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2Laboratoire de Mécanique et Technologie (LMT),

ENS Paris-Saclay, CNRS, Université Paris-Saclay,

61 avenue du Président Wilson, 94235 Cachan Cedex, France
3MINES ParisTech, PSL Research University,

Centre des Matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France
4Institute for Proton Science and Synchrotron Radiation,

Karlsruhe Institute of Technoglogy (KIT),

76131 Karlsruhe, Germany
5European Synchrotron Radiation Facility (ESRF),

38043 Grenoble, France

1



Abstract

The influence of image segmentation on micromechanical simula-

tions of ductile damage in nodular graphite cast iron coupled with

3D imaging is explored for two tensile specimens. Three different ap-

proaches are used to segment the microstructures from laminography

data. These microstructures are immersed in a finite element mesh

and simulations with experimental boundary conditions are carried

out for each of the three segmentation techniques. The sensitivity of

local and global mechanical quantities is assessed based on the results

of these simulations. The comparison between the employed tech-

niques is then used to estimate the uncertainty associated with the

image segmentation stage.

1 Introduction

Micromechanical simulations based on three-dimensional imaging tech-

niques are becoming popular to study the behavior of heterogeneous mi-

crostructures [1, 2, 3, 4, 5]. In the context of ductile damage, this route

enhances the possibilities for studying the corresponding micromechanisms

(i.e., void nucleation, growth, and coalescence). With the coupling of imag-

ing techniques and numerical simulations, new challenges arise. One of

them is to define an accurate and efficient technique for image segmenta-

tion, namely, determining to which physical phase each of the voxels belongs

to. The objective of this work is to assess the influence of the image segmen-

tation technique on the results of numerical simulations dedicated to ductile

damage of nodular graphite cast iron.

Image segmentation is a well established field with a large number of

methods adapted to different types of images and applications. These tech-

niques range from medical applications [6] to quantification and analyses of

porous microstructures [7]. Segmentation can be as simple as global thresh-
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olding [8] or as complex as more recently developed techniques based on

machine learning [9, 10].

One application in which the fields of image segmentation and mechan-

ics have converged is the determination of mechanical properties of complex

structures or microstructures [11, 3, 4, 12, 5]. This coupling provides an

opportunity to better understand the relationship between microstructure

and properties. For example, Madra et al. [11] analyzed qualitatively and

quantitatively porosity in woven glass fiber reinforced composites via various

segmentation methods. Another example is the study of complex metallur-

gical microstructures through pattern recognition techniques [12].

Although some studies have addressed the relevance of the employed seg-

mentation method [7, 11, 12], the focus was generally restricted to the result

of the segmentation step. The present work aims at assessing the effect of

image segmentation up to its final use in the context of a micromechani-

cal study of ductile damage applied to nodular graphite cast iron. More

specifically, this work is dedicated to understanding and quantifying the ef-

fect of image segmentation on the final mechanical observables of interest

(global stress and strain data, and local strains as well as void fraction and

volume). If image segmentation introduces considerable uncertainty on the

desired micromechanical quantities, these quantities cannot be used reliably.

To the best of the authors’ knowledge, this work constitutes the first effort

of documentation and quantification of this problem.

Recently, an experimental-numerical framework was developed to study

ductile fracture at the microscale. It is composed of three key techniques.

First, three-dimensional images of specimens under load were acquired in-situ

via Synchrotron Radiation Computed Laminography (SRCL) [13]. Second,

Digital Volume Correlation (DVC) [14] enabled kinematic data to be mea-

sured from the registration of SRCL images. Last, Finite Element (FE)

simulations with advanced meshing/remeshing techniques [15] were carried

out on immersed microstructures and realistic boundary conditions extracted
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from SRCL images via DVC analyses. This framework will be referred to as

SRCL-DVC-FE, and was previously detailed in Ref. [3]. The importance

of realistic boundary conditions was demonstrated with the SRCL-DVC-FE

framework [4]. The measurement uncertainties of DVC applied to laminog-

raphy data were evaluated, in particular, for cast iron [16]. The present work

aims at assessing the uncertainties in the results of the FE simulations in

the SRCL-DVC-FE framework that could be expected to originate from the

segmentation of SRCL images.

The chosen mechanical quantities that result from simulations carried out

with the SRCL-DVC-FE framework will be used in future works for calibrat-

ing void nucleation, growth or coalescence models. Relevant input is required

for these tasks to be successful. For this reason, it is important to assess the

magnitude of the uncertainty introduced during image segmentation.

Nodular cast iron is an engineering material of practical importance [17].

It is used in the transportation industry for railway wheels [18], for exam-

ple, and in the energy industry for an important number of wind turbine

parts [19]. Several works have been dedicated to the micromechanisms of

ductile damage in nodular cast iron [20]. The sensitivity of crack growth rate

to the distribution of particles in the process zone for materials with a high

volume fraction of particles [21] illustrates the importance of studying real

microstructures instead of idealized ones. In spite of this observation, even

the most sophisticated numerical models for nodular cast iron found in the

literature resort to at least some degree of idealization [22]. In this sense, the

SRCL-DVC-FE methodology provides the opportunity to study immersed

nodular cast iron microstructures subject to realistic boundary conditions.

This is, however, a recent methodology and understanding the uncertainties

in the chain of different employed techniques is necessary. Thus, the objective

of this work is to understand and quantify the influence of image segmen-

tation on the final FE results of simulations of immersed microstructures.

This is of importance not only for the SRCL-DVC-FE methodology, but

for any two-dimensional or three-dimensional numerical study of immersed
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microstructures.

In order to assess the effect of the segmentation procedure in the results

of the FE simulations within the SRCL-DVC-FE framework, three different

established approaches are chosen (Section 2). They have to be able to deal

with the measurement noise during image acquisition as well as with arti-

facts resulting from incomplete sampling of the 3D Fourier domain [23]. An

additional criterion for the selection of the segmentation methods is their

ability of being automated in the SRCL-DVC-FE chain of techniques, i.e.,

the desired methods should be able to produce satisfactory results without

requiring excessive fine-tuning of their intrinsic parameters. Micromechani-

cal FE simulations are then carried out by immersing each of the segmented

images and comparisons are made between the resulting predictions. This

analysis has the objective of assessing the effect of image segmentation on

the results of FE simulations of immersed microstructures. The comparisons

have another practical consequence, namely, the uncertainty introduced dur-

ing image segmentation of the results of the simulations can be estimated

based on these comparisons. The comparative study and the subsequent

uncertainty estimation are presented in Section 3.

2 Methodology

2.1 Material and specimen

A commercial nodular graphite cast iron is studied in this work. Its

commercial code is EN-GJS-400. This material is of engineering importance

and better understanding its damage mechanisms can have practical conse-

quences [17, 18, 19, 20]. Additionally, it presents a high volume fraction of

graphite nodules, which makes it attractive for DVC analyses [24]. DVC re-

lies on the contrast in SRCL images due to microstructural heterogeneities,

which is provided by the difference of X-ray absorption between the graphite
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nodules and the ferritic matrix.

Two different specimens that were previously studied [25] are considered

hereafter (Figure 1). Each of them contains two holes with a diameter of

500 µm that were machined by Electrical Discharge Machining (EDM). The

ligament connecting the centers of these two holes forms an angle of 90°

with the loading direction in the first geometry, and 45° in the second ge-

ometry. Three-dimensional images were acquired via SRCL during in-situ

tensile tests. Very early debonding between the graphite nodules and the

ferritic matrix was observed in the mechanical tests. For this reason, and

because the graphite nodules present a low load-bearing capacity [20, 26],

the graphite nodules are considered as voids in the FE simulations. This hy-

pothesis can have an influence on the results for large values of strain when

void locking occurs.

2.2 Image segmentation

Before immersing the microstructures in the FE mesh, it is necessary

to differentiate the various phases in the 3D SRCL images of the reference

configurations. This task is called image segmentation. In this work, im-

age segmentation is conducted in FIJI [27], a distribution of the ImageJ

software [28]. Three different image segmentation procedures are employed.

Although each procedure consists of several operations, they will be referred

to by the name of the defining method or algorithm. The first method, which

is based on thresholding by inspection of the images, will be referred to as

Thresholding. The second method employs an automatic thresholding proce-

dure, and will be referred to as Automatic Thresholding. The third and last

method, which is based on machine learning, will be referred to as Random

Forest.

Other methods such as region-growth segmentation [29], fast marching

algorithm and Level-set segmentation [30], were briefly tested. They were
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(a)

(b)

(c)

Figure 1: (a) Geometry of the two studied specimens and zoom around the
scanned region for the (b) 90° and (c) 45° specimens.
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not selected since they required excessive user input or calibration, were very

time-consuming, or provided unsatisfactory results.

Although entire slices of laminography images are presented, only the

volume inside of the so-called reconstruction circle is subsequently used in the

simulations. The reason is that information outside of this zone is incomplete

[16] and hence not suitable for any quantitative analysis.

Ring artifacts are observed in the laminography images. The origin of

these artifacts is related to the characteristic modulated intensity pattern of

the cross-section of the beam. These modulations cause the manifestation

of ring artifacts after reconstruction [16]. An additional requirement on the

chosen segmentation methods is to be able of dealing with the presence of

these artifacts.

2.2.1 Thresholding

Thresholding is a very simple segmentation operation that consists in

determining the phase of a voxel based on its gray level, and it is particularly

adapted for images where only two phases exist [8]. A unique thresholding by

inspection was defined and applied to both specimens and will be illustrated

only for the 90° specimen for the sake of brevity. This procedure involves

four steps.

The first step consists of a three-dimensional averaging filter, i.e., the

gray level in a voxel is replaced with the average gray level in its immediate

neighborhood. This operation results in smoother albeit coarser images. A

mid-thickness slice of the 90° specimen is shown in Figure 2 in its original

version (Figure 2a) and after applying the 3D-mean filter (Figure 2b).
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(a) (b)

(c)

Figure 2: (a) Original slice at mid-thickness of the 90° specimen, and
(b) after applying the 3D-mean filter. (c) Corresponding gray level

histogram of the original image and after applying the 3D-mean filter. The
120 gray level defines the segmentation threshold between the nodules and

the ferritic matrix.9



The effect of the increased smoothness on the gray level histogram is

illustrated in Figure 2c. The gray level histogram of the original image is

bimodal and presents considerable overlap between the two superimposed

distributions. This makes the original image difficult to segment through

simple thresholding. Applying the 3D-mean filter has the effect of reducing

the spread of each of the superimposed distributions. Choosing a reasonable

threshold is thus possible. The chosen value was 120 for both images.

Buljac et al. [25] proposed another methodology for reducing the subjec-

tivity in the choice of the threshold. It consisted in using the strain tensor

trace obtained from DVC analyses to obtain void growth during the in-situ

test, and comparing this history with the void growth obtained via segmen-

tation of the 3D images with different thresholds. The chosen threshold was

then the one that better matched the void growth evaluated with the strain

tensor trace (i.e., 115). Although in the current work the threshold was de-

termined by simple inspection of the images and their gray level histogram,

it is close to that chosen by Buljac et al. [25].

The result of the thresholding procedure is illustrated in Figure 3a. Fig-

ure 3b shows the final segmented image after applying two additional filters.

The first one carries out a fill-hole operation to eliminate white voxels within

voids. The second (median) filter is typically used to eliminate salt-and-

pepper noise. It is applied to remove isolated black voxels in the matrix

(Figure 3b).
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(a) (b)

Figure 3: Slice at mid-thickness of the 90° specimen after (a) thresholding,
and (b) applying the fill-hole and despeckle filters.

2.2.2 Automatic thresholding

A segmentation procedure with an automatic thresholding technique is

described in this section. It is carried out in three steps. First, Gaussian

blur with standard deviation of 5 voxels is applied to the original image.

The automatic thresholding technique is then applied, and finally, a fill-hole

operation is performed.

Gaussian blur accomplishes the same function as the 3D-mean filter ap-

plied in the manual thresholding procedure (see Section 2.2.1). The objective

of this work is not to carry out a detailed comparison of different segmen-

tation methods under the same condition. The deliberate choice of different

preprocessing steps before the segmentation helps emphasizing the effect of

the human factor in the entire segmentation procedure.

The automatic thresholding algorithms that are available in FIJI were
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evaluated on the mid-thickness slice of the 45° specimen, and the results

are summarized in Figure 4. The tested techniques are, in order of appear-

ance, the IsoData algorithm [31], Huang’s fuzzy thresholding method [32],

the Intermodes method [33], a second implementation of the IsoData algo-

rithm, an iterative version [34] of Li’s Minimum Cross Entropy method [35],

a Maximum Entropy method [36], using the mean of the gray levels as a

first guess for the threshold value [37], an iterative version of the Minimum

Error method [38], the so-called Minimum method with histogram smooth-

ing [33], the moment-preserving method [39], the clustering algorithm [40],

the so-called Percentile method, which assumes a given fraction of foreground

voxels (0.5 by default) [41], the Maximum Entropy method with Renyi’s en-

tropy [42], the Information Measure method [43], the Triangle method [44],

and the automatic multilevel method [45].
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Figure 4: Mid-thickness slice of the 45° specimen segmented with different
automatic thresholding methods.

The results of the employed automatic thresholding techniques reported

in Figure 4 were qualitatively examined through comparison with the original
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image (Figure 7c). Similar and satisfactory results were provided by both

IsoData methods, Huang’s method, the Intermodes method, Li’s method, the

Minimum method, and Otsu’s method. The IsoData algorithm was selected

because of its simplicity and applied for segmenting the 3D images of both

specimens.

The iterative IsoData algorithm classifies the voxels into two categories

with an initial threshold value, and the average gray level of each category

is calculated. The average of the latter is then proposed as a new threshold

until convergence. The algorithm was applied separately for each slice, i.e.,

a threshold value was calculated for each individual slice of the volumetric

images. This choice was made to be consistent with the Random forest

procedure which is too costly to be applied to the whole 3D image.

2.2.3 Random forest procedure

The random forest procedure is based on machine learning [46], and in-

volves two steps, namely, training and classification. A random forest is a

machine learning classification method in which many decision trees vote and

the resulting most popular category is retained. A decision tree is a simpler

classification model that consists of nodes and branches. The initial node

is the root and the terminal nodes are denoted as leafs. Each node, except

for leafs, represents a test and each subsequent branch corresponds to the

result of a test. The classification ends at the leafs, which contain the label

of a class. In this work, the classes are either void or matrix. An example

of a possible decision tree for a given voxel is schematized in Figure 5. The

depicted tree uses two training features, namely, the gray level and the first

principal curvature.

After classification, fill-hole and median filters were also applied. During

training, a classification model was created. The data used for training were

the mid-thickness slice of the specimen, and twenty freehand traces were
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chosen for each of the two classes (i.e., matrix and voids). The training

features were Gaussian blur, Sobel and Hessian filters, difference of Gaussians

and membrane projections.

Figure 5: Example of a possible decision tree for a voxel with two features
(gray level and first principal curvature).

Five Gaussian (blur) filters, with different standard deviations ranging

from 1 to 16 voxels, were used. The Sobel filter provides an approximation

of the gray level derivative and helps locating interfaces. Information on the

curvature of the interfaces is provided by the Hessian filter. The difference of

Gaussians filter is useful for blob detection due to laminography artifacts or

the nearby presence of voids in the thickness direction. Membrane projections

may provide additional information on the location of boundaries. More

information on these filters can be found in the documentation of the Weka

Trainable Segmentation library [47].

The use of filters and their combinations provide a total of 76 training

features. Three of these features are exemplified in Figure 6 along with the

original image (Figure 6a) for the slice at mid-thickness of the 90° speci-

men. Figure 6b shows the result of applying the Sobel filter after Gaussian

blur with a standard deviation of 4 voxels. This operation highlights the
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void/matrix interfaces. Figure 6c shows the square difference of the first and

second eigenvalues of the Hessian after Gaussian blur with a standard devia-

tion of 16 voxels, i.e., the high curvature zones are determined. Ring-shaped

artifacts are brought into evidence with a lesser curvature than the contour

of the voids. Membrane projections with the mean of the voxels provides

a marginal enhancement of the interfaces and an overall smoothing of the

image.
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(a) Original image (b) Sobel filter

(c) Hessian filter (d) Membrane filter

Figure 6: Original mid-thickness slice of the 90° specimen, and the result of
applying three different filters to the same slice.

Two features per tree and 200 trees were used in the classification stage.

A classifier model for each of the specimen was created. The original and

classified images for the slice at mid-thickness of the 90° and 45° specimen
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are shown in Figure 7.

(a) (b)

(c) (d)

Figure 7: Original slice at mid-thickness of the (a) 90° and (c) 45°
specimens and the same slice after classification with the random forest

procedure. for the (b) 90° and (d) 45° specimens.
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2.3 Numerical simulations

The experimental-numerical SRCL-DVC-FE framework developed by Bul-

jac et al. [3, 4] is used in this work to carry out micromechanical FE simu-

lations of immersed microstructures and realistic boundary conditions. The

key ingredients of this methodology are the acquisition of tomographic or

laminographic images during in-situ tests, the measurement of 3D kinematic

fields via DVC, and FE modeling of the immersed microstructures using mea-

sured displacements as Dirichlet boundary conditions. A simple schematic

diagram of the SRCL-DVC-FE framework is presented in Figure 8.

Figure 8: Schematic flowchart of the SRCL-DVC-FE framework.

DVC provides three dimensional displacement fields. These heteroge-

neous displacement fields are interpolated onto the boundaries of the FE do-

main, and applied as Dirichlet boundary conditions at each loading step [4].

Each loading step constitutes an increment for the FE simulations. A man-
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ual testing device is used to apply a displacement via screw rotation. The

corresponding screw displacements are summarized in Table 1.

Table 1: Screw displacement applied to each of the specimens.

Increment
Screw displacement [µm]

45° specimen 90° specimen

0 0 0
1 248 186
2 372 248
3 496 289
4 620 330
5 744 372
6 868 413
7 992 454
8 1074 496
9 1136 537
10 1198 578
11 1260 599
12 - 620
13 - 641
14 - 661
15 - 682
16 - 703
17 - 722
18 - 744
19 - 765

In the SRCL-DVC-FE framework, a distance function describes the posi-

tion of the void-matrix interface. Excellent conservation of the volume of the

void phase is ensured by the use of body-fitted meshing and remeshing oper-

ations with an appropriate treatment of coalescence events [15]. Curvature-

based mesh adaption is employed in this work [48]. An isotropic metric M

is built with the maximum principal curvature λmax [49]

M = diag

(

1

h2

)

, (1)
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where h is the mesh size. The mesh size is calculated as

h = max

(

min

(

hc

λmax

+

(

hmax −
hc

λmax

)

φ

ǫh
, hmax

)

, hmin

)

, (2)

where hc corresponds to the mesh size that would be prescribed if λmax = 1,

hmin and hmax are the smallest and largest allowed mesh sizes respectively,

φ the distance function of the void phase, and ǫh a fixed user-controlled

thickness along which the mesh size varies linearly from
hc

λmax

to hmax.

Monolithic multiphase FE simulations were conducted with a Lagrangian

formulation in the CimLib library [50] with a P1+/P1 formulation [51]. The

term monolithic refers to the solution of the governing equations with a single

mesh and a global framework for all of the present phases. This approach was

documented in previous works [52, 15], and only some general aspects are

recalled hereafter. Since the graphite nodules present very early debonding

and have a very low load-bearing capacity [20, 26], they will be considered

as voids in the FE simulations. The term ‘void’ will thus be used to refer to

the volume corresponding to the nodules and actual voids. This hypothesis

has been adopted and validated in a previous work [3].

The matrix is considered to be elastoplastic with Ludwik’s isotropic hard-

ening law

σeq = σy +Kεnpl, (3)

where σeq is the von Mises equivalent stress, εpl the cumulated plastic equiva-

lent strain, σy the yield stress, K the hardening modulus and n the hardening

exponent. The employed values for the Young’s modulus E, and Poisson’s

ratio ν were E = 210 GPa, and ν = 0.3. The values for σy, K, and n were

previously calibrated at the microscale by means of X-ray microtomography,

DVC, and FE simulations [5], namely, σy = 245 MPa, K = 330 MPa, and

n = 0.21. The void phase is modeled as a compressible Newtonian fluid with

viscosity η = 2.1 MPa s−1. This viscosity value is chosen after a sensitivity

analysis to ensure that the stress levels induced in the matrix are negligible.

This approach facilitates handling the void phase in the present monolithic
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framework and it has been previously used and validated [53].

The FE domain is contained in the Region Of Interest (ROI) analyzed

via DVC. This is done so to ensure that boundary conditions are available

during the whole simulation [3]. The largest domain that provides boundary

conditions for all of the available DVC increments is chosen.

2.4 Observables

Global and local quantities were considered for each specimen. The global

information was calculated in the whole domain for the 45° specimen and in a

fraction of the domain for the 90° specimen. The purpose of the latter choice

is to exclude the EDM-machined holes from the global calculation since they

lie partially inside of the domain for the 90° specimen, and would have led

to inaccurate void volume quantification. The domain for the calculation of

the global quantities in the 90° specimen is shown in Figure 9 as a semi-

transparent blue volume. The term global volume will be used to make

reference to the whole domain in the case of the 45° specimen simulation,

and to the volume depicted in Figure 9 for the 90° specimen.
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(a)

(b)

Figure 9: Two different views of the domain for the 90° specimen
simulation. The domain where the global quantities are calculated is shown

as a semi-transparent blue volume. Voids are shown in gray.

The global observables are the volume-averaged (or macroscopic) von

Mises equivalent strain, the (macroscopic) von Mises equivalent stress, the

void volume fraction, and void growth. The latter is defined as the ratio

between the current void volume and the initial void volume.

Additionally, the volume-averaged equivalent strain in two local probes

per specimen is assessed. The local probes are displayed as a blue cube

(probe 1) and as a red cube (probe 2) in Figure 10a for the 90° specimen,

and in Figure 10b for the 45° specimen. The positions of the probes are
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exactly the same as those analyzed by Buljac et al. [25]. These volumes

enable for the study of void coalescence by ligament failure. The probe

volume corresponds, except for probe 2 of the 90° specimen, to that of C8

elements with an edge of 35 µm, in DVC calculations. The size of probe 2

of the 90° specimen had to be reduced to 1/16th of the volume of the other

probes so that it could fit in the intervoid ligament without being in contact

with the voids. The initially cubic shape of the probes corresponds to the

DVC elements, and evolves with deformation, i.e., the probed volumes are

Lagrangian.
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(a)

(b)

Figure 10: 3D view of the computational domain for the (a) 90° specimen
and (b) the 45° specimen. Local probes are shown in blue (probe 1) and red

(probe 2). A local zoom displays probe 2 of the 90° specimen.
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A total of six observables per specimen will be assessed and were chosen in

accordance with future work related to experimental-numerical comparisons

as well as parameter identification of macroscopic damage laws.

3 Results

The results of a mesh sensitivity analysis are first presented for all of the

considered observables and both specimens. A comparison of the predictions

of the three segmentation procedures is reported in terms of their effect on

the observables. Finally, an uncertainty estimation method is proposed.

3.1 Mesh sensitivity analysis

In addition to the curvature-based mesh adaption described in Section 2.3,

an additional local refinement was carried out around the probes to ensure

mesh-independent local values without significantly increasing the computa-

tional cost with further global refinement. The isotropic mesh size h was

forced to take the value h =
hmin

4
(see Equation (2)) in the probe and

its surroundings. This extended locally refined volume was constructed by

adding 2hmin to the distance function that describes the probes. The local

refinement is illustrated for probe 1 of the 45° specimen in Figure 11.
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Figure 11: Probe 1 (in blue) in the 45° case with the mesh in a 2D slice of
the domain showing the local refinement. The extended refined volume
around the probe is indicated in orange. The voids are shown in red.

To simplify the mesh sensitivity analysis, two scaling factors F1 and F2 are

introduced. The first one, F1, multiplies hc, hmin and hmax, while the second

one, F2, multiplies hc and hmin. The values of the original mesh parameters

are set to hc = 2.5 × 10−3 µm, hmin = 2.5 × 10−1 µm, and hmax = 5 µm.

When the scaling factors are introduced, the mesh size is calculated as

h = F1max

(

min

(

hcF2

λmax

+

(

hmax −
hcF2

λmax

)

φ

ǫh
, hmax

)

, hminF2

)

. (4)

The effect of F1 is straightforward, namely, modifying F1 is equivalent to

scaling the calculated mesh size h. The effect of F2 is slightly more subtle.

When F2 decreases, the mesh size close to the interfaces decreases, but the

maximum mesh size far away from the interfaces is unchanged. This effect
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results in an increased mesh size gradient. Table 2 summarizes the effect of

F1 and F2 parameters for the 45° specimen for different combinations.
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Table 2: Mesh parameters and corresponding number of elements for the
45° specimen. A close-up view of a slice of the mesh is shown for each case.

The matrix is shown in blue and voids in red.

Case F1 F2

Number of
elements

Mesh

1 4 4 424,806

2 3 4 749,875

3 2 4 1,706,833

4 4 3 753,754

5 4 2 1,685,267

6 4 1.5 2,968,499
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3.1.1 Effect of F1

Simulations were carried out using meshes with three different F1 values

(i.e., F1 = 4, F1 = 3 and F1 = 2). Decreasing F1 is equivalent to carrying

out a global mesh refinement.

90° specimen

In the case of the 90° specimen, the results are shown in Figure 12 for

the six observables. All observables seem to approach mesh independence as

F1 decreases, i.e., the gap between the results with F1 = 2 and F1 = 3 is

smaller than that when F1 = 3 and F1 = 4. The most sensitive variables are

the macroscopic equivalent stress (Figure 12b) and the void volume fraction

(Figure 12c). The void volume fraction presents significant differences since

the microstructure cannot be described properly by a coarse FE mesh. As the

mesh size decreases, the microstructural features are better described. The

small decrease of the equivalent strain in probe 2 for the coarsest mesh in the

last increment is caused by numerical diffusion of the probe volume during

remeshing operations, i.e., this mesh is not fine enough to appropriately

handle numerical diffusion.

45° specimen

The effect of varying F1 is shown in Figure 13 for the the six observables.

Contrary to the simulation of the 90° specimen, an unexpected response is

found for the 45° specimen when F1 is varied. The gap between the results

with F1 = 2 and F1 = 3 is greater than that between F1 = 3 and F1 = 4.

The reason for this trend is that there are microstructural features that the

meshes with F1 = 3 and F1 = 4 are too coarse to capture. This explanation is

consistent with the trend followed by the void volume fraction (Figure 13c)

and the macroscopic equivalent stress (Figure 13b). When F1 decreases,
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Mesh sensitivity in terms of F1 for (a) macroscopic equivalent
strain, (b) macroscopic equivalent stress, (c) void volume fraction, (d) void
growth, and equivalent strain in (e) probe 1 and (f) probe 2 in the 90°

specimen.
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the mesh is able to capture smaller voids, as well as the shape of the bigger

voids. Hence, the void volume fraction increases, and the loss of load-bearing

capacity induces a decrease in the macroscopic equivalent stress.

The equivalent strain in probe 1 barely changes when the mesh size de-

creases (Figure 13e). In probe 2, however, when F1 = 2, the equivalent strain

experiences an unexpected and significant decrease (Figure 13f). The rea-

son for this effect is that this mesh captures microstructural features that

coarser meshes could not, and these features modify the local heterogeneous

partition of strain in the vicinity of probe 2. This is illustrated in Figure 14

at increment 11 in the slice of the computational domain that contains the

center of probe 2 for F1 = 4 (Figure 14a) and F1 = 2 (Figure 14b). Although

the general strain distribution is similar for both meshes, local differences in

topology and strain distribution are observed at different locations including

the position of probe 2.

(a) (b)

Figure 14: Strain distribution at increment 11 in the slice of the
computational domain that contains the center of probe 2 for the 45°

specimen for (a) F1 = 4 and (b) F1 = 2.

The mesh sensitivity of the void volume fraction in the 90° specimen sim-

32



(a) (b)

(c) (d)

(e) (f)

Figure 13: Mesh sensitivity in terms of F1 for (a) macroscopic equivalent
strain, (b) macroscopic equivalent stress, (c) void volume fraction, (d) void
growth, and equivalent strain in (e) probe 1 and (f) probe 2 in the 45°

specimen.

33



ulation is too substantial to consider that convergence was achieved. For

the 45° simulation, verification of mesh independence is inconclusive because

of the unexpected behavior found when F1 is decreased for the void volume

fraction as well as for the strain in probe 2. For these two reasons, it is desir-

able to extend the mesh verification analysis. However, further refinement of

the mesh with a decrease of F1 is very costly. A different strategy is adopted

and described in Section 3.1.2.

3.1.2 Effect of F2

To extend the sensitivity analysis, the effect of varying F2 is assessed in

this section. Decreasing F2 results in a better description of the interfaces

while retaining a fixed mesh size far from them, i.e., this strategy aims at

providing a satisfactory description of the geometry while decreasing as much

as possible the computational cost. A fixed value of F1 = 4 is used and results

for F2 = 3, F2 = 2, and F2 = 1.5 are presented. As a reference to the analysis

in Section 3.1.1, the results with F1 = 2 and F1 = 4 are included in the figures

as a black solid line.

90° specimen

The effect of varying F2 in the 90° simulation is illustrated for the six

observables in Figure 15. All observables seem to approach mesh conver-

gence as F2 decreases. The curves with F2 = 2 match very well those when

F1 = 2. In general, when F2 is further decreased to F1, the resulting curves

stay satisfactorily close to those corresponding to F2 = 2. The void volume

fractions remain the most sensitive observable and the variation it undergoes

when F2 decreases from 2 to 1.5 is not negligible.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Mesh sensitivity in terms of F2 for (a) macroscopic equivalent
strain, (b) macroscopic equivalent stress, (c) void volume fraction, (d) void
growth, and equivalent strain in (e) probe 1 and (f) probe 2 in the 90°

specimen.
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45° specimen

The sensitivity of the observables for the 45° simulation when F2 is varied

is shown in Figure 16. For all observables in the 45° simulation, the trend

is the same as for the 90° specimen, namely, the gap between two succes-

sive curves decreases monotonically as F2 decreases. In this case too, the

curve with F2 = 2 matches very well the reference curve with F1 = 2. The

observable most sensitive to the mesh is again the void volume fraction.

Although the results are satisfactory for most of the observables, given

the acceptably small yet non-negligible variations exhibited by the void vol-

ume fraction for the simulations of both specimens, further refinement could

be considered. The associated computational costs would make further re-

finement impractical, and more importantly, attention must be paid to the

relative order of magnitude of the minimum mesh size with respect to res-

olution of the laminography images. For example, for the finest employed

mesh with F1 = 4 and F2 = 1.5, the resulting minimum allowed mesh size is

1.5 µm, which is of the same order of magnitude of the laminography resolu-

tion with cubic voxels of edge length 1.1 µm [3]. The mesh with F1 = 4 and

F2 = 1.5 is selected for the remainder of the study.

3.2 Model cross comparison

For the random forest procedure, a simple training procedure was carried

out on a single slice for each specimen. However, the training stage is critical

and can be tedious in more complex cases. For this reason, it would be

convenient to be able to train a single classifier model in a chosen image and

subsequently use the model in other images of similar features. To explore

the feasibility of reusing a model in different specimens, a cross comparison

is carried out. There are two factors that can play an important role in the

comparison, namely, the criterion of the operator who trained the models,

and differences between images due to, for example, the variation in beam
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Mesh sensitivity in terms of F2 for (a) macroscopic equivalent
strain, (b) macroscopic equivalent stress, (c) void volume fraction, (d) void
growth, and equivalent strain in (e) probe 1 (f) probe 2 in the 45° specimen.
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intensity during laminography acquisitions.

Two simulations were carried out for each specimen, namely, one with

the model created for the same specimen, and one with the model created

for the other specimen. The results of the comparison between each pair

of simulations are reported in Figure 17 (90° specimen) and Figure 18 (45°

specimen). Additionally, an absolute difference calculated with respect to

the smallest of two compared quantities is reported for each observable.

The comparison for both specimens leads to similar results. The maxi-

mum absolute difference for the macroscopic equivalent strain, macroscopic

equivalent stress, and for the equivalent strain in probe 1, is of the order of

or less than 3× 10−3. The void growth has a maximum absolute difference

of 1.5× 10−2 for the 90° specimen and of approximately 3.5× 10−2 for the

45° specimen. The void volume fraction is less sensitive in terms of absolute

differences. A maximum absolute difference of 6.2× 10−3 was obtained for

the 90° case, and 4.2× 10−3 for the 45° sample.

The equivalent strain in probe 2 exhibits a maximum absolute difference

of 9× 10−3 for the 45° simulation. For the 90° simulation, probe 2 is very

sensitive since a maximum absolute difference of approximately 8× 10−2 is

noted. The increased sensitivity of probe 2 in the 90° specimen is due to its

size in comparison with the intervoid ligament, which makes it more sensitive

to small changes in the surrounding microstructure when different classifier

models are used.

Given these results, the re-utilization of a properly trained classifier model

for different specimens of the same nature seems feasible. However, care

must be exercised when dealing with sensitive variables or with very local

information close to the boundaries of the segmented phases.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: (a) Macroscopic equivalent strain and (b) stress, (c) void volume
fraction, (d) void growth, and equivalent strain in (e) probe 1 (f) probe 2
for the 90° simulation obtained after segmentation with two different

classifier models.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: (a) Macroscopic equivalent strain and (b) stress, (c) void volume
fraction, (d) void growth, and equivalent strain in (e) probe 1 (f) probe 2
for the 45° simulation obtained after segmentation with two different

classifier models.

40



3.3 Comparison of segmentation methods

Numerical simulations were carried out after immersing the segmented

images of the microstructures obtained by means of the segmentation pro-

cedures. The results of the numerical simulations are compared to assess

the effect of the segmentation procedures on the observables described in

Section 2.4.

First, a qualitative comparison of the images segmented with the three dif-

ferent methods is reported in Figure 19 alongside the original slice. The cho-

sen slice is the mid-thickness of the 90° specimen. The three segmented im-

ages are similar, albeit with some differences. The image segmented through

simple thresholding includes very small voids and some apparent noise. The

resulting segmented images from the IsoData and Random forest algorithms

are smoothed out in terms of lost features. However, secondary effects are

related to filtering out the finest microstructural features and slightly smooth-

ing the interfaces.
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(a) Original image (b) Thresholding

(c) IsoData (d) Random forest

Figure 19: Original mid-thickness slice of the 90° specimen, and the same
slice segmented with three different procedures.

From a quantitative point of view, gray level differences can be computed

between the original image f and its thresholded (and binarized) copy fth

after accounting for global gray level corrections. In the following, linear
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corrections are considered

gth = afth + b (5)

where a and b are obtained by least squares minimization of the sum of

squared gray level differences over the region of interest (ROI) so that

r(x) = f(x)− gth(x) (6)

will measure the gray level residuals that are computed for any voxel location

x in the ROI. In Table 3, the three different methods are compared for both

specimens in terms of their root mean square residuals rRMS. The RMS

values are very similar for the three procedures and both specimens, i.e., the

segmented images are of comparable quality irrespective of the segmentation

procedure.

Table 3: Comparison of the gray level residuals for the three thresholding
methods for the entire ROI in both specimens.

Procedure a b RMS(r) Specimen

Thresholding -0.256 151.7 22.3 90°

IsoData -0.243 151.1 23.5 90°

Random forest -0.241 150.5 24.1 90°

Thresholding -0.261 151.7 22.0 45°

IsoData -0.249 150.9 23.3 45°

Random forest -0.260 151.3 22.5 45°

The calculated gray level residuals are shown in Figure 20 for the mid-

thickness slice of the 90° specimen. They show a very similar behavior in

the bulk of the matrix and present more significant differences close to the

interfaces.
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(a) Original image (b) Thresholding

(c) IsoData (d) Random forest

Figure 20: (a) Original mid-thickness slice of the 90° specimen, and the
corresponding gray level residuals for the segmented image with
(b) thresholding, (c) IsoData and (d) random forest algorithms.

For the FE simulations, neither the amount of noise left by the thresh-

olding procedure, nor the loss of the smallest microstructural features with

the other two procedures are problematic. The minimum allowed FE mesh

size, which was based on the resolution of the images (Section 3.1), does not
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capture the remaining noise or the smallest features. The differences that

can be perceived by the FE mesh are the non-negligible void shape varia-

tions and difference in void volume fraction due to how each method handles

partial-volume effects, i.e., how the position of the interfaces is determined.

The results for the six observables with the three segmentation procedures

are shown in Figure 21 for the 90° specimen and in Figure 22 for the 45°

specimen. The maximum absolute difference is also reported in the figures

for all the observables, and it is calculated as the maximum difference between

the three results.

In the simulation of the 45° specimen, the macroscopic equivalent strain

and stress (Figure 22) exhibit a very small absolute difference. The maximum

difference for the macroscopic equivalent strain is 0.0025, and 1.1 MPa for

the macroscopic equivalent stress. For the 90° specimen (Figure 21), these

variables are slightly higher, but sufficiently small, namely 0.005 and 5.2 MPa

for the macroscopic equivalent strain and stress, respectively.

The void growth presents a maximum absolute difference of 0.015 for the

45° specimen (Figure 22d), and 0.03 for the 90° specimen (Figure 21d). The

void volume fraction exhibits higher absolute difference than the void growth

for both specimens. In the 45° simulation (Figure 22c), the void volume

fraction has a maximum absolute difference of 0.005, and 0.014 in the 90°

simulation (Figure 21d). In the former specimen, the IsoData and Random

forest algorithms coincide remarkably, while for the latter specimen, both

thresholding methods produce similar results and the void volume fraction

predicted with the random forest algorithm is farther away.

The results in the local probes are more sensitive than the macroscopic

observables. For both specimens (Figure 21e for the 90° specimen, and Fig-

ure 22e for the 45° specimen), the equivalent strain in probe 1 has a lower

maximum absolute difference (i.e., 0.013 for the 90° specimen, and 0.007 for

the 45° sample) than the equivalent strain in probe 2 (0.085 for the 90° speci-

men, and 0.014 for the 45° sample). The absolute difference for probe 2 in the
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(a) (b)

(c) (d)

(e) (f)

Figure 21: (a) Macroscopic equivalent strain and (b) stress, (c) void volume
fraction, (d) void growth, and equivalent strain in (e) probe 1 (f) probe 2
for the 90° simulation obtained after segmentation with three different

segmentation procedures.
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90° simulation is notably high. Since probe 2 of the 90° specimen is smaller

and located in a shorter intervoid ligament, it is more sensitive to changes

in its neighborhood due to the use of different segmentation procedures. In

general, the proximity of a probe to void interfaces is correlated with higher

levels of absolute differences. The DVC standard equivalent strain resolu-

tions were estimated to be 0.78% for the 90° configuration and 0.73% for the

45° [25]. The segmentation-related uncertainty is at best equivalent (probe 1

of the 45° specimen) to the DVC uncertainties, but between 2 and 10 times

higher for the other observables.

The comparisons carried out herein show that the results of the FE sim-

ulations with immersed images stemming from the employed segmentation

methods,are sufficiently small so that physical conclusions may be drawn

from the results of the simulations and the segmentation procedures are hence

considered to be successful. The most sensitive variables to the choice of seg-

mentation method could be identified, namely, the local strain values and

the void volume fraction.

In terms of user input, automatic thresholding with the IsoData algorithm

is the least demanding methodology since it requires no user intervention. It

is followed by simple thresholding by inspection for which the threshold is

set from the gray level histogram. The Random forest procedure needs user

input for the training of the model, and possibly the choice of parameters and

filters if their default values are unsatisfactory. The need for user input may

hinder the application of a methodology in an automatic procedure starting

at the image acquisition and continuing all the way up to the postprocess-

ing of the FE simulations. However, the last two methodologies may also

be incorporated into a fully automated procedure given that the step that

requires some user input can be carried out once and applied to several cases

of similar features.

The manual and automatic thresholding procedures may easily be carried

out with limited computing resources. The random forest procedure does re-
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(a) (b)

(c) (d)

(e) (f)

Figure 22: (a) Macroscopic equivalent strain and (b) stress, (c) void volume
fraction, (d) void growth, and equivalent strain in (e) probe 1 (f) probe 2
for the 45° simulation obtained after segmentation with three different

segmentation procedures.
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quire more significant resources in terms of memory and computing time. For

this reason, it may be reserved for more complex cases in which threshold-

ing is not viable if the needed computational capacity is not available. More

generally, even in cases when thresholding is feasible, it may still be desirable

to use the random forest algorithm to provide means for cross-verification.

3.4 Uncertainty quantification

The comparison of segmentation procedures discussed in Section 3.3 is

summarized via uncertainty estimations. Three different predictions result-

ing from the three considered segmentation procedures are available for each

observable. To estimate its uncertainty, the average and standard deviation

are calculated. This is conducted separately for each of the observables. The

calculated averages and standard deviations are not statistically represen-

tative quantities because they are calculated based on only three data sets.

They are used here as a concise way of presenting a single measurement and

its associated uncertainty. This will be useful in future works when these

data will be compared with experimental measurements. The uncertainty

estimation was carried out for all of the observables and both samples. The

results described in Section 3.3 showed that global volume-averaged strain

and stress, as well as void growth, are not very sensitive to the choice of the

segmentation procedures employed in this work. For the sake of brevity, the

uncertainty for the most sensitive variables is discussed in this section.

Figure 23 shows the change of the average void volume fraction for both

specimen, and Figure 24, that of the average equivalent strain for the two

probes of the 90° simulations. In both figures, the corresponding standard

deviation is presented as error bars.
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(a) 90° specimen (b) 45° specimen

Figure 23: Average of the results of the three segmentation procedures for
the void volume fraction with its estimated uncertainty (error bars) in (a)

the 90° simulation, and (b) the 45° simulation.

The difference of uncertainties reported for the void volume fraction be-

tween the two specimens in Figure 23 is noteworthy. This difference exists

even though the same segmentation methodologies were applied. Ambigu-

ous determination of the position of interfaces due to partial-volume effects

and human factors during data treatment are at the origin of this difference.

This observation highlights the importance of dedicating sufficient effort to

the image segmentation step and uncertainty estimation when feasible. A

disregard of present uncertainties may lead to biased physical conclusions.
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(a) Probe 1 (b) Probe 2

Figure 24: Average and standard deviation (error bars) of the results of the
three segmentation procedures in the 90° simulation for the equivalent

strain (a) in probe 1 and (b) probe 2.

Since probe 2 is located in a small intervoid ligament, i.e., closer to the

void-matrix interface, it presents larger uncertainties than probe 1. For both

probes the uncertainty, depicted in Figure 24, increases during the simulation,

but remains satisfactorily small.

4 Conclusions and perspectives

A comparative study of three segmentation procedures dedicated to the

so-called SRCL-DVC-FE methodology was carried out in the context of mi-

cromechanical studies of ductile damage. The focus of the conducted analysis

was on the effect of image segmentation techniques on the results of FE sim-

ulations. To the best of the authors’ knowledge, this is the first work to

document and quantify the effect of image segmentation on the mechanical

results of simulations of immersed microstructures. This is relevant for all

simulations with immersed microstructures and not only for the SRCL-DVC-

FE framework.
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Different segmentation procedures were considered, and three were se-

lected and presented in detail. They satisfactorily segmented the three-

dimensional images. Six different observables were taken into account for

each of the two studied nodular graphite cast iron samples (i.e., macro-

scopic equivalent strain and stress, void volume fraction and growth, and

local equivalent strain in two probes in different intervoid ligaments).

The three segmentation procedures were compared in terms of the result-

ing gray level residuals, of the required computing power and of the required

user input. The gray level residuals were very similar for the different proce-

dures. For this reason, the choice of preferred segmentation method depends

on the complexity of the problem, the available computing power and the

acceptable level of user input. Multiple methods should be employed and

compared whenever possible.

First, a mesh sensitivity analysis was conducted to check that the influ-

ence of the spatial discretization on the observables was sufficiently small.

Care was taken not to use mesh sizes smaller than the order of magnitude

of the laminography images resolution. The most sensitive parameters were

identified, namely, the local strain values and the void volume fraction, and

sufficiently small mesh dependence was reached.

Second, the segmented images were then immersed in an FE mesh and

micromechanical calculations with realistic boundary conditions were carried

out. The results were compared in terms of the six different observables.

A small sensitivity for the macroscopic behavior was found. A maximum

relative difference less than 3% was obtained for the macroscopic strain and

stress. It is believed that this overall agreement is mainly due to the fact

that the (same) measured boundary conditions were prescribed. The void

volume fraction and the local strains were the most sensitive variables. The

void volume fraction was considerably more sensitive for the 90° specimen

(maximum absolute difference of 0.014) than for the 45° specimen (maximum

absolute difference of 0.005). The maximum absolute difference in the local
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strain measures varied from 0.007 to 0.085 and increased with the proximity

of the probed volume to the void-matrix interface.

The differences in uncertainty for the void volume fraction across speci-

mens resulted from applying the same segmentation procedures in the same

material by the same operator. This highlights the challenges associated with

the use of immersed images in FE simulations. They originate from two fac-

tors, namely, the ambiguity in the position of the segmented interfaces due

to partial-volume effects, and the possible bias introduced by the operator.

An uncertainty quantification based on the comparison of segmentation

methods was proposed. Since FE simulations were based on three different

segmentation procedures, the uncertainty of an observable was estimated as

the standard deviation of the results of the three FE simulations and reported

alongside the corresponding average. The estimated uncertainty will be used

in future works to compare in detail numerical results with experimental

observations for validation purposes.
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