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1Laboratoire Pierre Aigrain, Département de physique de l’ENS,
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When the coupling rate between two quantum systems becomes as large as their characteristic
frequencies, it induces dramatic effects on their dynamics and even on the nature of their ground
state. The case of a qubit coupled to a harmonic oscillator in this ultrastrong coupling regime
has been investigated theoretically and experimentally. Here, we explore the case of two harmonic
oscillators in the ultrastrong coupling regime. Specifically, we realize an analog quantum simulation
of this coupled system by dual frequency pumping a nonlinear superconducting circuit. The pump
amplitudes directly tune the effective coupling rate. We observe spectroscopic signature of a mode
hybridization that is characteristic of the ultrastrong coupling. Further we experimentally demon-
strate a key property of the ground state of this simulated ultrastrong coupling between modes by
observing simultaneous single-mode and two-mode squeezing of the radiated field below vacuum
fluctuations.

PACS numbers:

The ultrastrong coupling regime characterizes quan-
tum systems that are coupled at a rate so large that it
reaches a significant fraction of their characteristic fre-
quencies. Not only do the systems hybridize into a joint
entity, but their joint dynamics cannot be captured by
common approximations that are valid at lower coupling
rates such as the rotating wave approximation. Beyond
the unusual spectrum it produces [1], the ultrastrong
coupling modifies the ground state of the coupled sys-
tems in such a way that the systems get entangled at
zero temperature and carry excitations in the basis of
the isolated systems. Releasing these excitations so that
they can be detected or used as a source of work re-
quires to abruptly switch off or modulate in time the
ultrastrong interaction [2, 3], which is still out of exper-
imental reach. Alternatively, one can gain an insight on
the properties of the ground state of an ultrastrongly
coupled system by performing quantum simulations [4].
Besides its fundamental interest the ultrastrong coupling
has interesting applications for quantum computing such
as ultrafast two-qubit gates [5], quantum memories [6, 7]
or photon transfer through cavity arrays [8, 9]. It has
motivated experiments in various systems including cav-
ity polaritons [10], superconducting circuits [8, 11–17],
cavity magnons [18] and bidimensional electron gases in
THz cavities [19, 20].

In the case of a two level system ultrastrongly cou-
pled to a harmonic oscillator – the quantum Rabi model

– both digital [16] and analog [17] quantum simulations
have recently been performed on superconducting qubits
to probe the characteristics of the ground state. Inter-
estingly, this regime can also be reached between two
coupled harmonic oscillators and requires experimental
investigation. In this letter, we use an analog approach
to mimic two harmonic oscillators in the ultrastrong
coupling regime [21]. Specifically, we realize a multi-
driven superconducting circuit that behaves, in a rotat-
ing frame, as two degenerate coupled harmonic oscilla-
tors resonating at frequency ωeff (see Fig. 1). This ana-
log quantum simulation allows us to map properties of
the ground state onto the output signals of the circuit,
making possible to observe fundamental features of the
ultrastrong coupling that are not accessible otherwise.

The superconducting circuit is a Josephson mixer [22–
24], which couples two microwave modes a and b
through a three-wave mixing interaction involving a stiff
pump [23] signal applied with a complex amplitude p and
frequency ωp (see Fig. 1b). It is described by the Hamil-
tonian

Ĥ = ~ωaâ†â+ ~ωbb̂†b̂+ ~χ(p+ p∗)(â+ â†)(b̂+ b̂†). (1)

Here, the fundamental modes resonate at frequencies
ωa = 2π × 8.477 GHz and ωb = 2π × 6.476 GHz, and
they are coupled to independent transmission lines at
rates κa = 2π×(19±1) MHz and κb = 2π×(22±1) MHz.
In our circuits, the parametric coupling rate 2χ|p| is al-
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FIG. 1: (a) We perform an analog quantum simulation of a
system made of two degenerate harmonic oscillators whose
resonance frequency is ωeff and that are ultrastrongly coupled
with a rate g of the order of ωeff/2. (b) Multi-driven Joseph-
son mixer implementing the ultrastrongly coupled system in
(a) in the adequate rotating frame. The Josephson mixer con-
sists of two microwave resonators resonating at frequencies
ωa and ωb, which are coupled via a Josephson Ring modula-
tor [22, 24]. By simultaneously pumping it with a “red” tone
at ωpR = ωa−ωb and a “blue” tone at ωpB = ωa +ωb + 2ωeff,
two effective modes at frequencies ωeff are coupled at a rate g
that is proportional to the tunable pump amplitudes pB and
pR.

ways much smaller than the frequencies ωa,b so that the
ultrastrong coupling regime cannot be reached in the lab
frame. However, we have shown in Ref. [21] that by ad-
equately pumping the circuit, an effective system in ul-
trastrong coupling regime emerges.

We place ourselves in the reference frame that ro-
tates at frequency ωa + ωeff for mode a and frequency
ωb + ωeff for mode b [25]. Here, the frequency ωeff

will be the degenerate resonant frequency of each ef-
fective system and is arbitrarily chosen. We thus de-
fine two effective modes whose canonical operators are
ĉ = e−i(ωa+ωeff )tâ and d̂ = e−i(ωb+ωeff )tb̂. Their coupling
term can be engineered into the desired form by apply-
ing a pump, which is the sum of two tones referred to
as the “red” and “blue” pumps. The blue pump at fre-
quency ωpB = ωa + ωb + 2ωeff has an amplitude pB and
the red pump at ωpR = ωa − ωb has an amplitude pR.
In the rotating wave approximation (valid for a and b
modes), the three-wave mixing interaction reduces to a
sum of two terms: a parametric down-conversion term
Ĥpdc = ~gB(ĉ†d̂†+ ĉd̂), where gB = χ|pB | is the coupling
rate of the “blue” pump, and a parametric frequency con-
version term Ĥconv = ~gR(ĉ†d̂+ĉd̂†), where gR = χ|pR| is
the coupling rate of the “red” pump. Finally, by simulta-
neously applying the two pumps with tuned amplitudes
pB and pR such that gB = gR ≡ g, we obtain the effective
Hamiltonian

Ĥeff = −~ωeffĉ
†ĉ− ~ωeffd̂

†d̂+ ~g(ĉ+ ĉ†)(d̂+ d̂†). (2)

It reaches ultrastrong coupling when g is of the order of
ωeff/10 or greater.

We first characterize the system by measuring the
power spectral density of the emitted radiation in various
pumping configurations. When only the “red” pump is
applied, it is possible to check that the system is close to
its quantum ground state at rest. This pumping scheme
corresponds to the conversion of photons from a to b
modes [26, 27] for a range of amplitudes gR. Therefore
the difference between the output spectral power SONa of
the a mode when the pump is on and the output spec-
tral power SOFFa when the pump is off is proportional to
~ωa coth (~ωb/2kBT ) − ~ωa coth (~ωa/2kBT ). The fact
that we could not observe any change in the output spec-
tral density compared to the case where the pump is off
(not shown) thus indicates that kBT � ~ωa,b at rest.
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FIG. 2: (a) Measured power spectral density of the radia-
tion emitted by the mode a as a function of frequency, for
various color encoded detunings ωeff of the blue pump. Full
lines correspond to the average number of emitted photons
calculated, up to an overall factor, using quantum Langevin
equation formalism and the input-output theory. All spectra
are measured with the same pump power (corresponding to
gB = 2π×11.5 MHz) and are represented minus an offset cor-
responding to the spectrum that is measured when the pump
is off (SON − SOFF). (b) Measured power spectral density of
the radiation emitted from the mode a as a function of probe
frequency ω and amplitude AR of the “red” pump (voltage on
the mixer that generates the pump). The “blue” pump ampli-
tude AB is fixed such that the coupling gB = 2π × 12.6 MHz
and its detuning is set to ωeff = 2π × 26 MHz. (c) Average
photon emission rate out of the a mode as a function of ω
and gR calculated using quantum Langevin equation formal-
ism and the input-output theory. (d,e) Similar plots in the
case of the b mode.

Now, let us consider the case when only the “blue”
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pump is applied. When the pump frequency is the sum
ωp = ωa + ωb, the Josephson mixer acts as a parametric
amplifier [22]. If the input ports are undriven and thus
in the vacuum state, the amplification of vacuum fluc-
tuations generates spatially separated propagating two-
mode squeezed states (Einstein Podolsky Rosen or EPR
states) [28]. For the present experiment instead, the
pump frequency needs to be detuned by 2ωeff, which leads
to unexplored consequences. The impact of this detuning
on the measured power spectral density at the output of
port a can be seen in Fig. 2a for various values of ωeff

and a single pump power. For ωeff < 0 (not shown),
the device is in the regime of a strongly non-linear re-
sponse detrimental to squeezing [25]. For the scope of
the present work, we thus set ωeff ≥ 0. As the detun-
ing increases, the power spectral density decreases and
three regimes can be identified. For the smallest detun-
ing ωeff/2π . 5 MHz, the chosen pump power is large
enough for the Josephson mixer to enter the paramet-
ric oscillation regime and a single spectral peak devel-
ops at a frequency close to ωa + ωeff. In practice it is
slightly shifted by Kerr effect. A broad single peak cor-
responding to the regime of parametric amplification of
vacuum fluctuations can be observed when the detuning
10 MHz . ωeff/2π . 15 MHz is still smaller than the res-
onator bandwidth. Expectedly, this regime could also be
observed for zero detuning but with smaller pump power.
For even larger detuning ωeff ≥ κa, κb ≈ 2π × 20 MHz,
two peaks are resolved at frequencies ωa and ωa + 2ωeff

(see right panel of Fig. 2a). Reciprocally, two peaks at
ωb and ωb + 2ωeff can be observed in the spectral density
on the output of the b mode. These peaks can be simply
understood by realizing that the three wave mixing term
of Eq. (1) consists, for any value of ω̃, in converting a
pump photon at frequency ωa + ωb + 2ωeff into a pho-
ton at frequency ωa + ωeff + ω̃ on mode a and a photon
at frequency ωb + ωeff − ω̃ on mode b. Therefore, the
frequency of these photons is at the resonance of the a
mode for ω̃ = −ωeff and of the b mode for ω̃ = ωeff . The
two peaks on the spectral power density of the a mode
(Fig. 2a) thus correspond to the resonance of a for the
peak at ωa and of b for the peak at ωa + 2ωeff .

In the frame rotating at ωa,b + ωeff, these frequencies
correspond to ±ωeff, i.e. the positive and negative im-
ages of the frequency ωeff of each effective mode c and d.
The coupling rate of the “blue” pump gB is determined
by matching the average emission rate 〈a†out[ω]aout[ω]〉
that can be calculated using the input-output theory to
the difference between the power spectral densities mea-
sured with the pump turned on or off. In the following
measurement, we set the pump amplitude and frequency
such that gB = 2π × 12.6 MHz and ωeff = 2π × 26 MHz.
The latter is chosen to reach the third regime in Fig. 2a
with limited pump power.

On top of the “blue” pump, we then apply the “red”
pump at an amplitude AR. The measured power spec-
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FIG. 3: (a) Result of the subtraction between quadrature
histograms (in number of counts per bins of 1 × 1) with the
pump turned on and off. The red pump amplitude is here
null and there is no detuning ωeff = 0.With an independent
determination of the gain of the device (here, G = 16 dB),
these figures can be used as a calibration of the quadrature
axes, here in square root of photon number in the modes. (b)
Similar measurement in the case where ωeff = 2π × 26 MHz
and gB = gR = 2π × 12.6 MHz. (c) Measured and (d) calcu-
lated squeezing parameter rb for the b mode as a function of
the “blue” and “red” pump coupling rates gB and gR. The
measured rb is inferred from the distributions in the plane
Xb, Pb.

tral density reveals a hybridization of the effective modes
in the simulated ground state. Indeed, each of the spec-
tral peaks at ±ωeff splits into two peaks separated by the
coupling rate gR ∝ AR (see Figs. 2b,d), leading to a to-
tal of four frequency peaks per measured output. Such a
splitting is analogous to the vacuum Rabi splitting one
observes for the quantum Rabi model. Our quantum sim-
ulation allows to transfer this property to the outgoing
cavity fields. As seen on Figs. 2b,d, the two middle peaks
get closer as the coupling gR increases until they eventu-
ally merge when gR ≈ gB . At this particular point, the
frequency of the hybrid effective mode thus collapses to
zero. Such a collapse can have important physical conse-
quences, as in the Dicke model where it is associated to
a quantum phase transition [29]. Input-output theory al-
lows us to qualitatively reproduce the measured spectral
density features (Figs. 2c,e) and provides a calibration
of the coupling rate gR as a function of the “red” pump
amplitude AR. This calibration is shown as a scale of gR
on the right axis of Figs. 2c,e.

As we have shown in Ref. [21], the spectral peaks indi-
cate frequencies for which one quadrature of the radiated
field is squeezed while the other one is anti-squeezed.
Maximal squeezing is expected for gR = gB ≈ ωeff/2,
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since for this value the ultrastrong coupling condition is
well established. Furthermore, the ground state entan-
glement between the effective modes c and d that results
from ultrastrong coupling here corresponds to the two-
mode squeezing of the fields radiated from modes a and
b, similarly to the EPR state created in the amplification
regime with only vacuum fluctuations at the input of the
modes [28].

We characterize squeezing by measuring the distribu-
tion of field quadratures for both output modes: X̂a =
âout+â

†
out

2 and P̂a =
âout−â†out

2i for the output of mode a

and similarly defined X̂b and P̂b for the output of mode
b. The heterodyne signal is amplified, down-converted
to below 100 MHz and digitized using an acquisition
board. We interleave the measurement 106 times with
the pumps being alternatively turned on and off in or-
der to remove the contribution of the potentially drifting
added noise [27, 30–32]. We characterize our measure-
ment scheme by first focusing on the known case where
the blue pump is not detuned (ωeff = 0) and the red
pump is turned off (gR = 0) so that an EPR state is
generated [27]. On Fig. 3a are shown the result of the
subtraction of the measured mode quadrature distribu-
tion corresponding to the pump turned off to the distri-
bution when the pump is turned on. The single-mode
quadrature distributions (left panels) are uniformly dis-
tributed in phase, which is expected since each mode a
and b is occupied by a thermal state. In contrast, the
cross quadrature distributions show a clear correlation
between the quadratures of modes a and b (right panels
of Fig. 3a), which is directly linked to the amount of en-
tanglement in the EPR state (here 9 e-bits of logarithmic
negativity for a gain of 16 dB) [27].

The distributions of quadratures change drastically
in the ultrastrong coupling regime when gB = gR =
2π × 12.3 MHz (Fig. 3b). Indeed, while there are still
two-mode correlations (bottom right panel), the single-
mode distributions also show evidence of squeezing (left
panels). It is consistent with our claim in Ref. [21] that
both single-mode and two-mode squeezing arise in the
ultrastrong coupling regime. We reconstruct the co-
variance matrix Vij = 〈xixj〉 − 〈xi〉〈xj〉, where x ={
X̂a, P̂a, X̂b, P̂b

}
. It can be block-diagonalized to find

the eigenvalues σmin,maxa and σmin,maxb of the single-
mode covariance matrices for the modes a and b. These
eigenvalues correspond to variances of the maximally
squeezed and anti-squeezed quadratures of the propagat-
ing modes aout and bout. Squeezing is quantified using a

squeezing parameter ra,b = 10 log10

(
σmin,on
a,b −σoff

a,b

Ga,bσvac
+ 1

)
,

where Ga,bσvac is the variance of the vacuum fluctua-
tions once amplified by the detection setup, and is cali-
brated using the independently known covariance matrix
of the EPR state (see Fig. 3a) [33]. We have measured
the single-mode squeezing parameter for many values of
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FIG. 4: Measured minimum and maximum variance σmin
a and

σmax
a of a single quadrature of mode a as a function of the

detuning δω referred to the rotating frame (corresponding to
ωa+ωeff+ω̃ in the laboratory frame). The variances in dB are
referred to the measured variance when the pumps are turned
off. Statistical errors bars are smaller than the dot size but
systematic errors seem to remain of the order of 1 dB at worst.
Figures (a) and (b) correspond to two different coupling rates
gB of the blue pump (see labels on top). Full lines correspond
to the expectation value calculated using input-output theory.

the coupling rates gB and gR (Fig. 3c). As expected,
they reach a minimum for gB = gR ' ωeff

2 . Note that
maximum squeezing is not the same for the two modes,
rmina = −1 dB while rminb = −2.3 dB. This is consistent
with asymmetric output coupling rates κa 6= κb. Interest-
ingly, when the red pump amplitude decreases with the
blue one remaining constant, the single-mode squeezing
parameter increases and even becomes positive. This be-
havior is reminiscent of the EPR state (blue pump only
at zero detuning) for which a thermal state establishes in
each mode. Predictions based on input-output formal-
ism for the single-mode squeezing parameter reproduce
the measurements qualitatively [21].

We also characterize the two-mode squeezing by con-
sidering the variance of collective variables X̂a−X̂b, X̂a+
X̂b, P̂a−P̂b and P̂a+P̂b. The determination of a squeezing
parameter is highly sensitive to the amplification factors
of the measurement lines Ga = (4.2 ± 0.9) × 10−8 V2

and Gb = (9.2 ± 0.9) × 10−8 V2. The uncertainty on
their exact values at high pump amplitudes thus leads to
a large uncertainty on the squeezing parameter and we
could only demonstrate that the variance of X̂a−X̂b and
P̂a + P̂b is smaller than the vacuum fluctuations, hence
demonstrating the presence of two-mode squeezing in the
regime of effective ultrastrong coupling.

Finally, we have measured the variances of the two
quadratures of the modes that show maximal and min-
imal variance as a function of frequency and for two
values of the blue pump amplitude in a regime where
gB < ωeff/2 (Fig. 4). The field is squeezed below vacuum
fluctuations (σmin < 0 dB) over a range of frequencies
comparable to 2ωeff. Besides, a characteristic inflexion
can be observed over the same bandwidth for the anti-
squeezing component σmax. These features are quantita-
tively reproduced by our model (lines).

In conclusion, we have realized an analog quantum sim-
ulation of two ultrastrongly coupled harmonic oscillators
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using a Josephson mixer. We have demonstrated spectro-
scopic evidence of mode hybridization and mode collapse
in the USC ground state. We have also detected simulta-
neous single-mode and two-mode squeezing of the emit-
ted field, which is related to the entangled nature of the
ground state in the ultrastrong coupling regime [21]. Fi-
nally, we have measured the single-mode squeezing and
antisqueezing as a function of frequency separately for
each field quadrature and have observed vacuum squeez-
ing over the whole bandwidth of the effective mode.
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tium Salle Blanche Paris Centre. This work was sup-
ported by the EMERGENCES grant QUMOTEL of
Ville de Paris, by the French Agence Nationale de la
Recherche (GEARED project No. ANR-14-CE26-0018,
SemiQuantRoom project No. ANR14-CE26-0029) and
by the PRESTIGE program, under the Marie Curie
Actions-COFUND of the FP7. The authors acknowl-
edge F. Portier, A. Keller and G. Steele for interesting
discussions.
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Araque Caballero, A. Baust, T. Niemczyk, E. Hoffmann,
A. Marx, E. Solano, and R. Gross, Physical Review Let-
ters 105, 100401 (2010).

[33] E. Flurin, Theses, Ecole Normale Supérieure, Paris
(2014).
https://tel.archives-ouvertes.fr/tel-01241123

https://tel.archives-ouvertes.fr/tel-01241123

	 Acknowledgments
	 References

