraint was obtained by comparing2 the steering
angle δa applied on a complex 9 DoF dynamic vehicle model
(presented in Section IV) and the one applied on a kinematic
bicycle model δth, see Equation (2), to follow a curve of
radius R at different speeds V . The results are displayed on
Figure 3. We chose curves as scenarii as they correspond to
the situations where the vehicle is most likely to slip.

δth = atan
((

l f

lr
+1
)

tan
(

asin
(

lr
R

)))
(2)

III. THE PLANNING AND CONTROL ARCHITECTURE

The goal of the planning and control architecture is
to compute the actuator inputs (steering angle and wheel

1This is a misuse of language, as we are actually using the acceleration
instead of the speed as input for better smoothness.

2The kinematic bicycle model remains valid as long as δa = δth to achieve
the same turn radius R, where δth is constant (does not depend on speed).
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Fig. 3: Comparison between the steering angle δa applied on
a 9 DoF dynamic model of a vehicle (in color) and the one
applied on a kinematic bicycle model δth in order to achieve
a given turn radius R, at different speeds V (cf. [7]).

torques) to send to the vehicle, while setting a target speed
and avoiding obstacles located on the path. Our system is
composed of four main components to deal with most driv-
ing situations, namely a local velocity planner, an obstacle
manager, a local MPC planner and low-level controllers
(see Figure 4). These parts are detailed respectively in
Subsections A-D. The main characteristics of our design are:
• A smart computation by the local velocity planner of a

heuristic speed Vheur based on the lateral constraint for
the kinematic bicycle model, to guide the MPC towards
high-speed maneuvers.

• A combination of a 10Hz MPC planner for anticipating
new situations, with a high-frequency (100Hz) closed-
loop low-level controller for a better tracking of the
reference trajectory.

• A validity guarantee of the kinematic bicycle model
used in the MPC through the constraint on lateral
acceleration, generating thus only feasible trajectories
to follow for the low-level controllers.

Fig. 4: Control architecture of the ego-vehicle.

A. The Local Velocity Planner

The reference input of our architecture only contains the
future coordinates (xi,yi)i∈N of the center line of the road.
However, we want to drive our vehicle at the highest possible
speed that keeps our architecture safe. Therefore, a velocity
term should be added to our cost function that fosters higher
but safe speeds. Choosing a cost such as ||V −Vmax||2 with
Vmax constant would cause the velocity cost to change too
much according to the situation, thus making it difficult to

tune its weight. A small weight would cause the MPC to
be very conservative when it could drive at higher speeds,
while a bigger weight could cause safety problems when the
velocity should be low, as the optimal solution might be to
drive fast rather than to respect some safety constraints.

Therefore, we introduced a local velocity planner that
gives a heuristic velocity Vheur defined by Equation (3).
It takes into account the current speed of the vehicle V ,
a predefined maximum speed allowed Vmax and the future
coordinates (xi,yi)i∈N of the reference path. The strategy
consists in increasing the actual speed of the vehicle V by ∆V
while Vmax is not reached, except if the curvature γmax of the
path in the next Tprev seconds leads to a lateral acceleration
ay = γmaxV 2 over the authorized limit for a kinematic bicycle
model of 0.5µg. Vmax is defined specifically for straight lines,
to ensure that the vehicle is able to come to a full stop if
necessary at the end of the prediction horizon of the MPC.

Vheur = min(
√

0.5µgRmin,Vmax,V +∆V ) (3)

Remark: the local velocity planner only gives a heuristic
velocity for the motion planner, in order to obtain a velocity
cost that does not depend to much on the velocity. The goal
of the MPC is not to track it perfectly. Therefore, it does not
need to be dynamically feasible.

B. The Obstacle Manager

This module defines a parabola around each surrounding
obstacle, such as explained in [15]. The interior points of
the parabola defines then a region that is forbidden for the
vehicle, and will be used as a constraint in the local MPC
planner. Please note that only static obstacles are taken into
account in this paper.

C. The Local MPC Planner

The local MPC planner updates the reference trajectory
every 100ms (10Hz) to take into account changes in the envi-
ronment, such as obstacles. The concept of Model Predictive
Control is to have a model of the plant to predict the future
outputs of the system [16]. The MPC minimizes at each
refresh time, over all possible control sequences, a cost func-
tion J while respecting some operational constraints, such as
the vehicle dynamics or obstacle avoidance. Normally, only
the first optimal control value computed by the MPC is sent
to the plant at time t. However, the MPC control outputs
here are the acceleration of the vehicle and the steering rate
which do not correspond to the actual control inputs which
will be used in our simulations, namely the wheel torques and
the steering angle (see Section IV). Therefore, we used the
predicted trajectory computed by the MPC as the reference
for the low-level controllers.

At each refresh time, the optimization process is run again
with a shifted prediction horizon. The main settings of a
MPC is the design of the cost function J, the control horizon
Nu, the prediction horizon Ny, and the discretization time step
∆tu. In our case, the prediction horizon is set to TH = 3s,
the control discretization time step ∆tu = 0.2s, and the state
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prediction horizon Ny is set equal to the control prediction
horizon Nu = TH/∆tu +1.

Let u1 and u2 denote respectively the acceleration
of the vehicle and the steering rate. Let Ut+k,t =
[u1,u2,obstol ,xtol ,ytol ,δtol ] and ξt+k,t = [s,X ,Y,V,ψ,δ ]
denote respectively the control input and the state of our
MPC at time t + k, predicted at time t, with k = 0..Nu for
Ut+k,t and k = 0..Ny for ξt+k,t .

1) Cost function: We set ev = (Vi−Vheuri)i∈[1:Ny] to be the
speed cost; eδ = (δi)i∈[1:Ny] and ėδ = (δ̇ j) j∈[1:Nu] respectively
the cost on the steering angle and the steering angle variation;
eXtol = (xtol j) j∈[1:Nu] and eYtol = (ytol j) j∈[1:Nu] the cost of the
slack variables associated respectively with the longitudi-
nal and lateral offset to the reference trajectory; eObstol =
(obstol j) j∈[1:Nu] the cost of the slack variables associated with
the obstacle constraints; eδtol

= (δtol j) j∈[1:Nu] the cost of the
slack variable associated with the validity of the kinematic
bicycle model constraint.

We define the following cost function for a control se-
quence U = [Ut,t ,Ut+1,t , ...,Ut+Nu−1,t ] and a state sequence
ξ = [ξt+1,t ,ξt+1,t , ...,ξt+Ny,t ]:

J(U,ξ ) = ||ev||2Qv + ||eδ ||2Q∆
+ ||ėδ ||2Qδ̇

+ ||eXtol ||2Qx (4)

+||eYtol ||2Qy + ||eObstol ||2Qobs
+ ||eδtol

||2Qδtol

where ||x||2Q = xT Qx and Qv = qvINy , Q∆ = q∆INy , Qδ̇ = qδ̇ INu ,
Qx = qxINu , Qy = qyINu , Qobs = qobsINu , Qδtol

= qδtol
INu .

2) Constraints: First, we constraint the state ξt,t to be
equal to the initial state of the vehicle at time t. Then,
the admissible trajectories of the vehicle are the ones that
respect the equations of the kinematic bicycle model de-
scribed in Equation (1), where we add a constraint on the
curvilinear abscissa s: ṡ = V . The actuator are limited to
u1 ∈ [−8;+6]m/s2 and u2 ∈ [−0.5;+0.5] rad/s2. The road
limits are encoded through a soft constraint: the lateral
and longitudinal deviations from the reference path have to
remain below a certain tolerance margin xtol and ytol . For
each obstacle, we have an inequality constraint which is
similar to the one described in [15].

At last, to ensure the validity of the kinematic bicycle
model, we used the criterion derived in [7], i.e that the lateral
acceleration ay (= V 2/R where R is the curvature radius)
should be lower than 0.5µg. Using Equation (2), we obtain
the maximum authorized steering angle for a given speed V :

δmax(V ) = atan
((

l f

lr
+1
)

tan
(

asin
(

0.5µglr
V 2

)))
(5)

This is then expressed as a soft constraint by introducing the
slack variable δtol :

−δmax + |δ | ≤ δtol (6)

3) Numerical resolution: The numerical optimization
was done using ACADO Toolkit. The working principle of
the resolution algorithm can be found in [17].

D. The Low-level Controllers

The low-level controllers are responsible for translating
the trajectory computed by the local planner into actuator
inputs. Many recent research on low-level control have been
using MPC with complex vehicle and tire dynamics models
for computing the actuators inputs (see for example [18]).
Although this method enables to anticipate the slip and skid
of the vehicle, it is computationally too expensive to be
computed at a high frequency. The control is thus in open-
loop on a long duration (around 50 to 100ms), which is less
robust to modeling errors and might also be less stable.

Therefore, in our control architecture, the low-level control
is done in closed-loop at a high frequency (100Hz). Longi-
tudinal and lateral control are treated separately.

For the longitudinal controller, we implemented a simple
PID controller [19] which takes into account the difference
between the reference speed V r given by the local MPC
planner and the actual speed of the vehicle V , and its
derivatives. V r is more precisely a linear interpolation of
the reference speed output given by the MPC planner. If
e =V −V r, then we have the following control law:

u(t) = −KPe(t)−KDė(t)−KI

∫ t

0
e(τ)dτ (7)

For the lateral controller, the steering angle applied δ is
composed of an open-loop part δol and a closed-loop part δcl .
The open-loop steering angle δol is computed by integrating
the first value of the control obtained by the MPC planner,
which corresponds to the steering rate. This value is only
refreshed once every 100ms. The closed-loop steering angle
δcl is a simple PID control applied on the yaw angle error,
projected one MPC time step ahead. It is computed every
10ms and uses as reference value for the yaw angle a linear
interpolation of the one computed by the MPC planner.

IV. THE 9 DOF SIMULATION MODEL

In this section, we describe the 9 Degrees of Freedom
(9 DoF) vehicle model used in order to simulate the dynamic
of the vehicle. They correspond to 3 DoF for the whole
vehicle (Vx,Vy, ψ̇), 2 DoF for the carbody (θ̇ , φ̇ ) and 4 DoF
for the wheels (ω f l ,ω f r,ωrl ,ωrr). The model takes into
account both the coupling of longitudinal and lateral slips
and the load transfer between tires. The control inputs of
the simulator are the torques Tωi applied at each wheel i
and the steering angle of the front wheel δ . The low-level
dynamics of the engine and brakes are not considered here.
The notations are given in Table I and illustrated in Figure 5.

Remark: the subscript i = 1..4 refers repectively to the
front left ( f l), front right ( f r), rear left (rl) and rear right
(rr) wheels.

Several assumptions were made during the modeling:
• Only the front wheels are steerable.
• The roll and pitch rotations happen around the center

of gravity.
• The aerodynamic force is applied at the height of the

center of gravity. Therefore, it does not involve any
moment on the vehicle.
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TABLE I: Notations

θ , φ , ψ Roll, pitch and yaw angles of the carbody
Vx, Vy Longitudinal and lateral speed of the vehicle in its

inertial frame
MT Total mass of the vehicle
Ix, Iy, Iz Inertia of the vehicle around its roll, pitch and yaw axis
Iri Inertia of the wheel i
Tωi Total torque applied to the wheel i
Fxpi , Fypi Longitudinal and lateral tire forces generated by the road

on the wheel i expressed in the tire frame
Fxi , Fyi Longitudinal and lateral tire forces generated by the road

on the wheel i expressed in the vehicle frame (x,y)
Fzi Normal reaction forces on wheel i
l f , lr Distance between the front (resp. rear) axle and the

center of gravity
lw Half-track of the vehicle
h Height of the center of gravity
re f f Effective radius of the wheel
ωi Angular velocity of the wheel i
Vxpi Longitudinal speed of the center of rotation of wheel i

expressed in the tire frame

Fig. 5: Simulation model of the vehicle.

• The slope and road-bank angle of the road are not taken
into account.

A. Vehicle model

The dynamics of the longitudinal, lateral and yaw motions
of the whole vehicle are given by the following Equations:

MT V̇x = MT ψ̇Vy +
4

∑
i=1

Fxi −Faero (8a)

MT V̇y = −MT ψ̇Vx +
4

∑
i=1

Fyi (8b)

Izψ̈ = l f (Fy1 +Fy2)− lr(Fy3 +Fy4) (8c)
+ lw(Fx2 +Fx4 −Fx1 −Fx3)

where the aerodynamic drag forces are Faero = 1
2 ρairCxSV 2

x
with ρair the mass density of air, Cx the aerodynamic drag
coefficient and S the frontal area of the vehicle.

The position (X ,Y ) of the vehicle in the ground frame is
given by the following Equations:

Ẋ = Vx cosψ−Vy sinψ (8d)
Ẏ = Vx sinψ +Vy cosψ (8e)

B. Carbody model

The dynamics of the roll and pitch motion of the carbody
are given by the following Equations:

Ixθ̈ = lw(Fz1 +Fz3 −Fz2 −Fz4)+h
4

∑
i=1

Fyi (8f)

Iyφ̈ = lr(Fz3 +Fz4)− l f (Fz1 +Fz2)−h
4

∑
i=1

Fxi (8g)

where Fzi are damped mass/spring forces depending on the
suspension travel ζi due to the roll θ and pitch φ angles:

Fzi =−ksζi(θ ,φ)−dsζ̇i(θ ,φ) (8h)

The parameters ks and ds are respectively the stiffness and
the damping coefficients of the suspensions.

C. Wheel dynamics

The dynamics of each wheel i = 1..4 expressed in the tire
frame is given by the following Equation:

Irω̇i = Tωi − re f f Fxpi (8i)

D. Tire Dynamics

The longitudinal force Fxpi and the lateral force Fypi

applied by the road on each tire i are functions of the
longitudinal slip ratio τxi , the side-slip angle αi, the normal
reaction force Fzi and the road friction coefficient µ:

Fxpi = fx(τxi ,αi,Fzi ,µ) (9a)
Fypi = fy(αi,τxi ,Fzi ,µ) (9b)

The longitudinal slip ratio of the wheel i is defined as
following:

• Traction phases (re f f ωi ≥Vxpi ): τxi =
re f f ωi−Vxpi

re f f |ωi|
• Braking phases (re f f ωi <Vxpi ): τxi =

re f f ωi−Vxpi
|Vxpi |

The lateral slip-angle αi of tire i is the angle between the
direction given by the orientation of the wheel and the
direction of the velocity of the wheel (see Figure 5):

α f = δ − atan
(

Vy + l f ψ̇
Vx± lwψ̇

)
; αr =−atan

(
Vy− lrψ̇
Vx± lwψ̇

)
(10)

In order to model the functions fx and fy, we used the
combined slip tire model presented by Pacejka in [20] which
takes into account the interaction between longitudinal and
lateral slips on the force generation. Therefore, the friction
circle due to the laws of friction (see Equation (11)) is
respected. Finally, the impact of load transfer between tires
is also taken into account through Fz.

||~Fxp +~Fyp|| ≤ µ||~Fz|| (11)

Lastly, the relationships between the tire forces expressed
in the vehicle frame Fx and Fy and the ones expressed in the
tire frame Fxp and Fyp are given in Equation (12):

Fxi = (Fxpi cosδi−Fypi sinδi)cosφ −Fzi sinφ (12a)
Fyi = (Fxpi cosδi−Fypi sinδi)sinθ sinφ (12b)

+ (Fypi cosδi +Fxpi sinδi)cosθ +Fzi sinθ cosφ
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V. RESULTS

In order to test the proposed planning and control archi-
tecture, simulations were performed in PreScan [21] using
the 9 DoF vehicle model presented in Section IV. PreScan
enables to easily generate a traffic scenario in order to
test algorithms for autonomous vehicles. The test track was
designed to alternate between long straight lines and small
radius curvatures (up to 10m only) as shown in Figure 6.
This is particularly challenging as the constraint on lateral
acceleration is rapidly reached in the curves if the vehicle
arrives too fast. Therefore, some precautions must be taken
in the choice of the parameters of the planning and control
architecture. For example, the prediction horizon of the MPC
depends on the maximum speed Vmax as the vehicle needs
to be able to decelerate sufficiently in advance to reach the
target speed in the curves. The road friction coefficient µ
was chosen equal to 1.

−150 −100 −50 0 50 100

−50

0

50

1

2
34

5

6

7

Start

Direction

X (m)

Y
(m

)

Fig. 6: Trajectories planned by MPC (green lines) and
actual trajectory followed by the controller (blue dots), with
obstacles (red dots).

A. Without obstacles

In a first step, we tested the planning and control ar-
chitecture on the track without obstacles in order to show
its capacity to adapt the speed accordingly to the situation.
Figure 7 compares the heuristic speed Vheur computed by
the local velocity planner, the target speed V r computed
by the MPC planner and the real speed V of the vehicle.
We observe that before entering a curve, the heuristic speed
computed by the local velocity planner reduces drastically in
order not to exceed 0.5g for the lateral acceleration. As there
are no obstacles, the speed V r of the MPC planner is guided
by this heuristic, while the longitudinal low-level controller
tracks sufficiently well this reference speed in curves to
avoid skipping and skidding. The low-level control inputs
are shown in Figure 8a and 9 (in blue). The absolute value
of the lateral error to the reference path given at entry of our
system does not exceed 0.4m and the computational time
of the MPC remains always below 100ms. Moreover, we
observe in Figure 8a that δcl is important due to the slow
refresh time of the MPC.

B. With obstacles
In a second step, we tested the planning and control

architecture on the track with static obstacles in order to show
the capacity of the motion planner to cope with planning safe
and feasible trajectories. The resulting trajectory is shown in
Figure 6. The low-level control inputs are shown in Figure 8b
and 9 (in red). As expected, the vehicle does almost not slip
or skid thanks to the constraint on lateral acceleration. The
computational time of the MPC remains below 100ms.

VI. CONCLUSION

We have presented a simple planning and control archi-
tecture for an autonomous vehicle under normal driving
conditions based on a 10Hz kinematic bicycle MPC and a
100Hz closed-loop PID controller. The main characteristic
of our approach is to guarantee the consistency between
the two layers by ensuring the validity of the kinematic
bicycle model used for planning at any time through a
dynamic constraint on the maximal authorized steering angle.
Therefore, only feasible trajectories will be generated. The
low-level controller enables the architecture to be robust to
disturbances and modeling errors. Our architecture is also
less conservative as it is guided toward the highest speed
that keeps the architecture safe thanks to the computation of
a heuristic speed based only on the road geometry.

Our planning and control architecture was tested in sim-
ulation on a challenging track, with and without obstacles,
using a high-fidelity 9 DoF dynamic vehicle model, taking
into account both tire friction circles and load transfer.

Even, if the proposed architecture is able to cope with
most normal driving situations, the constraint on lateral
acceleration might sometimes be too harsh, especially in
emergency situations. Switching to a more complex model
at the planning and control level might then be necessary, for
example using [22], [23]. This will be in the scope of future
work. At last, the impact of low-friction road conditions on
the vehicle architecture should also be investigated for further
validations.
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