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A Reinforcement Learning Based Approach for Automated Lane 
Change Maneuvers 

Pin Wang1*, Ching-Yao Chan1, Arnaud de La Fortelle1,2 
 

Abstract — Lane change is a crucial vehicle maneuver 
which needs coordination with surrounding vehicles. 
Automated lane changing functions built on rule-based 
models may perform well under pre-defined operating 
conditions, but they may be prone to failure when 
unexpected situations are encountered. In our study, we 
propose a Reinforcement Learning based approach to train 
the vehicle agent to learn an automated lane change 
behavior such that it can intelligently make a lane change 
under diverse and even unforeseen scenarios.  Particularly, 
we treat both state space and action space as continuous, 
and design a unique format of Q-function approximator to 
estimate the total return which is an accumulated reward 
over a lane changing process. Extensive simulations are 
conducted for training the algorithms, and the results 
illustrate that the Reinforcement Learning based vehicle 
agent is capable of learning a smooth and efficient driving 
policy for lane change maneuvers.  
Keywords - Reinforcement Learning, Autonomous Driving, 
Lane Change, Vehicle Control	

I. INTRODUCTION  

Interests in autonomous vehicles have seen great 
increase in recent years, from automakers to high-tech 
companies and research institutions. While fully 
autonomous vehicles at Automation Level 5 per SAE-
J3016 [1] may only be widely available in the more 
distant future, partially or highly automated features at 
Automation Level 2, 3, or 4 look promising to be 
commercially available in the near future. Experience 
from the mass deployment of Advanced Driver 
Assistance Systems (ADAS) and from extensive tests of 
autonomous driving show that “steady state” driving is 
operational and research is now focusing onto “transition” 
maneuvers that are intrinsically riskier. A study shows 
that around 10 percent of all freeway crashes are caused 
by lane change maneuvers [2]. Therefore, we need better 
algorithms to implement the challenging maneuvers. 
Lane changing is one fundamental and crucial function 
expected to be embedded in either an ADAS or a fully 
automated vehicle. The lane changing maneuver can be a 
demanding task because the vehicle needs to alertly 
watch the leading vehicle on its ego lane and surrounding 
vehicles on the target lane, and to perform proper actions 
according to the potential adversarial or cooperative 
reactions demonstrated by those relevant vehicles.  
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Research on automated lane changing maneuvers has 
been extensively conducted and the work can broadly be 
divided into two functional categories: a decision-making 
module and a control execution module [3]. A decision-
making module can be viewed as a strategic or tactical 
level function which issues a lane change command 
according to a selected route (e.g. exiting the highway 
from an off-ramp) or a desired driving condition (e.g. 
passing a slow vehicle in front). When a lane change 
command is given, the ego vehicle (i.e. lane changing 
vehicle) performs operational control to coordinate the 
longitudinal and lateral movements for a safe, smooth 
and efficient lane change maneuver. 	

A considerable body of literature is existent on the 
topic of the decision-making function, and it generally 
adopts data-driven methods that are typically based on 
available training datasets in abundance combined with 
model-based optimization techniques such as Model 
Predicted Control (MPC). The topic deserves to be 
elaborated in depth to discuss how the decision-making 
functionality can be enhanced. However, to limit the 
scope of this paper, we will focus on the aspect of 
operational control, i.e. how the vehicle can 
automatically perform the lane change maneuver once it 
receives the command that comes from a decision-
making module.	

With regard to the lane changing maneuver, it is a 
typical time sequential problem where the completion of 
the task involves a sequence of actions, and the 
performance of the current action has an impact on the 
ultimate goal of the task (e.g. a successful lane change). 
Such kind of problems are quite suitable to be solved by 
machine learning techniques, particularly by 
Reinforcement Learning (RL). The focus of the paper is 
to demonstrate the use of a Reinforcement Learning 
concept to find an optimal driving policy for automated 
lane change maneuvers. 	

The remainder of the paper is organized as follows. A 
literature review of related work is given in Section II. 
Section III introduces the methodology and details of our 
algorithm. Simulation results are given in Section IV. 
Concluding remarks and discussions of future avenue of 
research are provided in the last section. 	

II. RELATED WORK 

Traditional approaches for addressing the 
autonomous lane changing problem primarily depend on 
pre-defined rules and explicitly designed models. Most 
of these approaches introduce a virtual lane change 
trajectory or a series of way points for the ego vehicle to 
follow when a lane change process is initiated. In [4], a 



virtual reference lane change trajectory was established 
with a polynomial equation. The virtual curvature of the 
intended path, along with steering angle, was fed into a 
bicycle model to estimate the vehicle lateral positions. In 
[5], a number of way points with information acquired 
from Differential Global Positioning System and Real-
time Kinematic devices were used to generate a guidance 
path when a vehicle embarked on a lane change. A 
common limitation in these approaches is the lack of 
flexibility in the planned trajectories under dynamic 
situations and diverse driving styles. Moreover, though it 
might work relatively well in predefined situations or 
within the model limits, it is far from adequate in 
handling situations that are out of the defined scope. This 
is also a clear limitation in the current time-receding 
optimization methods (e.g. MPC) as the optimization 
criteria may be too complex to be explicitly formulated 
for all scenarios and such methods always involves the 
predictions of future trajectories. A promising technique 
is to control all vehicles simultaneously via cooperative 
techniques such as in [6], but in the present paper we deal 
with a stand-alone system.	

Machine learning (ML) algorithms have the 
capability of dealing with unforeseen situations after 
being properly trained on a large set of sample data 
without explicitly specific design and programming rules 
beforehand. Vallon et al. [7] proposed to use Support 
Vector Machine to make the lane change decision 
tailored to the driver’s individual driving preferences. 
After the lane change demand is generated, the maneuver 
is executed using a MPC. Bi et al. [8] moved further to 
apply machine learning algorithms on both the decision-
making process and the lane changing execution process 
based on traffic simulation. Specifically, they trained a 
randomized forest model for decision-making and a 
neural network for prediction of vehicle velocities at the 
next step, not only for the ego vehicle but also for the 
follower vehicle, under an assumption of connected 
driving environment.  

Another study combined the conventional control, a 
PID controller, with neural networks, for designing a 
self-tuning and adaptive lateral controller [9]. The inputs 
to the neural network are optimal lateral acceleration, real 
lateral acceleration and the error between these two 
values. This approach should theoretically work well, but 
may be difficult to achieve due to the difficulty in 
obtaining optimal acceleration values in real-world 
driving situations.    

Reinforcement learning, one promising category in 
the machine learning family, has the capability of dealing 
with time-sequential problems and seeking optimal 
policies for long-term objectives by learning from trials 
and errors, without resorting to an off-line collected 
database. RL has been extensively applied in robotics, e.g. 
[10], and video games, e.g. [11]. Recently, it has been 
used in automated vehicle field [12, 13]. However, the 
driving scenarios in these aforementioned studies were 

relatively simple because few vehicle interactions with 
surrounding vehicles were considered. 	

In one previous study [14], we used RL to train the 
vehicle agent to learn an optimal ramp merge driving 
policy under interactive driving environment. We treated 
both the state space and action space as continuous to 
more realistically represent the real-world driving 
situations. The results demonstrated that with the 
reinforcement learning approach, the automated merge 
actions can take place safely, smoothly and promptly 
under an interactive driving environment.	In that work, 
however, we did not take into account the lateral control 
issue as we assumed that the agent vehicle would follow 
the centerline of its travel lane. In this work, we expand 
the methodology we used in our previous work and adopt 
the RL architecture for the lane change case with 
extended definitions in state space, action space and 
reward function. The design of the learning and control 
is kept relatively simple in this preliminary study but it 
would prove the same methodology could work with 
more complex states and actions, indicating promising 
perspectives.	

III. METHODOLOGY 

In a typical RL problem, the goal is to find an optimal 
policy 𝜋∗  which maps the states ( 𝑠 ∈ 𝑆 ) of the 
environment into actions (𝑎 ∈ 𝐴) that the agent takes at 
the corresponding states, in a way of maximizing a total 
expected return 𝐺 that is a cumulative sum of immediate 
rewards 𝑟 received over the completion of a task [15]. 𝑆 
and 𝐴 here are state space and action space, respectively, 
and can be discrete or continuous in a specific problem. 
The reward 𝑟 𝑠, 𝑎  reflects the effects of an action 𝑎 in a 
given state 𝑠 , whereas 𝐺 𝑠, 𝑎  is a long-term reward 
starting from a state 𝑠, taking an action 𝑎 and thereafter 
following a policy 𝜋. 	

In our case, the driving environment involves the 
interaction with other vehicles whose behaviors may be 
cooperative or adversarial. For example, when a vehicle 
reveals its intention of a lane change by turning on the 
turning signal, the lag vehicle on the target lane may 
cooperatively decelerate or change its path to yield, or it 
may adversarially accelerate just to deter the vehicle from 
cutting into its course of motion. Consequently, it is 
difficult to model the environment with explicitly all 
possible future situations. Thus, we resort to a model-free 
approach to find the optimal policy. 

Another point to adopt a RL based approach is that a 
traditional MPC based controller often uses explicitly 
defined sensor inputs, while the outcome from an image 
perception module is usually an extremely large feature 
map and might be fuzzy. MPC has difficulty in handling 
such a large and fuzzy set of inputs. In contrast, the RL 
agent can take in hundreds or even millions of features as 
inputs which do not necessarily have an explicit 
representation. In this sense, the RL approach can 
conveniently be connected with the perception module. 



Besides, from another perspective of a joint approach, a 
RL/ML module can be taken as a mediator component 
between a perception module and a traditional MPC 
module, as to take the perception outcome as input and 
output a reference guidance for the MPC controller. 

3.1 Lane Change Controllers 
It’s a good practice to control a vehicle in a coupled 

way in a MPC controller, but it is also common to 
decouple the complicated vehicle control into a 
longitudinal control module and a lateral control module 
for the study of vehicle maneuvers [4]. To explore the 
learning ability of a RL based vehicle agent and 
demonstrate how the functionalities can be partitioned 
and addressed separately, we design decoupled 
controllers in our current work. Investigation of coupled 
controllers is also worth pursuing and we will defer it to 
our future work.  

Since certain off-the-shelf models are ready for use in 
application, we choose to leverage a well-developed car-
following model, Intelligent Driver Model (IDM), to 
build the longitudinal controller. The lateral control is to 
be learned by RL with the consideration that most of 
those previously proposed lateral control models are far 
too theoretical or empirical to be applied on an 
autonomous vehicle.  

There is also a gap selection module working 
parallelly with the two controllers. After the vehicle get 
a lane change command, the gap selection module will 
check the acceptable safety distance to the leader and 
follower on the target lane based on all the current 
information (e.g. speed, acceleration, position, etc.) of 
the surrounding vehicles. If the gap is adequate enough 
to accommodate the speed difference under maximum 
acceleration/ deceleration and ensure minimum safety 
distance under current speed, it is considered as an 
acceptable gap, and then the lane change controllers will 
be initiated. The two controllers will interact with each 
other and function cooperatively to perform the overall 
lane change task while they are designed separately as 
individual modules. 

3.2 IDM based Longitudinal Controller 
IDM is a time-continuous car-following model for the 

simulation of highway and urban traffic. It describes the 
dynamics of relevant vehicles. Detailed information can 
be found in [16].    

The IDM holds realistic properties compared with 
other intelligent models such as Gipps’ model [17]. But 
if it is applied directly, a phenomenon will appear where 
vehicles may travel at a relatively slow speed under 
moderate traffic conditions due to the safety constraint 
inherited in the equation, thereby, we modify the IDM to 
suit our purpose. Since it is not the focus of this paper and 
the content space is limited, the details on the formulation 
and the illustrations of vehicle dynamics in car-following 
scenarios are omitted here. But it is still worth 

mentioning that with the modified car-following model, 
the vehicle can perform reasonable longitudinal 
behaviors either in free traffic conditions or in interactive 
driving situations.  

It is also worth noting that when the ego-vehicle is 
making a lane change, it may see two leading vehicles in 
the ego lane and the target lane during the transition. The 
IDM car-following model that we implement will allow 
the ego-vehicle to adjust its longitudinal acceleration by 
balancing between its two leaders, if observed, on its ego 
lane and the target lane. The smaller value will be used 
to weaken the potential discontinuity in vehicle 
acceleration incurred from lane change initiation. At the 
same time, the gap selection module is still working as a 
safety guard during the whole lane changing process to 
check whether the gap distance is still acceptable at each 
time step. If not, the decision-making module will issue 
a command to alter or abort the maneuver, and the control 
execution module will reposition in the original lane. In 
this way, the longitudinal controller takes the 
surrounding driving environment into account to ensure 
safety in the longitudinal direction, whereas the lateral 
controller directs the vehicle to intelligently merge into 
any accepted gap. 

3.3 RL based Lateral Controller 
In this section, we define the state space 𝑆, the action 

space 𝐴, the immediate reward function 𝑟 𝑠, 𝑎 , and a 
model-free approach, Q-learning, to find the optimal 
policy. 	

3.3.1 Action Space 
In some RL studies, the action space is usually treated 

as discrete to make a problem more easily solvable, 
however, it might weaken the feasibility of the solution 
when applied on real-world problems. In our study, the 
lateral control in a lane changing process is of crucial 
importance since a slightly fallacious shift in steering 
may result in the vehicle slipping out of the lane or a 
significant disturbance of surrounding vehicles. Bearing 
this in mind, we design the lateral controller with a 
continuous action space to allow a realistic and smooth 
transition from one lane to another.  

To make sure that the steering angle input is 
continuous and smooth, there should be no abrupt change 
in yaw rate or, in other words, the yaw acceleration does 
not fluctuate erratically. Thereby, we design the RL agent 
to learn the yaw acceleration, i.e., the action space is 
defined with vehicle yaw acceleration 𝑎+,-. 	

𝑎 = 𝑎+,- ∈ 𝐴                                   (1)	

3.3.2 State Space 
As mentioned earlier, the ego vehicle’s interaction 

with surrounding vehicles is taken into account by the 
gap selection module and longitudinal controller, the 
lateral controller thereby only considers the ego vehicle’s 
motion. For a coupled controller to be developed in the 



future, all the relevant adjacent vehicles’ state as well as 
the ego vehicle’s will be incorporated into the state space.  

A successful lane change not only relates to vehicle 
dynamics, but also depend on road geometry, i.e., 
whether a lane change is performed on a straight segment 
or a curve. In our study, we define the state space with 
both vehicle dynamics and road information. To be 
specific, the state space includes the ego vehicle’s speed 
𝑣, longitudinal acceleration 𝑎, position 𝑥, 𝑦 , yaw angle 
𝜃, target lane 𝑖𝑑, lane width 𝑤, and road curvature 𝑐.  

𝑠 = 𝑣, 𝑎, 𝑥, 𝑦, 𝜃, 𝑖𝑑, 𝑤, 𝑐 ∈ 𝑆               (2)	

In this problem formulation, we suppose the required 
state information is available from on-board sensors, 
such as GPS, IMU, radar, CAN, etc., on instrumented 
vehicles, and that it meets the desired accuracy 
requirements for the control purpose.  

When the state features are from an image perception 
module or incorporate measurement noise, the state space 
here can be adaptively expanded to a large size without 
changing the algorithm structure, which is one 
superiority of the RL approach.  

3.3.3 Reward Function 
Typically, in a lane change process our attention is on 

the safety, smoothness and efficiency of the maneuver. 
As the longitudinal module and the gap selection module 
have taken into account the safety concern, smoothness 
and efficiency are considered by the lateral controller 
through the reward function. 	

The smoothness is evaluated by yaw acceleration 
𝑟,778  due to the consideration that yaw acceleration 
directly affects the magnitude of a shifting in the lateral 
movement.  

𝑟,778 = 𝑤,778 ∗ 𝑓,778 𝑎+,-                     (3)	

where 𝑟,778  represents the immediate reward obtained 
from yaw acceleration, 𝑤,778 is a weight which can be 
designed as a constant value or a function relevant with 
lateral position, and 𝑓,778  is a function for evaluating 
𝑎+,- . We currently use a simple format as  𝑟,778 =
−1.0 ∗ 𝑎+,- . 	

Another indicator of smoothness is the yaw rate 𝜔+,-, 
which reflects the comfort of the driver in a lane change 
process since a higher yaw rate will result in a significant 
centrifugal pull force in driving. The function is given in 
(4). 

𝑟?,@8 = 𝑤?,@8 ∗ 𝑓?,@8 𝜔+,-                      (4)	

where 𝑟?,@8reflects the immediate reward obtained from 
yaw rate, 𝑤?,@8 is a weight and can also be designed as a 
constant or a function, and 𝑓?,@8  is a function for 
evaluating 𝜔+,-. In our study, we apply 𝑟?,@8 = −1.0 ∗
𝜔+,- .	

The efficiency is assessed by the lane changing time 
consumed to complete the maneuver. We take it into 
consideration into the reward by adding a third term to 
the reward function, as to avoid an overly long and 
extended lane change actions. 	

𝑟@AB8 = 𝑤@AB8 ∗ 𝑑𝑡             (5)	

where 𝑟@AB8is the immediate reward from lane changing 
time, 𝑑𝑡 is the time step interval, and 𝑤@AB8 is the weight 
that we design as a function of the proportion of the 
current lateral deviation and the averaged lateral 
deviation and scale it with 0.01 to a similar magnitude 
with the other two reward parts:  𝑤@AB8 =
− ∆𝑑E,@ 𝑑,FG ∗ 0.01.	

The immediate reward 𝑟  in a single step is a 
summation of the three parts. To assess the overall 
performance, we also need to calculate the total reward 
𝑅 that is a cumulative return of immediate rewards over 
a lane changing process. Equally, the total reward can 
also be viewed as a composition of the three 
aforementioned individual parts: the total reward from 
yaw acceleration, the total reward from yaw rate, and the 
total reward from lane changing time, as shown in (6).   

𝑅 = 𝑟,778 A
I
AJK + 𝑟?,@8 A

I
AJK + 𝑟@AB8 A

I
AJK     (6)	

It can be observed that we define the rewards with 
negative values. The idea is that a reward can also be 
considered as a penalty of an action if we want to 
emphasize the adverse effect from an action, such as 
unsmooth or inefficient lane change maneuver.  In this 
way, the agent should be able to learn to avoid taking 
actions that result in a large penalty. 

3.3.4 Q-learning   
Q-learning is a model-free reinforcement learning 

technique which is used to find an optimal action 
selection policy [18] through a Q-function by estimating 
the value of the total return, without waiting until the end 
of an episode to cumulate all the rewards. 	

For continuous state space and/or action space, the 
standard Q-learning which basically maps discrete 
state/action pairs to Q-values will lose viability with the 
increased size of state/action pairs. An alternative 
solution is to use a Q-function approximator, normally 
devised as neural networks, to output the Q values. This 
makes it possible to apply Q-learning to large table size 
problems, and it even works when the state and/or action 
space is continuous.  

The problem then becomes how to design an 
appropriate Q-network that is representative and 
learnable. In our work, we utilize a quadratic function as 
the Q-function approximator to learn the optimal lane 
changing action with the consideration that any 
continuous function can be approximated by a finite 
number of terms of Taylor series [19].  



For most cases, a polynomial of degree two is enough 
to describe the inherent features of a problem with 
relatively small errors [19]. If a two-degree Taylor 
polynomial is expanded at its optimal, the first order 
would be zero, thus, we formulate the Q-function 
approximator as a quadratic function with the format in 
(7).  

𝑄 𝑠, 𝑎 = 𝐴 𝑠 ∗ 𝐵 𝑠 − 𝑎 O + 𝐶 𝑠           (7)	

where 𝐴 , 𝐵 , and 𝐶  are coefficients and designed with 
neural networks with the state information as input, as 
illustrated in Fig. 1. 	

Specifically, 𝐴  is designed with a two-layer neural 
network with eight neurons in the input layer (i.e. the 
dimension of the state space 𝑆) and 100 neurons in the 
hidden layer. Particularly, 𝐴 is bounded to be negative 
with the use of an activation function on the output layer. 
𝐶  is also a two-layer neural network with the same 
number of neurons and layers as 𝐴, but it also takes in a 
terminal state as an indicator of the completion of a lane 
change. 𝐵 is in a heavily engineered form with three two-
layer neural networks, which have the same structure of 
8 neurons in the first layer and 150 neurons in the hidden 
layer, linked together to output the final yaw acceleration 
value. One neural network is for the calculation of yaw 
acceleration, another is for the calculation of a sensitivity 
factor used to evaluate the yaw acceleration variation in 
two consecutive steps, and the other one is for the 
calculation of the maximum yaw acceleration that is used 
to give an adjustable boundary of the yaw acceleration. 
Fig. 2 illustrates the structure of 𝐵.  

With the above design, the optimal action for a given 
state can be obtained from 𝐵. In the meanwhile, Q-values 
are calculated with 𝐴, 𝐵 , and 𝐶 , and used for weights 
update of the neural networks based on a loss defined 
between target Q-values and predicted Q-values that are 
calculated in a RL learning process called experience 
replay [20].  

	
Figure 1. Structure of the Q-function approximator 

 

 
Figure 2. Structure design of 𝐵 

IV. SIMULATION AND RESULT 

We test our proposed algorithms through a simulation 
platform where a learning agent is able to, on one hand, 
interact with the driving environment, and on the other 
hand improve itself by trials and errors from experiments. 
The simulation scenario is a highway segment with three 
lanes on one direction. The segment length is 1000m and 
each lane width is 3.75m. Traffic on the highway can be 
customized as needed. For example, the initial speed, the 
departure time, and the speed limit of an individual 
vehicle can all be set to a random value within a 
reasonable and practical range. In our current study, the 
departure interval is between 5s-10s, and individual 
speed limits are in a range of 80km/h-120km/h. All 
vehicles can perform practical car-following behaviors 
with the proposed IDM. Diverse traffic conditions can be 
generated with different sets of parameters. A scene of 
the simulation scenario is shown in Fig. 3. 	

In the training, we set the training steps as 40,000, the 
time step interval 𝑑𝑡 as 0.1s, the learning rate 𝛼 as 0.01, 
and the discount factor 𝛾  as 0.9. In total around 5000 
vehicles executed the lane change maneuver in the 
training process.  The training loss and Q-values gathered 
during training are shown in Fig. 4.  

From the left graph in Fig. 4, we can observe that the 
loss curve shows an obvious convergence along with 
training steps. The Q-value graph in Fig. 4 demonstrates 
the distributions of Q-values at each step, and it clearly 
shows that Q values converge to a steady level. The 
training results indicate that the RL based vehicle agent 
is capable of learning the lane change policy with regard 
to our designed reward function under the proposed Q-
function approximation architecture.  

	
Figure 3. Simulation scenario 

 

	 	
Figure 4. RL training loss and Q-values      	

V. CONCLUSION AND DISCUSSION 

In this work, we applied the Reinforcement Learning 
approach for learning the automated lane change 
behavior under interactive driving environment. The 
state space and action space are both treated as 
continuous to learn a more practical driving maneuver. A 



unique format of a quadratic function is used as the Q-
function approximator, in which the coefficients are 
learned from neural networks. The reward function is 
defined with yaw rate, yaw acceleration and lane 
changing time for training a smooth and efficient lane 
change behavior. 

To implement the proposed approach, we developed 
a simulation platform where diverse simulation scenarios 
can be generated by adjusting traffic density, initial 
speeds, speed limit, etc. Preliminary training results 
showed convergence of the learning, indicating a 
promising attempt.  

The next step for our research is to first test the RL 
agent under different road geometries and variant traffic 
flow conditions, in order to enhance its robustness and 
adaptability in complicated driving scenarios, which is a 
most advantageous feature of this method to deal with. 
Second, the lane changing performance (e.g. lateral 
position deviation and steering angle, etc.) along with the 
convergence trend will be compared with existing 
optimization-based approaches such as MPC, for 
validation and verification. In addition, another 
promising enhancement is to combine RL and MPC to 
make the best of both approaches. The proposed 
architecture can be established by extending the first 
layer of the neural networks to accommodate a large and 
fuzzy input state from an image module, and then output 
a reference guidance for a traditional optimization-based 
controller to issue a quick and reliable control command 
to the vehicle. 	
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