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Input shaping for infinite dimensional systems with application on oil
well drilling

Dan Pilbauer1, Delphine Bresch-Pietri2, Florent Di Meglio2 Christophe Prieur1, Tomáš Vyhlı́dal3

Abstract— We present an application of the input shaping
technique on infinite dimensional systems such as systems
described by PDEs. The presented method is a feedforward
scheme which allows to target multiple modes of a flexible
system and also provide robustness with respect to parameters
variations. The method is based on recently developed input
shaper with multiple degrees of freedom that are needed to meet
all constraints for the given task. We show that, even though
the system consists of infinitely many modes, it is required to
target only dominant ones. In addition, the method is illustrated
on a case example of oil well drilling.

I. INTRODUCTION
Time delay based input shaping is a well known feedfor-

ward technique for pre-compensation of oscillatory modes
of flexible mechanical systems. A common application is
pre-shaping the trajectory of a crane trolley so that the
suspended load does not oscillate when moved from one
position to another [1]. Another typical applications are
flexible manipulators and industrial robots [2], see also an
application in orientation and pointing of solar panels of
satellites [3].

C P F
zw u

−
y

S

FlexiblePlantControllerInput shaper
structure

r e

Fig. 1. The classical feedforward application of input shaper

A control scheme with an input shaper is shown in Fig.
1. The original idea of applying an input shapers S(s) in a
serial interconnection with a controlled system is to fully
or partially compensate its oscillatory modes, determined
by one or more couples of complex poles of the flexible
structure F (s). From the channel between the shaped system
reference w to the output of the flexible structure z, which
is not measured as a rule,

Tzw(s) =
C(s)P (s)S(s)

1 + C(s)P (s)
F (s) (1)
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Fig. 2. Left: A scheme of the drill, Right: a block scheme of the drilling
system with feedback controller K and feedforward input shaper S

it can clearly be seen that these flexible poles of F (s) can
be fully or partially compensated by zeros of the shaper
S(s). Thus, the shaper performs the task of a notch filter.
The key advantage of the input shapers compared to the
classical notch filters is that via involvement of time delays,
it is easier to distribute the response in time. This allows
to form the responses of monotonously increasing (or de-
creasing) characters, which are advantageous with respect
to the energy demands. This positive aspect of time delay
filters has already been recognized by O. Smith in 1950s,
who introduced the so-called posi-cast [4], also known as
zero vibration (ZV) shaper. Consequently, extensive studies
mainly motivated by demands on increasing robustness and
decreasing response time have been made proposed in [5],
[6]. For an extensive review on input shaping see [7].

A. Extension to infinite dimensional systems

Even though a single dominant flexible mode can be
identified in most of the cases, there are applications where
multiple modes need to be compensated, see e.g., [8], [9].
The intuitive approach to handle this task is to design a
single mode shaper for each of the modes and convolve them
by a serial interconnection. However, this leads to a long
duration of the shaper action time [10]. In order to mitigate
this inefficiency, direct methods have been designed to handle
this task [11], [12], where the requirement to address multiple
modes is performed within a single design procedure. Due to
complexity of the design task, where additional constraints
on the shaper performance can also be imposed, optimization



based approach has been identified as a promising tool to
handle it [13], which will also be utilized in this paper.
However, compared to [13] where the shaper involves many
lumped delays, our objective is to optimize a shape of a
single delay of distributed nature. This will be done by
adapting the recently proposed technique [14] to the multi-
mode problem, see also [15] and [16].

Despite the fact that the state of the art of the input
shapers is mainly focused on finite, low order flexible
structures, it has been recently shown that it is possible to
apply this technique to infinite order systems with a similar
performance. Typical feature of his class of systems covering
multi-body mechanical systems, flexible structures described
with finite-element models [12], spatially-discretized models
of long electrical transmission lines [17], or platoon vehicles
[18] is a large or even infinite number of oscillatory modes.
Thus the potential to apply the multi-mode shaper structure
is obvious. Such an attempt has recently been done in [19]
in the application to multi-agent dynamical systems.

B. Oil drilling

Motivated by the above outlined potential and preliminary
results on compensation of flexible modes of infinite
dimensional systems by input shaping, and utilizing the
recent results on optimization of distributed delay shapers,
the objective of this paper is to design a multi-mode
shaper to compensate the dominant oscillatory modes of
an oil drilling system. The scheme of a standard device is
depicted in Fig. 2. It consists of a rotary table at the top,
which is usually attached to a drilling rig located on an
onshore or offshore platform or on a drilling ship. Next,
it consists of a drill string and a bottom hole assembly.
Drill sting vibrations and the so-called stick-slip phenomena
bring negative effects on the lifespan of the drill string
and equipment. The model’s complexity is additionally
increased due to its internal coupling and infinite spectrum
with neutral distribution. In this paper, we propose to apply
input shaping to avoid the oscillations of the drill string by
modifying the reference trajectory and providing smooth
changes.

The paper is organized as follows. In Section II, back-
ground and recent results on input shaping are given. Appli-
cation of the input shaper together with numerical results
and simulation experiments are described in Section III.
Section IV concludes the presented results and summarizes
the contributions.

II. INPUT SHAPER WITH DISTRIBUTED DELAY

A. Problem statement

The scheme of the proposed control is in Fig. 2 where the
main goal is to design a feedforward controller (input shaper)
S for an infinite dimensional plant P with low-damped
oscillatory modes which does not excite modes of flexible
structure F . The plant P is considered to be stabilized by
controller C. The input shaper S shapes the reference signal
w in such a way it provides non-oscillatory response of

the flexible structure F while maintaining its fast response.
Usually, the price for the shaped response is response time,
which will be always longer. To summarize, the objective in
this approach design is the choice of parameters of the input
shaper which give minimal response time.

B. Input shapers with distributed delay

An input shaper with distributed delay can be described
in general form as

r(t) = Aw(t) + (1−A)

∫ T

0

w(t− η)dh(η), (2)

where the parameter A ∈ [0, 1] and the delay distribution
h(η) over the finite length segment η ∈ [0, T ] satisfies
h(η) = 1, η ≥ T . We can write the transfer function of
the distributed delay (2) as

G(s) = A+ (1−A)F (s, T ), (3)

where

F (s, T )w(s) = L
{∫ T

0

w(t− η)dh(η)

}
(4)

is the transfer function of the delay. The method of input
shaping is based on spectral theory, where the idea is to
place a couple of dominant complex zeros of the shaper
(2) on a location of poles of the flexible structure. As
the input shaper is delay-based, its spectrum consists of
infinitely many zeros. However, besides the dominant couple
the infinitely many zeros of (3) follows the exponential
asymptotic curves departing from the stability boundary with
increasing amplitude.

In [20], a zero vibration shaper with equally distributed
delay (DZV) was proposed, considering the transfer function
of the delay F (s) = 1−e−sT

sT . Next to the retarded spectrum,
a smoother transition and filtering effect are the main benefits
in comparison with classical ZV shaper. On the other hand,
the price to pay is the increased response time of the input
shaper.

In order to increase robustness, i.e. provide distributed
delay alternatives to the classical extra-insensitive (EI), zero-
derivative-vibration (DZV) shapers, and additionally a least
squares approach for distributed delay shapers have been
proposed in [21].

A technique using smooth kernel function was proposed
by [14] where transfer function of the shaper is given by

G(s) = A+

∫ T

0

g(θ)e−sθdθ. (5)

The kernel function g(θ) is chosen as the polynomial
g(θ) =

∑Np

i=0 aiθ
i, where Np ∈ N is the degree of the

polynomial and A, ai are gains to be assigned. We can
rewrite (5) as

G(s) = A+

Np∑
i=0

aigi(s), (6)



where the functions gi(s) (“moments” of e−sθ) are given by

gi(s) =

∫ T

0

θie−sθdθ. (7)

Note, that the shaper is still linear in parameters A, ai,
which significantly simplifies the design procedure. This
approach has more degrees of freedom in the design. This
flexibility allows the designer to select more constraint in
view of satisfying the requirements of the application under
consideration.

In order to remove undesirable oscillations, e.g., achieve
zero-pole cancellation, we firstly define constraints on plac-
ing zeros of the shaper at the expected position of the
oscillatory mode to be compensated denoted as

ŝn = −αn ± jβn,
where αn, βn ≥ 0, ŝn ∈ C and n ∈ [1, N ] for a given
number N ∈ N of oscillatory modes to be compensated. By
placing zeros of the shaper, we achieve zero-pole cancella-
tion, which removes entirely the undesired oscillatory modes.
These requirements corresponds to

G(ŝn) = 0⇒ A+

Np∑
i=0

aigi(ŝn) = 0, (8)

which can be turned into two real equations for the case of
placing a complex zero,

<{G(ŝn)} = 0, (9)
={G(ŝn)} = 0. (10)

As will be shown for the case of infinite dimensional systems
we need to place multiple zeros. However, each additional
zero decreases the number of degrees of freedom. In order
to arrive at a feasible solution, this may lead to an increase
of the time delay of the shaper.

Additionally, input shaper (5) requires more constraints
that are common for every shaper [15]. First requirement is
that the static gain equals one, which can be written in from

G(0) = 1⇒ A+

Np∑
i=0

aigi(0) = 1. (11)

The additional linear equality constraint that might be nec-
essary corresponds to the requirement of continuity of both
the step response and its derivatives at times t = 0 or (and)
t = T . At t = 0 it is expressed by

A = 0, g(0) = a0 = 0, (12)

and for t = T by

g(T ) =

Np∑
i=0

aiT
i = 0. (13)

The next fundamental requirement that needs to be con-
sidered is the non-decreasing step response [22], [23], or
equivalently, the non-negative impulse response, which can
be formulated as

g(α) ≥ 0, ∀α ∈ [0, T ]. (14)
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Fig. 3. Red dots: Spectrum of the closed loop system (26)-(27). Blue
circles: spectrum of flexible part of the system F , where the dynamics of
ODE ω0 at the top is not considered

Condition (14) is a semi-infinite polynomial inequality, i.e.,
a requirement to be satisfied for a continuum of α values.
The requirement can be solved via Pólya’s relaxation (for
more details see [14]).

Optionally, next constraints can be added, such as conti-
nuity of both the step response and its derivatives or limiting
the jerk and jounce, which would be important in case where
additional requirements on the system are needed, e.g., less
wear on mechanical parts or smoother run of motors. Since
this is not the main aim of this paper we omit details, and
refer the interested readers to [14].

We may now define an optimization problem as

minx T,
subject to{
A1(T )x = b1(T ),
A2(T )x ≥ b2(T ).

(15)

where gain vector x = [A a0 . . . aNp
] and equality con-

straints A1(T )x = b1(T ) come from (9)–(12) and inequality
constraints are given by (14). The dependance of the matrices
A1, A2 on the parameter T is here solved by fixing the
total delay length and looking for a feasible solution. If
the solution is not found, the total time or the number of
parameters Np is increased.

III. APPLICATION TO DRILLING

In order to show applicability of the proposed method,
a case example is provided in the following. We apply the
method on an oil drilling model. Avoiding oscillations of
such systems is crucial because they can cause damage
to the equipment and increase the non-productive time. A
degenerate version of this behavior is often called stick-slip,
an highly undesirable oscillatory limit cycle.

A. System description

We use a model similar to [24] where we consider dynam-
ics of the drive at the top of the rig [25], [26], corresponding
to the ODE governing ω0. The model also encompasses the
linearized dynamics of the interaction of the bit with the
surface at the bottom of the well, corresponding to the ODE
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Fig. 4. Top: Spectrum of the shaper with one exact zero placed, Middle:
Step change in reference velocity ω0 without input shaper (blue) and with
input shaper (red), Bottom: Response of the velocity at the bottom ω1 to
the step response of the reference to the top velocity ω0

governing ω1, and the drill itself as a distributed system
described by two PDEs. It writes

ω̇0(t) = −a0ω0(t) + b0v(0, t) + U(t), (16)
u(0, t) = q0v(0, t) + c0ω0(t), (17)
ut(x, t) = −λux(x, t), (18)
vt(x, t) = µvx(x, t), (19)
v(1, t) = q1u(1, t) + c1ω1(t), (20)
ω̇1(t) = −a1ω1(t) + b1u(1, t), (21)

where ω0, ω1 are velocities of the drill at the top and at the
bottom, respectively. u(x, t), v(x, t) ∈ [0,∞) × [0, 1] are
describing propagation of the velocity through the drill with
parameters λ and µ denoting speed of propagation through
the drill. Parameters a0, a1, b0, b1, c0, c1, q0, q1 are
constants of the system.

The ODE-PDE-ODE system (16)–(21) can be transformed
into delay differential equations (DDEs) as follows. We first
notice that from (17)–(19)

u(1, t) =q0v (0, t− τ1) + c0ω0 (t− τ1) =

q0v (1, t− τ3) + c0ω0 (t− τ1) , (22)

where τ1 = 1/λ, τ2 = 1/µ and τ3 = 1/λ + 1/µ. Then, by
substituting v (1, t− τ3) by (20), shifted by time t− τ3, we
can write

u(1, t) = q0 (q1u (1, t− τ3) + c1ω1 (t− τ3))

+c0ω0 (t− τ1) . (23)

Again, we can substitute u (1, t− τ3) by (21), shifted
by time t − τ3. Following a few algebraic operations and
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Fig. 5. Top: Spectrum of the shaper with two exact zeros placed, Middle:
Step change in reference velocity ω0 without input shaper (blue) and with
input shaper (red), Bottom: Response of the velocity at the bottom ω1 to
the step response of the reference to the top velocity ω0

plugging the result into (21), the final DDE is

ω̇1(t)− q0q1ω̇1 (t− τ3) = −a1ω1(t)+

(q0q1a1 + b1c1q0)ω1 (t− τ3) + b1c0ω0 (t− τ1)
(24)

Following the same procedure for the second ODE of the
variable ω0, we obtain

ω̇0(t)− q0q1ω̇0 (t− τ3) =

− a0ω0(t) + (q0q1a0 + b0c0q1)ω0(t− τ3)

+ b0c1ω1(t− τ2) + U(t)− q0q1U(t− τ3)

(25)

If we define a new state vector as Ω = [ω1 ω0]T , the system
in the matrix form is

Ω̇(t) +

[
−q0q1 0

0 −q0q1

]
Ω̇(t− τ3) =

[
−a1 0

0 −a0

]
Ω(t)

+

[
q0q1a1 + b1c1q0 0

0 q0q1a0 + b0c0q1

]
Ω (t− τ3)

+

[
0 b1c0
0 0

]
Ω (t− τ1) +

[
0 0
b0c1

]
Ω (t− τ2)

+

[
0
1

]
U(t) +

[
0

−q0q1

]
U (t− τ3)

(26)

The system is commonly controlled via PI or PID controller.
Here, we compare the results with a PI controller tuned to
achieve fast tracking at the top velocity, which is the case in
the field. The controller is in the form

K : U(t) = kP (r(t) − ω0(t)) + kI

∫ t

0

(r(ξ) − ω0(ξ)) dξ (27)

We can check the spectrum of the closed loop (26)–(27)
which is given in Fig. 3 (red dots). However, for application
of input shaping we must mention that the targeted system
(flexible structure) corresponds only to the part F shown
in Fig. 2 bounded by dashed box. The zeros of the shaper



TABLE I
RIGHTMOST POLES OF THE FLEXIBLE STRUCTURE

n <(sn) =(sn)
1 −0.0199 ±1.074
2 −0.0737 ±3.642
3 −0.0931 ±6.578
4 −0.0992 ±9.6294
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Fig. 6. Top: Spectrum of the shaper with three exact zeros placed, Middle:
Step change in reference velocity ω0 without input shaper (blue) and with
input shaper (red), Bottom: Response of the velocity at the bottom ω1 to
the step response of the reference to the top velocity ω0

should target only the poles of the flexible structure and
not the overall system. The poles of the flexible part of
the system is shown in Fig. 3 (blue circles). Spectra of the
systems have been computed by QPmR algorithm [27].

B. Simulation results

This section presents simulation results for the following
set of parameters: c0 = c1 = 2, q0 = q1 = −0.9, a0 =
0.17, a1 = 1.8, λ = µ = 1, b0 = a0, b1 = a1.
Four rightmost poles of the flexible structure are shown in
Tab. I. Firstly, we design the input shaper with one zero
compensating the rightmost pole of the flexible system. The
result is shown in Fig. 4. The response is significantly slower
than without the input shaper but the residual vibrations after
the response time are much smaller. However, there are still
significant residual oscillations after the response time which
is due to the fact that the other rightmost poles of the flexible
may play a role. If we now place two poles, as shown in Fig.
5, it is easy to see that the response is much smoother and
with almost no visible residual vibrations. If we go further,
we can place three or four zeros of the shaper, see Figs.
6 and 7. If we place three the response is totally smooth
without any oscillation after the response time. If we place
four zeros, we can observe that the response is very similar.
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Fig. 7. Top: Spectrum of the shaper with four exact zeros placed, Middle:
Step change in reference velocity ω0 without input shaper (blue) and with
input shaper (red), Bottom: Response of the velocity at the bottom ω1 to
the step response of the reference to the top velocity ω0

The results can be also confirmed by looking at the
so called residual vibration function, i.e., amplitude of the
oscillation after the response time T . However, this function
has been always evaluated for cases where we target only
one pole of the flexible structure [14], [21], [28]. Therefore,
we need to modify it for multimode input shaper. We can
express this function by substituting complex variable s = ω̂
and using (5)-(7). Then we can write

V (ω̂) = |G(ω̂)|eω̂T (28)

where ω̂ is defined as continuous function crossing each
zero of the input shaper that has been placed. This is
visually shown in Fig. 8, where points are connected with
lines. The starting point is at the origin of the complex
plane ω̂(0) = 0 + j0 and the last point goes to infinity with
constant real part given by the last placed zero. Fig. 9 shows
how the residual vibration function changes for shapers with
one, two, three and four zeros placed exactly on the desired
locations. As can be seen, when only one zero is placed,
the amplitude for the second, third and fourth poles of the
flexible structure is still significant. When two zeros are
placed, the residual vibrations decreases much faster with
increasing ω̂. Placing more zeros improves performance even
more.

IV. CONCLUSIONS

As the main contribution, the input shaper with distributed
delay is applied to an infinite dimensional system. The input
shaper is designed in such a way that it compensates multiple
dominant poles of the flexible structure while maintaining
fast response. The proposed design of the parameters of
the shaper is based on constrained optimization and solved
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Fig. 9. Residual vibration function (28), for each case, blue line: one zero
placed, red line: two zeros placed, yellow line: three zeros placed, purple
line: four zeros placed

as linear programing problem. The application of the input
shaper is demonstrated on a simplified model of oil drilling.
We illustrated that it is not necessary to target all of the
modes of the flexible structure to obtain a non-oscillatory
response but it is necessary to target more poles than the
dominant ones. Moreover, as the real part of shaper’s zeros
tends to go to minus infinity with increasing moduli, it
appears it will not excite any high frequency modes, even
though they are not directly targeted.
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distributed delay: Spectral analysis and design,” Automatica, vol. 49,
no. 11, pp. 3484–3489, 2013.
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