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In this paper, computer vision enables recommending a reduced order model for fast stress prediction according to various possible
loading environments. This approach is applied on a macroscopic part by using a digital image of a mechanical test. We propose a
hybrid approach that simultaneously exploits a data-driven model and a physics-based model, in mechanics of materials. During a
machine learning stage, a classification of possible reduced order models is obtained through a clustering of loading environments
by using simulation data. The recognition of the suitable reduced order model is performed via a convolutional neural network
(CNN) applied to a digital image of the mechanical test. The CNN recommend a convenient mechanical model available in a
dictionary of reduced order models.The output of the convolutional neural network being a model, an error estimator, is proposed
to assess the accuracy of this output.This article details simple algorithmic choices that allowed a realistic mechanical modeling via
computer vision.

1. Introduction

In biomechanics, computer vision and mechanical testing
have been coupled to obtain patient-specific simulation
approaches, as proposed in [1]. At the same time, with
the growth of industry 4.0, imaging techniques are more
and more widespread in factories. When combined with
artificial neural networks, digital images enable the clas-
sification of products to obtain the best possible process,
as proposed in [2] for olive batches classification in oil
extracting process or as shown in [3] for composite mate-
rials manufacturing. Nowadays, we have the possibility of
extending these methods to the classification of mechanical
parts produced in industry, in order to develop part-specific
decision approaches. For mechanical parts, the quality of
manufacturing processes has a direct influence on the ulti-
mate mechanical properties of the manufactured parts. For
example, the way the fracture is initiated in a specimen
often reveals defects in the material whose origin can be
tracked back to the manufacturing process [4]. In general,
the numerical computation of mechanical stresses in a given

manufactured part allows the predictive evaluation of the
link between the ultimate mechanical properties of this part
and the manufacturing process. The reader can find an
example of how to optimize a process for curing composite
parts in [5] according to this paradigm. The mechanical
modeling of manufactured parts has for purpose to verify if
defects induced by a manufacturing process are tolerable, if
an observed part must be rejected, or if the manufacturing
process must be improved.

In this paper, we restrict our attention to the stress
prediction in a part under an observed loading environment
by a digital image, while including all its geometrical defects.
We propose a hybrid approach that simultaneously exploits a
data-driven model and a physics-based model, in mechanics
ofmaterials. The reader can find a review on hybrid modeling
in [6] for remaining useful life predictions of engineering
systems. We show that the strength of the proposed hybrid
modeling is its ability to incorporate an error estimator
related to the modeling chain with computer vision and
convolutional neural networks (CNN) [7, 8].
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As explained in [9], computer vision with deep convo-
lutional neural networks has achieved state-of-the-art per-
formance on standard recognition datasets and tasks. In this
paper, we explore the capabilities of a CNNas a recommender
system for the mechanical modeling of structures submitted
to various loading. The proposed hybrid modeling couples
a noncentered principal component analysis (PCA) and a
CNN, in order to preserve an accurate description of spatial
information.

Image processing for computer vision is usually very
fast. It does not make sense to couple computer vision with
numerical simulations of mechanical stresses that take hours
of computation. Hence, we couple computer vision with
reduced order modeling of structures, in order to get fast
mechanical predictions of stresses.

A reduced order model is a surrogate model obtained by
the projection of high dimensional equations on a reduced
space, and it also involves a reduced approximation space
for the variables of the high dimensional problem. When
they are the same, the surrogate model is a Galerkin reduced
order model [10]. In hyperreduced order models these two
reduced spaces are different [11]. Then, because we consider
projection of physics-based equations, hyperreduced order
models preserve the physical parameters involved in the
high dimensional equations. The reduced spaces involved
in the hyperreduced modeling are spanned by empirical
modes extracted from simulation data, by using the proper
orthogonal decomposition [10] of known finite element pre-
dictions. This procedure is similar to a noncentred principal
component analysis (PCA). Hence, the proposed model-
ing via computer vision exploits both simulation data and
observational data, which are, respectively, finite element
predictions and digital images of mechanical tests.

In general, the empirical modes obtained by noncentred
PCA are very sensitive to the loading environment imposed
when computing the simulation data. If the variety of loading
conditions considered to calculate simulation data is too
wide, the number of empirical modes becomes too large.
They can no longer reduce the numerical complexity of the
mechanical balance equations. Clusteringmethods have been
applied for model-order reduction in [12, 13], in order to
preserve small reduced-bases of empirical modes. Moreover,
cluster-based reduced order modeling (CROM) has been
proposed in [14] to define a small subset of critical data to
learn an efficient (CROM)with a sparse approximation space
[15]. In this paper, a dictionary of hyperreduced ordermodels
is generated by considering clusters of possible loading
environments in the observed mechanical tests. Then, the
identification of the hyperreduced order model is done via
recognition of a class of mechanical loads by a convolutional
neural network. In practice, each item of the dictionary
is not directly a hyperreduced order model. In order to
face a possible variability on the geometry of the observed
structures, it ismore robust to define an item of the dictionary
as a set of finite element solutions for various ideal geometries
and for a given class ofmechanical loads.Hence, the proposed
workflow is robust enough to face geometrical defects in
the observed mechanical parts. We assume that the mesh
for the finite element modeling of the parts is obtained by

using image-meshing techniques, as proposed in [16], of
segmented 3D digital images obtained by X-ray computed
tomography. We refer the reader to [17, 18] for more details
on finite element modeling of 3D images obtained by X-
ray computed tomography. An example of X-ray computed
tomography applied to manufactured parts can be found in
[19].The ideal geometries involved in the proposed workflow
were obtained by using computer-aided-design (CAD). Such
CAD models are usually used to find an optimal design
of the manufactured parts, with parametric finite element
simulations [20].

2. Materials and Methods

Prior to the stress prediction, a reduced order model is
setup for the projection of the mechanical balance equations.
Here the reduced order model concerns the displacement in
the observed mechanical part. Usually, for the computation
of reduced approximations in nonlinear problems, we for-
mally consider all possible situations in a given parameter
space [21]. The parameters aim to describe all the possible
mechanical problems, in advance, before the observation of
a realization of one situation. This approach defines a tensor
for the description of all possible displacements. The order
of this tensor is the number of scalar parameters involved
in the parametric equations, plus one. For instance, if a
single parameter is introduced then we need two indices
i and j to have access to the value of the ith degree of
freedom of a finite element model for the jth value of the
parameter. WhenD parameters are introduced, we need D+1
indices: i, j(1), . . . j(D), to have access to a scalar value in the
tensor containing all the possible displacements. This tensor
formalism aims to introduce a sampling procedure of the
parameter space in order to get an estimation of the reduced
approximation, or a reduced basis, for the displacements.
For instance, this sampling procedure can be achieved by
the proper generalized decomposition (PGD) [21] or the
Tensor Train decomposition [22, 23]. In this paper, the
loading environment is depicted by an image of 3968 × 2976
pixels. Then the parameter space dimension is around 12
millions (the number of pixels) for the description of all
possible loading environments. Hence the tensor formalism
for model-order reduction would require the decomposition
of a tensor of order 12 millions. To our knowledge, no
tensor decomposition method has been applied to such a
huge tensor order. A purely tensor approach seems to be
unaffordable. In this paper, we do not pretend tomodel all the
possible solutions of mechanical equations related to a huge
parameter space. We do not follow the usual paradigm of low
rank approximations. The proposed image-based modeling
aims to exploit available data for fast approximate predictions
with fast error estimation.

The workflow of the proposed modeling via computer
vision is shown in Figure 1. Four kinds of inputs are required:

(i) a 2D digital image of the part in the test machine, this
image is denoted by 𝐼∗;

(ii) a database where are saved all simulation data,
orderedwith respect to a cluster index𝛽 and the index
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Figure 1: Workflow of the reduced order modeling via computer vision. The inputs are on the top of the figure; the outputs are the stress
prediction 𝜎(𝑥,𝑉∗𝛾∗) by using an hyperreduced order model and an error estimator 𝜂 related to the accuracy of the reduced basis 𝑉∗.

of the available ideal mesh in the list (𝐺𝑗)𝑀𝑗=1, these are
the meshes used when generating the simulation data
by the finite element method;

(iii) a 3D voxel image of the part alone, we assumed
that this 3D image is obtained by X-ray computed
tomography;

(iv) a measurement of the load magnitude at the end
of the mechanical test and a measurement of the
displacement at one fixed point of on the part, at the
end of the test.

The CNN network aims to recognize the index 𝛽 of the
class of loading environment. It gives access to the simulation
data required to create on the fly a hyperreduced ordermodel.
Themeasurement of the displacement magnitude helps to get
a precise location of the load by solving an inverse problem
with hyperreduced equations as proposed in [24].

The stress predicted by the hyperreduction is obtained
via constitutive equations in the framework of elasticity. It
depends on the spatial position in the part, denoted by 𝑥, and
nodal values of the displacement, denoted by the vector 𝑞∗.
This vector has 𝑑∗ components. 𝑑∗ is the order of the finite
element model of the part. The superscript ∗ is introduced
for the variables related to the observed mechanical part in
the experimental setup. The mesh of the mechanical part
is denoted by 𝐺∗ and the stress is denoted by 𝜎(𝑥, 𝑞∗).
The reduced approximation of the displacement reads 𝑞∗ ≈
𝑉 ∗ 𝛾∗, where 𝑉∗ is the matrix form of the reduced basis
(it has less columns than rows) and 𝛾∗ is the solution

of the hyperreduced balance equations. Since the finite
element method is a numerical scheme for partial differential
equations, Dirichlet boundary conditions are applied on the
boundary of the domain occupied by the mesh. Here these
conditions are null. Hence the displacements belong to a
vector space, which is a subspace of a Hilbert space. The
columns of 𝑉∗ span a subspace of this vector space. They
fulfill the Dirichlet boundary conditions applied on 𝐺∗. The
hyperreduced balance equations are set on a reduced mesh𝐺R∗, which is the restriction of 𝐺∗ to the finite elements
connected to a given list of degrees of freedom, denoted by
F. The residual of the finite element equations is denoted by
𝑟∗(𝑞∗). Hence the hyperreduced balance equation reads [20]

𝑉
∗𝑇 [𝐹, :] 𝑟∗ (𝑉∗𝛾∗) [𝐹] = 0 (1)

The larger the set F the higher the computational complexity
of the projection of the equations when considering the
observed geometry. In the sequel, F is the set of degrees
of freedom (dof) indices near the loading areas on 𝐺∗
supplemented by the list of dof in a region of interest. When
𝑉∗ is the identity matrix and F contains all the dof of the
mesh, then (1) returns to the original finite element equations,
𝑟 ∗ (𝑞∗) = 0.
Property 1. The following property holds: if the finite element
solution is unique, if the solution of the hyperreduced equa-
tion is unique, and if the reduced basis is exactly reproducing
the finite element solution, the hyperreduced solution is
exact. Hence the following expression holds: 𝑞∗ = 𝑉 ∗ 𝛾∗.
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In hybrid hyperreduced order models proposed in [24,
25], the reduced basis is extended with few finite element
shape functions available inside 𝐺R∗. By construction, these
shape functions are not connected to the remaining elements
of 𝐺∗. The set of indices of these shape functions is denoted
by P. It is a subset of F, by construction. For the sake
of simplicity, we order the degrees of freedom such that𝑃 = {1, . . . card(𝑃)} ⊂ 𝐹, where card(P) is the number of
elements in the set P. Hence the reduced basis of the hybrid
hyperreduced order model, denoted by 𝑉H, is the following
block matrix:

𝑉
𝐻 = [[[

[
𝐼𝑃
𝑉∗

0
]]]
]

(2)

where 𝐼𝑃 is the identity matrix in dimension card(P). By sub-
stituting 𝑉H for 𝑉∗ in the hyperreduced balance equations,
one obtains the hybrid hyperreduced equations, of which
solution is denoted by 𝛾𝐻. If the projection of 𝑞∗ on 𝑉∗
is exact, then it has also an exact projection on the larger
subspace spanned by 𝑉H. According to Property 1, if 𝑉∗ is
exact and if the hybrid hyperreduced equations have a unique
solution, then the first components of 𝛾𝐻 should be zero
and the last one should be equal to 𝛾∗. It turns out that if
𝑉∗ is exact and if the hybrid hyperreduced equations have a
unique solution, then the stress predictions 𝜎(𝑥,𝑉∗𝛾∗) and
𝜎(𝑥,𝑉𝐻𝛾𝐻) are equal. Hence, the following error estimator is
proposed, in order to assess the accuracy of the hyperreduced
ordermodel that has been recognized by the computer vision
workflow:

𝜂 (𝑥,𝑉∗) = 𝑐 󵄩󵄩󵄩󵄩󵄩𝜎 (𝑥,𝑉∗𝛾∗) − 𝜎 (𝑥,𝑉𝐻𝛾𝐻)󵄩󵄩󵄩󵄩󵄩 , 𝑥 ∈ Ω𝑅 (3)

where Ω𝑅 is the spatial domain occupied by the reduced
mesh 𝐺R∗ and c is a constant. The larger 𝐺R∗, the more
complex the error estimation. When 𝜎(𝑥,𝑉𝐻𝛾𝐻) fulfills the
finite element equilibrium equations, this error indicator is
similar to the error indicator proposed in [26] for standard
materials. If 𝑐 = 1, if Ω𝑅 is the domain occupied by the full
mesh 𝐺∗, and if P contains all the dof indices, then 𝜂(𝑥,𝑉∗)
is the true error.The constant c can be evaluated by following
the procedure proposed in [25]. Here, we assume that 𝑐 =1.

As shown in Figure 1,𝑉∗ is obtained by a noncentred PCA
applied on simulation data 𝑋∗. These data are displacement
fields 𝑋(𝛼,𝛽) remapped on mesh G∗ from the mesh G𝛼 and
restrained to the loads in the class 𝛽 of the load clustering.
This clustering of loading environments in the mechanical
tests is presented below. A simple interpolation of the data
in 𝑋(𝛼,𝛽) is done for the remapping of the displacement
fields on the mesh G∗ for nodes in the domain occupied
by G𝛼. For nodes in G∗ that are not in the domain occu-
pied by the mesh G𝛼, the remapping is done via Laplace’s
equation with an enforced continuity at the boundary of
G∗ and outside G𝛼. In practice, a robust model reduction
is achieved if the meshes (𝐺𝑗)𝑀𝑗=1 are restricted to elements

that are not connected to nodes submitted to a concentrated
load or a Dirichlet boundary condition. In the remapping
procedure, the Dirichlet boundary conditions are enforced as
Dirichlet boundary conditions of the Laplace’s equation.Then
𝑋(𝛼,𝛽) fulfills the Dirichlet boundary condition on the mesh
G∗.

The clustering of loading environments in the mechanical
tests is performed by using the simulation data mentioned
in the workflow in Figure 1. Unfortunately, these data do
not have the same dimension since they are supported by
different meshes (𝐺𝑗)𝑀𝑗=1. Then, they are remapped on the
mesh of a bounding box that surrounds all the meshes(𝐺𝑗)𝑀𝑗=1, so comparisons are easier. The extrapolation of the
data outside themeshes (𝐺𝑗)𝑀𝑗=1 follows the Laplace’s equation
again. The remapped simulation data on the bounding box
are saved in the tensor 𝑋 ∈ R𝐿×𝑑×𝑀×𝑀̃ of order 4. Four
indices are introduced to have access to scalar values saved
in 𝑋. This value is denoted by 𝑋(𝑖, 𝑝, 𝑗, 𝑛), where i is the
load case index, p is the dof index in the bounding box, j is
the index of the mesh in the list (𝐺𝑗)𝑀𝑗=1, and n is the index
related to additional parameter variations. For instance, local
variations of the mechanical properties have the capability
to enrich the simulation data for model-order reduction as
proposed in [11]. When considering simulation data related
to finite element models, a high resolution in spatial fields
is achieved by high dimensional finite element space. Hence𝑑, the second dimension of 𝑋, is often larger than 105 and
can reasonably be up to 107 in industrial applications. In
very high-dimension spaces, all the data are “far away” from
the centre. Hence, a feature extraction is required in the
framework of mechanical modeling, prior to clustering the
simulation data. Several tensor decomposition methods are
available in the literature for feature extraction. For instance,
the k-PCA has been coupled to the proper generalized
decomposition method in [27, 28] for extracting hidden
model parameters. We refer the reader to [29] for a review
on feature extraction. Here, we adopt a hierarchical Tucker
format [30]:

𝑋(𝑖, 𝑝, 𝑗, 𝑛) = 𝑑∑
𝑠=1

𝑉̂𝑝𝑠𝑋(𝑖, 𝑠, 𝑗, 𝑛) , 𝑑 ≤ 𝑑, (4)

where 𝑉̂ is obtained by the following truncated singular value
decomposition:

𝐴̂ = 𝑉̂𝑆̂𝑊̂𝑇,
𝑆𝑖𝑖 > 𝑆𝑖−1 𝑖−1 > 0, (5)

where 𝐴̂ is the reshape of𝑋 as a second order tensor:

𝐴𝑝𝑘 = 𝑋 (𝑖, 𝑝, 𝑗, 𝑛) ,
𝑘 = (𝑖 − 1)𝑀𝑀̃ + (𝑗 − 1) 𝑀̃ + 𝑛 (6)
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We restrict the clustering of data to features in dimension 2,
for the ease of results visualization, and on the two following
average data:

⏞⏞⏞⏞⏞⏞⏞𝑋 (1)𝑖 = 1𝑀𝑀̃
𝑀̃∑
𝑛=1

𝑀∑
𝑗=1

𝑋(𝑖, 1, 𝑗, 𝑛) ,
⏞⏞⏞⏞⏞⏞⏞𝑋 (2)𝑖 = 1𝑀𝑀̃

𝑀̃∑
𝑛=1

𝑀∑
𝑗=1

𝑋(𝑖, 2, 𝑗, 𝑛)
(7)

This two-dimensional feature space enables visualizing clus-
ters on loading environments. Here, we arbitrary select K
clusters by using the k-meansmethod. In the future we would
experiment other clustering methods such as graph-based
clustering, for instance. Then, we obtain a partition of the
simulation data into K sets 𝐶1, . . . 𝐶𝐾. Each set is a list of
loading indices in {1, . . . L}.Then the original simulation data
related to the cluster 𝐶𝛽 and the mesh 𝐺𝛼 are𝑋(𝑖, 𝑝, 𝛼, 𝑛), for
i in 𝐶𝛽, p in {1, . . . 𝑑} and n in {1, . . . 𝑀̃}.

The CNN architecture chosen for this work is based on
the layer composition initially described in [31]. The input
to the CNN is a fixed-size RGB image of 246 × 246 pixels,
denoted ℎ0. This input image is obtained by downscaling the
original 3968 × 2976 images denoted by 𝐼∗ in Figure 1.

The image goes through a set of convolutional layers
followed bymax-pooling layers.The convolution and pooling
stack is repeated 3 times. The rectified linear unit (ReLu)
activation function [8] is used for the convolutional layers.
This function is denoted by ⟨∙⟩+. Each layer generates a
feature map, denoted by ℎ𝑘 after the 𝑘th layer. Each feature
map is a tensor of order 3, which dimensions are denoted by𝑁𝑘1 , 𝑁𝑘2 , 𝑁𝑘3 . The first feature map is ℎ0. The 𝑘th convolution
layer applies linear filters to ℎ𝑘−1. Each linear filter is deter-
mined by the weights 𝑊𝑘 and the bias 𝑏𝑘𝜏 , such that

ℎ𝑘 (𝑖, 𝑗, 𝑝) = ⟨ 3∑
𝛼=1

3∑
𝛽=1

𝑊𝑘 (𝛼, 𝛽, 𝜏)

⋅ ℎ𝑘−1 (𝑖 + 2 − 𝛼, 𝑗 + 2 − 𝛽, 𝑙) + 𝑏𝑘𝜏⟩
+

(8)

where 𝑝 = (𝜏 − 1)𝑁𝑘−13 + 𝑙, 𝜏 = 1, . . . 𝑚𝑘𝐹, 𝑚𝑘𝐹 is the number
of filters in the kth layer, 𝑖 = 2, . . .𝑁𝑘−11 −1, 𝑗 = 2, . . . 𝑁𝑘−12 −1,
and 𝑙 = 1, . . .𝑁𝑘−13 . The first convolution layer uses 32 filters;
the next two use 64 filters. Here, the convolution kernel size
is set to 3 × 3 and the stride to 1 pixel, no padding is used.The
max-pooling is performed with windows of 2 × 2 pixels and
a stride of 2. It reads

ℎ𝑘 (𝑖, 𝑗, 𝑝) = max
𝛼,𝛽∈{0,1}

ℎ𝑘−1 (𝑖󸀠 + 𝛼, 𝑗󸀠 + 𝛽, 𝑝) (9)

where 𝑖󸀠 = 2 𝑖 − 1, 𝑗󸀠 = 2 𝑗 − 1. The output of the last pooling
layer is flattened and fed through 3 fully connected layers: the

Figure 2: Experimental setup. A mechanical load of 159.9 N is
applied on the top of the part in white. A displacement is measured
at a fixed point.

first one has 512 nodes and the second one 64 nodes; those
first two layers use the ReLu activation function. The third
layer is a soft-max layer with 4 nodes thus performing the 4-
way classification task, such that

ℎ𝑘𝑖 = 𝑒ℎ𝑘−1𝑖
∑4𝑗=1 𝑒ℎ𝑘−1𝑗 , 𝑖 = 1, . . . 4 (10)

In order to reduce overfitting, dropout regularization is
implemented for the first fully connected layer with a dropout
rate of 50%.

3. Results and Discussion

3.1. Experimental Setup. We consider a very simple mechan-
ical test on a part in order to check its manufacturing process
via the stress distribution in the part and the related response
of the part submitted to various loading environments on the
top of it. An image of the experimental setup is shown on
Figure 2.Themodeling via computer vision aims to recognize
the loading environment applied on the part, in order to
predict stresses by using a hyperreduced order model. The
magnitude of the load and the vertical displacement at a fixed
point are measured precisely during the mechanical test. But
the location of the load has to be determined by the computer
vision approach. We are considering L=18 possible loading
cases regularly spaced on the top of the part.

The region of interest shown in red in Figure 3 is hidden
in Figure 2 by the experimental setup. If this region of interest
would be visible on each image of the experimental design, a
digital image correlation [32] approach could have provided
an estimate of the mechanical stresses in the part. But it is not
appropriate here, because the part is partially masked in some
digital images.
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Figure 3: The red, blue, and yellow regions have been submitted
to variations of the Young modulus in order to enhance the space
spanned by the simulation data. The region in red is the region of
interest selected by the designer of the experimental setup.Themesh
shown here is the mesh G4. It has 5. 10

5 degrees of freedom.

3.2. Simulation Data, Feature Extraction, and Clusters of
Mechanical Loading. Prior to starting the manufacturing
process, the experimental setup has been designed by using
finite element simulations on four ideal geometries (M=4).
The material of the part is elastic, for each mesh Gj. The
mechanical constitutive equations are the following:

1 + 𝜐𝐸 𝜎 (𝑥, 𝑞𝑗) − 𝜐𝐸 tr [𝜎 (𝑥, 𝑞𝑗)] 𝐼 = 𝑑∑
𝑖=1

𝜀𝑖 (𝑥) 𝑞𝑗𝑖 (11)

where 𝜀𝑖 is the symmetric part of the ith finite element shape
function related to the ith degree of freedom of the mesh,
E is Young’s modulus, and 𝜐 is Poisson’s coefficient. The
mechanical properties of the material are E = 1,600 MPa,𝜐 = 0.3. Here, the residual of the finite element equilibrium
equation reads

𝑟𝑗𝑖 (𝑞𝑗) = ∫
Ω(𝐺𝑗)
𝜀𝑖 (𝑥) : 𝜎 (𝑥, 𝑞𝑗) 𝑑𝑥 + 𝐹𝛿𝑖𝜃 (12)

Here, 𝜃 is the dof indexwhere the load F is applied downward,Ω(𝐺𝑗) is the spatial domain occupied by the mesh 𝐺j, and𝛿𝑖𝜃 is the Kronecker delta. The observed magnitude of the
mechanical load is 159.9 N.

For each geometry, three local variations of the Young
modulus of -20% have been simulated by the finite element
model, in order to enhance the space spanned by using the
simulation data. The regions affected by these variations are
shown in Figure 3. It turns out that we have done 𝑀̃= 4
predictions of the displacement fields, for each geometry and
each loading case. The region of interest is shown in red in
Figure 3. It covers the subdomain where stress concentrations
are expected to be highest during the mechanical test.

An example of the remapping of a vertical displacement
field onto the bounding box is shown on Figure 4. The mesh
of the bounding box has 𝑑= 8. 105 dofs.The first feature mode
(the first column of 𝑉̂) is shown in the right of Figure 4. This
feature mode is consistent with the bending simulation of the
mechanical parts.

We have arbitrary chosen K = 4 centroids to cluster the
mechanical loadings. The L points (⏞⏞⏞⏞⏞⏞⏞𝑋 (1)𝑖 , ⏞⏞⏞⏞⏞⏞⏞𝑋 (2)𝑖 ) are shown
in Figure 5 with the 4 clusters presented by red circles.

3.3. Observational Data. About 250 high resolution digi-
tal images for each class of loading have been generated
before starting anymechanical experiment. Examples of such
images are shown on Figure 6. It takes approximately 10
minutes to get 1000 images. The size of each image is 3968× 2976 pixels.

3.4. Training and Testing the Convolutional Neural Network.
The CNN has been implemented with Keras library in
TensorFlow. The train/test set was built following a 90/10
ratio upon the 1000 digital images of loading environments.
The volume of training data was artificially increased by
using a synthetic data augmentation strategy. Each “original”
imagewas transformed using a combination of random sheer,
zoom, and horizontal flip values. The sheer was limited
to a maximum of 10% and the zoom to a maximum of
30%.

The training was performed by optimizing a multino-
mial cross entropy loss using a minibatch gradient descend
approach with the RMSprop adaptive learning rate method;
batch size is set to 32 and the model is trained on 120K steps
(60 epochs).

The performance of the CNN is assessed on the test
set; a top-1 error value of 1.9% was achieved. This great
performance is explained by the easiness of the classification
task due to no large variations between input images being
observed, since they are all related to the same experimental
setup.

3.5. Hyperreduction of Finite Element Equations. The mod-
eling via computer vision has been applied to a mechanical
test. The mesh G∗ of the part is in red in Figure 7. The
smallestHausdorff distance between the idealmeshes andG∗
is achieved by G4, so 𝛼 = 4.This is the grey mesh superposed
to G∗ in Figure 7. There is 𝑑∗=8. 105 dof in G∗.

The digital image of the mechanical part in the exper-
imental setup is shown in Figure 8. The convolutional
neural network recognizes the class number 3 of loading
environment. Then 𝛽=3, and we can extract the simulation
data from the database in order to compute the reduced basis
𝑉∗, by using the noncentred PCA. We restrict this reduced
basis to five empirical modes. Hence, the projection error of
the selected simulation data on this reduced basis is less than
0.1%.

The reduced mesh 𝐺R∗ is generated on the fly. It is
shown in Figure 9. Here, F is a set of dof in the region
of possible loading for class #3, plus the dof close to the
displacement measurement, plus the dof in the region of
interest. The elements of 𝐺R∗ are the elements connected to
F.

3.6. Stress Prediction and Error Estimation. A finite ele-
ment simulation takes 45 min. The stress prediction by the
hyperreduced order model shown in Figure 10 is obtained
in less than 10 min. 99% of this computational time is
spent for the solution of (1). By choosing a smaller set
of degrees of freedom F, one can obtain prediction in
less than 2 min. The larger the set F, the longer the
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Figure 4: On the left, examples of vertical displacements in the bounding box superposed to the related finite element prediction, for the
mesh G1 on the top and the mesh G4 on the bottom, with a colour scale related to the displacement magnitudes. On the right, the first feature
mode 𝑉̂[: , 1], for vertical displacements too.

Figure 5: L=18 points (⏞⏞⏞⏞⏞⏞⏞𝑋 (1)𝑖 , ⏞⏞⏞⏞⏞⏞⏞𝑋 (2)𝑖 ) submitted to the k-means
methods with the K=4 clusters shown by red circles.

simulations. As we can see in Figure 10, the elements of
reduced mesh GR∗ are not necessarily in a continuous
domain. As explained in [11], the boundary conditions at
the interface between GR∗ and the remaining elements
of G∗ are similar to Dirichlet boundary conditions. They
are enforced by the empirical modes of the reduced basis.
Then, the mechanical coupling between the discontinu-
ous parts of the mesh GR∗ is enforced by the empirical
modes.

The exact error on the average stress in the region of
interest is 0.1%. The map of the error estimator is shown in
Figure 11. The dark grey elements in the reduced mesh (see
Figure 9) are connected to the dof in set P. According to
(1) by substituting the hybrid reduced basis 𝑉𝐻 for 𝑉∗, the
first finite element residuals are null, for i in {1, . . . card(𝑃)}.
Hence the error estimator 𝜂(𝑥,𝑉∗) accounts partially for
errors in finite element equilibrium equations. As shown

in [26], these errors explain the discrepancy between the
hyperreduced prediction and the finite element prediction of
the stress.

4. Conclusions

The proposed reduced order modeling is related to very
huge parameter space of dimension twelve millions, mainly
due to the input image of the loading environment. The
accuracy of the stress prediction is satisfactory to assess
the quality of the process with mechanical considerations,
even if the region of interest is hidden by the experimental
setup. It is also reasonably fast in order to be inserted
into a manufacturing process, aiming for part-specific deci-
sions.

The output of the proposed workflow has a high spatial
resolution. This is achieved by coupling a PCA, a clustering
and a convolutional neural network. A local error estima-
tor aims to indicate the discrepancy between the output
and the stress that a finite element simulation would give
corresponding to the loading environment recognized by
the convolutional neural network. But this error indicator
does not evaluate recognition errors, neither error on the
mechanical behaviour of the observed material. So, the
hyperreduced order model may not be the best that the
available data could give.

In this paper, the inputs of the reduced order model are
nonparametric loading conditions. They are defined solely
by images of the loading environment. Since digital colour
images are third order tensors, we expect a possible general-
ization of the workflow to more complex thermomechanical
loading environments and more complex variations for the
geometry of the observed parts.

Here, no Big-Data is required to train the proposed
reduced order modeling via computer vision. The training
starts with a nonsupervised machine learning by using
a noncentred PCA and a clustering procedure, both on
simulation data. Then, the CNN is trained on digital images
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Load class #1 Load class #2 Load class #3 Load class #4

Figure 6: Sample images for each of the four loading environment classes.

Figure 7: G∗ is in red; the closest ideal mesh is G4 in grey.

Figure 8: Digital image 𝐼∗ of the part in the experimental setup.

u = 

u = 

F(t), u = u = 

Figure 9: A transparency effect has been added to the full mesh𝐺∗.
Both dark grey and red finite elements are in the reducedmeshGR∗.
The grey elements are connected to degrees of freedom in the set P
related to the hybrid approximation.

Figure 10: vonMises stress, ‖𝜎(𝑥,𝑉∗𝛾∗)− (1/3)tr[𝜎(𝑥,𝑉∗𝛾∗)]𝐼‖, in
the reduced mesh GR∗.

0.% 0.15% 0.30%

Figure 11: Error estimator 𝜂(𝑥,𝑉∗)/maxy∈Ω𝑅‖𝜎(𝑦,𝑉𝐻𝛾𝐻)‖ × 100 in
the region of interest, where stresses are the highest.

by supervised machine learning upon the classes defined by
the clustering procedure. Obviously, this approach can be
implemented with larger sets of data.
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