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ABSTRACT 

Many countries have adopted energy efficiency regulations for mini-split type air conditioners in the world. For 

these products, energy efficiency metrics is moving to seasonal performance evaluation. Many countries have 

already changed their metrics and many others are planning to customize the ISO 16358:2013 CSPF (Cooling 

Seasonal Performance Factor) and HSPF (Heating Seasonal Performance Factor) indicators to their own climate and 

use of air conditioners.  

To build policies to justify the need for implementing MEPS (Minimum Energy Performance Standard) and energy 

label programs, technico-economic model is required. A standard product is to be modeled as well as potential 

improvement options. The complexity of the task increases significantly when shifting from one or two test point 

(rated EER or COP) to several test points to compute SEER and SCOP.  

In this context, we propose a simple model to evaluate the various EER and COP values for different part load 

conditions in such a regulatory context. The model is first described; governing equations by component are given, 

as well as technical parameters required as input. The model is validated using several different units for which EER 

and COP at part load conditions according EU seasonal performance standard are known. Potential of the model to 

simulate improvement options in view of regulatory development is discussed in conclusion, as well as potential 

improvements.  

Keywords: 

Mini-Split; Energy Efficiency Regulation; Seasonal Performances; Modelling; Thermodynamic; Air Conditioning; 

Compressor; Heat Exchangers 

1. INTRODUCTION 

Air conditioners represent a major energy end use in many countries, and contribute significantly in the total 

electricity consumed in buildings.  

Many seasonal performance metrics have been developed recently to describe the performance of cooling and 

heating of air conditioners and heat pumps and they provide a better basis to compare energy efficiency of products 

than nominal standard rating conditions alone. But these metrics are costly in terms of the number of points at which 

the product must be evaluated.  

In many cases these different metrics cannot be compared directly with each other. In this case, energy performance 

modeling is needed to provide an estimate of energy efficiency indicator of the same products for different metrics. 

Also, the impact of improvement options depends on the imposed evaluation metrics. Those two exercises, 

benchmarking of different regional policies and study of improvement potential are required for policy design. To 

do so, it is necessary to have a simple model, easy to manipulate, which allows to simulate quickly several points 

and to assess the efficiency gain of each improvement option.  

The simple model we present here is based on thermodynamics and thermal transfer laws, using however, 

simplifying assumptions, some of which have already been verified in the literature, while others are presented and 

discussed here.  
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2. MODELING ENERGY PERFORMANCE 

2.1 Calculation methods of SEER and SCOP in the European Regulation   

Regulation (EU) N° 206/2012 [1] provides part load conditions and calculation methods for calculating the Seasonal 

Energy Efficiency Ratio (SEER) and Seasonal Coefficient of Performance (SCOP) of air conditioners and heat 

pump units when they are used to fulfill building cooling and heating demands. The part load conditions for air-to-

air units in cooling/heating mode for determining the SEER/SCOP are given in the following tables: 

Table 1: Part load conditions for reference SEER and reference SEERon calculation of air-to-air units 

 
Part load ratio 

Part load 

ratio % 
Outdoor air dry 

bulb temperature °C 
Indoor air dry bulb (wet 

bulb) temperatures °C 

A (35-16)/(TdesignC -16) 100 35 27(19) 

B (30-16)/( TdesignC -16) 74 30 27(19) 

C (25-16)/( TdesignC -16) 47 25 27(19) 

D (20-16)/( TdesignC -16) 21 20 27(19) 

Table 2: Part load conditions for reference SCOP calculation of air-to-air units for average heating season  

 
Average heating season  Outdoor air dry bulb (wet 

bulb) temperatures °C 
Indoor air dry bulb 

temperature °C 
 

Part load ratio Part load ratio % 

A (-7-16)/( TdesignH -16) 88 -7(-8) 20 

B (+2-16)/( TdesignH -16) 54 2(1) 20 

C (+7-16)/( TdesignH -16) 35 7(6) 20 

D (+12-16)/( TdesignH -16) 15 12(11) 20 

E (TOL-16)/( TdesignH -16) TOL 20 

F (Tbivalent-16)/( TdesignH -16) Tbivalent 20 

Operation limit temperature (TOL) is the lowest outdoor temperature at which the unit can still deliver heating 

capacity, as declared by the manufacturer. Below this temperature, the heat pump will not be able to deliver any 

heating capacity. 

Bivalent temperature (Tbivalent ) is defined as the lowest outdoor temperature point at which the unit is declared to 

have a capacity able to meet 100 % of the heating load. Below this point, the unit may still deliver capacity, but 

additional back up heating is necessary to fulfill the full heating load. 

To compute SEERon and SEER, the formulas to be applied are: 
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The reference SCOP is defined as reference annual heating demand divided by the annual electricity consumption 

(the annual electricity consumption includes the power consumption during active mode, thermostat-off mode, 

standby mode, off mode and that of the crankcase heater), to compute SCOPon and SCOP, the formulas to be 

applied are: 
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where: 

 j : the bin number / n : the amount of bins  

 Tj : the bin temperature  

 hj : the number of bin hours occurring at the 

corresponding temperature Tj  

 QC (QH) : The reference annual cooling (heating) 

demand,                  and                        

               , expressed in kW 

 PTO, PSB, PCK, POFF : the electricity consumption 

during respectively thermostat off mode, standby 

mode, crankcase heater mode and off mode, [kW] 

 HTO, HSB, HCK, HOFF, HCE : the number of hours the 

unit is considered to work in respectively thermostat 

off mode, standby mode, crankcase heater mode, off 

mode and equivalent mode hours for cooling 

 PC(Tj) (PH(Tj)): is the heating (heating) demand of the 

building for the corresponding temperature Tj, [kW] 

 EER(Tj) (COPbin(Tj)) : the EER (COP) values of 

the unit for the corresponding temperature Tj in 

cooling (heating) mode. 

 TdesignC/TdesignH :Reference design temperature 

conditions for cooling/heating (TdesignH  depend 

of climate conditions) 

 Hce is the numbers of equivalent heating hours 

(for the average, warmer and colder reference 

heating seasons types of units are based on 

occupancy scenarios for certain types of buildings 

and a climate bin method) 

 PdesignC / PdesignH: full load cooling/ heating 

(climate dependent for heating)  

 Elbu(Tj) is the required capacity of an electric 

backup heater for the corresponding temperature 

Tj, [kW] 

The COPbin(Tj) (EERbin(Tj)) values and heating (cooling) capacity values at each bin are determined via interpolation 

of the COPbin(Tj) (EERbin(Tj)) and capacity values at part load conditions A, B, C, D, E and F (A, B, C and D for 

cooling) where applicable. Interpolation is done between the COPbin(Tj)s (EERbin(Tj)s) and capacities of the 2 closest 

part load conditions. In cooling mode, for capacities required at ambient larger than 35 °C (above A), it supposed the 

capacity required can be reached and EERA value is used for these points. For capacities at bin corresponding to 

temperatures below 20 °C (D point), capacity and EER of D point are used and a cycling coefficient is applied.  

In heating mode, the COPbin(Tj)s values and capacity values for part load conditions above D are extrapolated from 

the COPbin(Tj)s values and capacity values at part load conditions C and D. If the capacity of the heat pump is lower 

than the value of PH(Tj) (at low ambient), correction needs to be made for the missing capacity with an electric back 

up heater with a COP of 1.  

At low loads in both cooling and heating mode, units may have difficulties to reach the low capacities required 

(point D in both modes, sometimes also point C in cooling mode); in that case, the capacity declared supposedly 

cannot reach the required capacity and a Cd coefficient of 0.25 (linear EER/COP degradation factor with load ratio) 

is used to correct the EER or COP of the unit according to standard EN14825:2016 [2]. 

In conclusion, EER and COP depend both on the cooling/heating capacities of the unit and on the compressor 

electricity consumption. Capacities are imposed by the testing points in the metric (declared capacities) and the 

choice of design parameters: PdesignC (corresponding to TdesignC) in cooling mode, and respectively in heating mode 

PdesignH, and Pbiv (capacity corresponding to Tbiv). These parameters with other general design parameters (as the air 

flow rate, compressor efficiency…) are known for most products. The present simplified model, with these main 

characteristic parameters, allows having an idea about the other unknown design parameters, which could be useful 

to reassess energy performance under other conditions for all imposed points by the performance evaluation metric. 

2.2 General outline of the simplified model 

The model is designed and verified, based on the performance evaluation conditions imposed by the European 

regulations (European Standard EN 14825:2016, EU harmonized standard for Regulation n°206/2012). The initial 

purpose was to develop a simple thermodynamic based evaluation tool to compute the impact of improvement 

options on the energy efficiency indicators of products, in particular, for the options that regard compressor 

performance and heat exchanger effectiveness.  

For the European regulation, SEER calculation requires to model the performance of the EER values (for reduced 

outdoor temperature and capacity ratios) at the following test points: A (100%/35 °C), B (74%/30 °C), C (47 %/25 

°C) and D (21 %/20 °C).  In the same manner, SCOP calculation requires to compute at least 5 performance points 

for varied outdoor temperature and part load conditions: F (-10 °C/max declared capacity), A (88%/-7 °C), B (2 

°C/54 %), C (7 °C/35 %) and D (12 °C/15%). 
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2.2.1 Evaporating and condensing temperature estimates 

Evaporation temperature (TEvap) in cooling mode: 

For the evaporator in cooling mode, the cooling capacity to be exchanged is known. There are two distinct situations 

to compute the evaporating temperature:  

Case 1: for EERA (100% part load/ 35 °C outdoor temperature) and in most cases for EERB (74% part load/ 30 °C 

outdoor temperature) test conditions, there is dehumidification. In that case, the heat exchanger capacity is computed 

from an assumed heat exchanger effectiveness value (also called bypass factor for a coil with dehumidification) and 

a given air flow rate. Cooling capacity is decreased by the fan motor power (supposing that all motor losses convert 

to heat in the air stream and that useful fan energy converts to pressure losses and then to heat in the air stream 

ultimately). Refrigerant fluid evaporating temperature (TEvap) is identified by iteration so that the sum of the sensible 

and latent capacities reaches the cooling output of the simulated point.   

Case 2: for EERc (47% part load/ 25 °C outdoor temperature) and EERD (21% part load/ 20 °C outdoor 

temperature), there is no dehumidification. In that case, (TEvap) is identified by iteratively equalizing two DTLM (the 

logarithmic mean temperature difference between air and refrigerant) values computed with the help of the 

equations below:  

1  cooling
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Q
DTLM
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  
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where:  

 Qcooling: cooling capacity to be exchanged at 

evaporator, [kW] 

 UA: global heat exchange coefficient of the heat 

exchanger, [W/K] 

 m: air flow rate,  [kg/s] 

 Cp: air specific heat at constant pressure, [J/kg/K]  

 Ta,i (Ta,o) : evaporator inlet (outlet) air temperature 

 TEvap: Refrigerant fluid evaporating temperature 

 NUT: number of unit transfer (ratio of UA to mCp). 

NUTA refers to the reference point used to fix UA, in 

that case point A (100% part load and 35 °C 

outdoor). ) 

 ε: heat exchanger effectiveness; εA refers to the 

reference point used to fix UA, in that case point A 

(100% load and 35 °C outdoor temperature); this is a 

constant for all 4 points simulated. 

UA is variable and varies proportionally to the airflow rate, while NUT is supposed constant whatever the testing 

point
1
.  And with:  

 

In both cases superheat is not considered in the heat exchanger calculation, evaporating side is considered 

isothermal. Refrigerant fluid pressure losses are not considered either.  

Condensation temperature (Tcond) in cooling mode:  

The same iterative method on DTLM is applied at condenser as in CASE 2 for the evaporator. Condenser heat 

capacity for the specific point is the sum of the cooling capacity and of the compressor electricity consumption 

computed below so that there is an iteration on the condensing temperature value Tcond.  

Sub-cooling and superheat horn
2
 are not considered in DTLM2 calculation (formula above in section CASE 2) at the 

condenser; thus, condenser refrigerant temperature is supposed to be constant and equals Tcond value.  

                                                           
1 This might lead to slightly underestimate the UA value at lower air flow as U is in first order proportional to the air speed v in power of 0.75 to 0.8 and so NUT 

(UA/mCp) should be proportional to v-0.2 and so slightly increases with decreased air flow. However, the refrigerant side conduction coefficient also decreases with 

more complex effect to model. So this simplification is considered an acceptable first order estimate and allows the model to correctly fit part load performances.  
2 Superheat horn means the transformation occurring in the condenser during which the refrigerant fluid at high temperature and high pressure flowing out of the 

compressor is cooled down to high pressure saturation temperature. 

a, o a, iT T  
evapQ

mCp
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Evaporating temperature (TEvap) in heating mode: 

Evaporator capacity is the difference between the heating capacity and the compressor power. The DTLM iteration 

is used to compute the evaporating temperature.  

Condensing temperature (Tcond) in heating mode: 

The calculation is the same as for condensing temperature in cooling mode except the power consumption of the fan 

is added to the heating capacity and that the capacity of the heat exchanger is defined by the heating part load ratio 

of the test point simulated.   

2.2.2 Evaporator superheat and condenser Subcooling estimates 

Evaporator superheat (SH): 

It is fixed constant to 2 K (electronic expansion valve) for all simulations. As it only intervenes in the model in 

modifying the compressor work, its variation has very limited impact on the global efficiency (less than 0.5 % when 

changing from 2 to 6 K). 

Condenser Subcooling (SC): 

A reference value is defined in standard rating conditions in cooling mode and at declared unit capacity at -10 °C in 

heating mode. In part load, Subcooling value is supposed equal to the product of the reference Subcooling value 

multiplied by the ratio of the specific test point temperature difference between the condensing temperature and the 

inlet air temperature to the same ratio for the reference test conditions (Approximation suggested by European 

manufacturers to model air cooled chiller SEPR performance point in the frame of Lot 1 commercial refrigeration 

impact assessment study [3]). For example, in cooling mode: 
,

, , , ,

, , ,

c a i

B C D B C D

B C D A c a i

A A

T T
SC SC

T T





 

where:  

 SCA,B,C,D  : Subcooling in test conditions A or B or C or D in K 

 
, , ,

c

A B C DT   : condensing temperature in test conditions A or B or C or D in K 

 ,

, , ,

a i

A B C DT   : condenser inlet air temperature in test conditions A or B or C or D in K 

2.2.3 Air flow reduction at low loads for split units (with inverter compressor and fans) 

At low loads in cooling mode, condenser fan power is reduced to maintain performance. This is also the case at low 

loads in heating mode at the evaporator. In these conditions, compressor power is low and fan power is no longer 

small in comparison to compressor electricity consumption; so, it is more efficient to decrease fan power, even if 

compressor power increases.  

Refrigerant temperature is found with the same iteration of CASE 2 for evaporation temperature in cooling mode 

above, with changed flow rate. UA is assumed proportional to flow and NUT is constant as discussed above.  

Fan power is assumed to vary with flow rate as follows for these test conditions with reduced air flow rates:  

 3

,P P 0.1   0.9    fan fan N AFR     

where:  

  AFR : ratio of the reduced to the nominal air flow   Pfan, N : nominal electric power of the fan motor 

2.2.4 Compressor efficiency estimate 

EER (respectively COP) of the compressor is calculated from TEvap and TCond. Superheat and Subcooling are also 

considered.  A correlation between the global efficiency of the compressor and the compression ratio              is 

used:  

            cond
g

evap

P
f

P


 
  

 
 

The compressor efficiency is then computed as the ratio of the Wis (isentropic compression work of the isentropic 

cycle) obtained for the isentropic cycle defined by TEvap, SH, TCond and SC, an isentropic compression and an 

isenthalpic expansion. The properties of the fluid at the different state points can be computed using Refprop 9.1 [4]. 
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Performance curves of a 2.9 EER (ASHRAE standard conditions, SI units) AC rotary compressor were published 

recently in the frame of the AHRI Low-GWP Alternative Refrigerants Evaluation Program [5]. This curve is used to 

model the AC rotary compressor. Note that these measurements were performed at neutral ambient around the 

compressor while in real life temperature surrounding the compressor may be closer to outdoor temperature. 

Compressor shell heat losses have been neglected in this simplified model however, and are probably not negligible 

at low ambient temperature.  

For DC inverter rotary compressor, this curve has been corrected by the AC motor efficiency following information 

published by [6]. DC motor losses are supposed constant so that this performance curve is simply adjusted using a 

constant correction coefficient required to reach the different EER levels:  

 EER of 3.15 which is the reference for average split product.  

 EER of 3.4 to reach best DC inverter rotary compressor.  

 For some of the units investigated in the frame of the review study [7], the compression ratio seems can be 

lowered down to 1.1, while it is limited to 1.2 for most DC inverter compressors.  

The curves of the different rotary compressor efficiency curves (ηg) are given in Figure 1. ηg values close to nominal 

ASHRAE condition values can be read at compression ratio of 3.4 on the different curves, with ηg values ranging 

from 0.61 (EER 2.7) to 0.77 (EER 3.4).  

The impact of frequency variation on compressor efficiency is not included, by lack of data.  

 

Figure 1: Compressor efficiency curve as a function of the compression ratio for the different compressor options 

2.2.5 EER, SEER, COP and SCOP calculation 

EER and COP are then corrected for:  

 Thermostat-off, crankcase, standby power and power required for electronics (controls when unit is on) 

 Fan power; Frost/defrost cycles: 5 % decrease in COP at 2 °C 

3. MODEL FITTING AND SIMULATIONS 

3.1 Model fitting with the base case and best available product in the European market 

It is necessary to fit the model with the available known manufacturer’s data. To compute the EER values, a number 

of parameter is already known, as Cooling capacities (load and declared values), indoor/outdoor airflow rate, power 

indoor/outdoor fan, air inlet temperature (entering evaporator), ambient temperature, subcooling temperature, NUT 

(for evaporator and condenser), and of course EER value for all working points.  Once these parameters are fixed, 

some other parameters remain to be adjusted to get the right EER value for the full load point (A). These parameters 

are: the evaporator pinch value (air leaving temperature minus evaporation temperature), the condenser pinch value 

(condensing temperature minus outlet air temperature) and the heat exchangers effectiveness, for the other points (B, 

C, D) it is assumed that the NUT value is constant. Airflow rate reduction is added to the fitted parameters for the 

other points (B, C, D).  
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The COP adjustment is similar, since for reversible unit the condenser in heating mode becomes the evaporator in 

cooling mode with the same design parameters that must be respected when fitting heating parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: logigram of the fitting of the model with reference models and design parameters 

To ensure that all simulations (for the average product with improvement options) done for the present study are 

consistent, two real products were chosen to adjust the model, a base case (average EU product, performance 

parameters are selected as close as possible to real products, database capacities are filtered close to the average 

product) and the best product available on the European market, for [0-6 kW] range of cooling capacity. For these 

products the cooling/heating capacities, EER/COP (at all tested points), SEER/SCOP, indoor/outdoor airflow rates 

are known. All simulations of products in this study (average products with improvement options) have an energy 

performance between the average and the best available products. If the best product efficiency level is compatible 

with supposed efficiency improvements, then it is likely that all simulations of products in between these efficiency 

levels are realistic.  

The model requires knowing enough design parameters of a product; otherwise, it is difficult to predict the behavior 

of the model if there are more parameters to adjust than the number of equations presented above. Table below 

presents the main characteristics of products chosen to calibrate the model in this study:  

Table 3: Air conditioning average products and best product for the range of [0-6 kW] main characteristics 

 Average Product  in [0-6kW] Best Available Product 3.5 kW 

Type / Mounting Reversible split /wall single Reversible split /wall single 

Refrigerant Type / charge   R410A / 1.05 kg R-32 / 1.1 kg 

Cooling capacity kW (EN14511)  3.5 kW  3.5 kW  

SEER
3
  6.25  10.0 

EERA/ EERB /EERC /EERD
3
  3.3/5.1/8.1/11.6 4.9/7.4/12.3/20.3  

PcA/ PcB/ PcC/ PcD 
3
 [kW]    3.5/2.6/1.7/1.2  3.5/2.6/1.7/1.2 

PdesignH kW (EN14511)  3.0 kW (at -7°C)   4.1 kW (at -10°C)  

SCOP
3
  4.1  5.9 

COPA/ COPB /COPC /COPD   2.7/4.1/5.3/6.4     3.8/ 5.7/7.8/10.0 

7Ph 2.7 kW  COP/Ph Air at 2°C and part load 2.7/1.6/1.1/1.1 2.7/1.6/1.1/1.1 

Tol and COP/PH at Tol  -15 °C / COP 2.3/2.5 kW -10 °C / COP 2.7/4.2 kW 

Tbiv and COP/Ph at Tbiv  -7 °C / COP 2.7/2.7 kW -10 °C / COP 2.7/4.2 kW 

Crankcase / Thermostat-off / Standby  3.3 W / 18 W / 3 W 0 W / 23 W / 1 W 

                                                           
3 climate and load curve Regulation 206/2012 

Model 

Design Parameters:  
Indoor/Outdoor UA 

Unknown temperature (outlet 

air temperatures, evaporation 

and condensing temperatures) 

Known Parameters:  
EERs, COPs, inlet air temperatures 

and humilities in cooling mode 

Heating/ cooling capacities 
Airflow rates/Eta_global (compressor) 

SHR (Only at design point in cooling) 

Fitted Parameters: 
Outdoor airflow rate reduction 

(Except for the design point)  

NUT Indoor/Outdoor exchangers 
(Only for the design point) 

Exchangers pinch 

Reference models  
Base case product of the 

range [0-6 kW] (in EU) 

Best available product (EU) 

Iterations on 
the EERs/ 

COPs values 

To fit if 

necessary 

 To check 
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Four variables were used to quantify the overall performance of the unit: cooling/heating capacity, total electrical 

power, SEER and SCOP. Table 4 shows most parameters used to design the unit (results from the model). Table 

below summarizes all performance and design parameters of the average product (wall split 3.5 kW) fitted with the 

best available product.  Parameters are separated by unit type, outdoor and indoor units, and a section to present the 

necessary parameters to calculate the SEER/SCOP values.    

Table 4: Results of simulations of the average product for split 3.5kW in cooling mode 

Base case of split Wall (SEER) Cooling capacity : 3.5 kW 

L
o

a
d

 

Building load  kW 3.50 2.58 1.66 0.74 

Building load  % 100% 74% 47% 21% 

Refrigerating capacity min kW - - - 1.20 

Refrigerating capacity kW 3.50 2.58 1.66 1.20 

Load corrected % 100% 74% 47% 34% 

E
v

a
p

o
ra

to
r 

Outlet air temperature °C    14.6 17.9 21.1 22.8 

Air inlet temperature entering evaporator  °C    27 27 27 27 

Evaporation temperature   °C 9.5 12.2 17.6 20.3 

UA Evaporator  W/K 0.28 0.28 0.28 0.28 

mCp (varies with air flow and air conditions)          kW/K 0.19 0.19 0.19 0.20 

NUT (Epsilon 0.76) = Cte - 1.43 1.43 1.43 1.43 

Indoor air flow m
3
/h 600 600 600 600 

Power indoor fan kW 0.03 0.03 0.03 0.03 

SHR (Sensible Heat Ratio) % 70% 79% 100% 100% 

C
o

n
d

en
se

r
 

Ambient temperature  (inlet  condenser) °C 35 30 25 20 

Condensing temperature   °C 51.7 41.1 32.3 27.0 

Liquid Subcooling K 4.0 2.7 1.7 1.7 

UA condenser  W/K 0.40 0.40 0.37 0.27 

mCp (varies with air flow and air conditions)          kW/K 0.47 0.48 0.44 0.32 

NUT (Epsilon 0.57) = Cte   0.84 0.84 0.84 0.84 

Air flow outdoor m
3
/h 1500 1500 1350 975 

Power outdoor fan kW 0.035 0.035 0.026 0.012 

S
E

E
R

 

Compression ratio - 2.98 2.15 1.48 1.20 

EER Compressor - 3.53 5.89 11.33 19.66 

Compressor. power input kW 0.99 0.44 0.15 0.06 

Electronics kW 0.003 0.003 0.003 0.003 

Total power demand kW 1.05 0.50 0.20 0.10 

EERtotal   - 3.30 5.10 8.13 11.61 

SEER - 6.25 

3.2 Results of simulations product with improvement options  

In this section, different improvement options (and their combinations) for air conditioners are simulated for 3.5 kW 

reversible split product, by applying the LCC (Life Cycle Cost analysis), in order to find the LLCC (Least Life 

Cycle Cost). The improvement options presented and the cost model are summarized in table 5. 

Cost model is based on the review study [7] with adjustments. Manufacturer overcosts (additional costs due to 

design options) are directly passed to the final end-user with the markup factors from manufacturer cost to 

manufacturer selling price. Concerning the price increase of heat exchanger coils, the reference is the price in the 

review study [7]. Having a unit with doubled capacity increases the manufacturing cost of heat exchangers by 100 

%; and the price increases with power of 0.8 of the heat exchanger area increase. See the following equation: 

                                

A and B are constants to be determined with the initial cost and its double at 100% increase of UA. The coefficient 

0.8 gives higher price for large increase than for smaller ones, which is coherent with the larger adaptation 

requirements (for instance casing size change, fan size change).  
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In addition, the cost of the fan (larger fan), the cost of the refrigerant fluid mass used and the cost of the casing 

(bigger size) also vary. For these components, the same method is applied as for heat exchangers. These costs are 

shared between indoor and outdoor units with a respective prorate of 45% and 55%. The cost of microchannel heat 

exchanger is 1.3 times the cost of Cu-Al composed tube and fin (of the outdoor unit). 

Table 5: cost model for a 3.5 kW unit (6.25 SEER) and improvement options tested  

Cost model for 3.5 kW of average 

product 
 Improvement options 

Compressor 18%  Option CP1 Rotary compressor 3.4 EER 

Condenser 18%  Option CP2 Rotary compressor 3.4 EER w improved oil management 

Evaporator 12%  Option HE1 UA value of indoor heat exchanger increased by 40 % 

Outdoor fan 9%  Option HE2 UA value of indoor heat exchanger increased by 80 % 

Indoor fan 6%  Option HE3 UA value of outdoor heat exchanger increased by 40 % 

Working fluid 4%  Option HE4 UA value of outdoor heat exchanger increased by 80 % 

Refrigerant line 6%  Option LPM Lowest values achievable for SB and TO 

Controller + Electronics  6%  Option MHE Microchannel heat exchangers for the outdoor unit  

Hypothesis for LCC calculation are:  

 Life time: 12 years; Installation cost: 800 Euros; Maintenance: 4% of the initial investment  

PWF = life time, as discount rate of 4 % equals to escalation rate of energy prices 

 Electricity price: 0.195 €/kWh for 0-6 kW units and 0.187 €/kWh for 6-12 kW units. 

 Heating hours : 1400 hours / Cooling hours : 350 hours  

 

Figure 3: LCC curve of 3.5 kW unit 

Improvement impact has been computed for a large number of possible combinations. The lowest LCC value at a 

given energy consumption level (bottom line of all LCC points) are presented in blue in figure 2, BNAT (best not 

available technology) option is the combination of all improvement options together. This analysis allowed having 

an idea about the most profitable improvement combined options. 

The LLCC for this product is then the option HE1 with:  

 SEER 6.7 / SCOP 4.4 with an Energy consumption decrease is about 10 % over the average product.   

 LCC = 4400 €, 7 years of payback time 

BNAT (with all options): SEER= 11.4, SCOP = 5.9, LCC= 5080 €, 15 years of payback time 

 LLCC 
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LCC curve of reversible 3,5 kW unit 
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Table 6 shows the relative impact of the improvement options on the SEER and SCOP of the average product the 

European market:  

Table 6: SEER and SCOP increase with the evaporator/ condenser UA increase  

Improvement option  % SEER 

increase 

% SCOP 

increase 40% increase of evaporator UA 14% 10% 
80% increase of evaporator UA 20% 17% 

40% increase of condenser UA 12% 6% 

80% increase of condenser UA 20% 10% 

Note this is not the final LLCC value proposed in the review study [7], as electricity prices have been changed to 

establish final figures.  

To conclude, the methodology is proposed to use the minimum model parameters and variables to compute the 

performance indicators and energy consumption in as simple form as is possible. In the model, only influencer terms 

are included in expressions.  

4. CONCLUSIONS 

The objective of the work reported here was to present a simplified model able to quantify energy gains with 

improvement options for air conditioners and air-to-air heat pumps. Real products were used to adjust the model; 

one of limitations of the model is the compressor curve, which remains inaccessible for most DC inverter rotary 

compressors in the market. 

The simplicity of the model is based on the use of simple software like MS excel with thermophysical properties 

database to compute a complicated thermodynamic system (the use of compressor curve with temperatures instead 

of pressures would allow to automate the model with only MS excel). 

The simulations seem to give results not far from what announces product designers ; though, two major 

uncontrolled sources of error need to be further investigated, the first one regards the uncertain compressor 

performance (performance curve itself including impact of frequency and the impact of heat losses through 

compressor envelope), the second one regards the heat exchangers (very simplified model - semi-isothermal for both 

evaporator and condenser, and pressure losses on the refrigerant).. Somehow, these errors are probably partly 

compensating in the model.  

For the LCC analysis in this European study, modeling several points and products with complex models was not 

possible in the limited timeframe, so the present model was considered as an acceptable compromise to evaluate the 

impact of the improvement options on the seasonal indicators of energy performance. However, it is planned to 

further compare this simplified evaluation tool to a more detailed model to ensure the consistency of the behavior of 

certain parameters under all conditions 
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