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Abstract
BACKGROUND: Embodied conversational agents (ECA) are possi-

ble enablers of assistive technologies, in particular for older adults with
cognitive impairment. Yet, dedicated interaction management techniques
addressing the specificities of this public are needed. OBJECTIVES: We
assess whether the interaction management framework of the LOUISE
(Lovely User Interface for Servicing Elders) ECA has the potential to
overcome the user interface constraints linked to cognitive impairment.
METHODS: LOUISE supports key target-specific features: personaliza-
tion; attention management; context reminders; image and video displays;
a conversation manager for task-oriented interactions; and the foundations
for a domain-specific XML-based language for task-oriented assistive sce-
narios. LOUISE’s usability and acceptance were evaluated at the Broca
geriatric hospital in Paris. with a group of 14 older adults with either
mild cognitive impairment (MCI) or Alzheimer’s disease (AD) through
four simple but realistic assistive scenarios: drinking, taking medicine,
measuring blood pressure and choosing the lunch menu. RESULTS: Most
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of our participants were able to interact with the ECA, succeeded in com-
pleting the proposed tasks and enjoyed our design. CONCLUSION: The
field usability evaluation of LOUISE’s interaction management framework
suggests that this suite of interaction techniques can be effective in en-
abling interfaces for users with MCI or AD.

1 Introduction
Cognitive impairment that is severe enough to affect performance in activities
of daily living in older adults is mainly caused by organic pathologies grouped
under the name dementia, or major neurocognitive disorders, since the 5th edi-
tion of the “Diagnostic and Statistical Manual of Mental Disorders” (DSM-5 R©)
[1]. The most common diseases causing dementia in older adults are Alzheimer’s
disease, vascular dementia and Lewy body dementia. These are characterized by
a number of symptoms including, but not limited to, short-term memory losses,
executive dysfunction, attentional disorders and psycho-behavioral disorders.A
person suffering from Mild Cognitive Impairment (MCI) has subtle changes in
memory or other cognitive abilities that are greater than would be expected
with normal aging but less severe than with Alzheimer’s disease or another type
of dementia. In MCI, the cognitive symptoms do not impair activities of daily
living. With the increasing number of elders with cognitive impairment to pro-
vide care to with a decreasing active population [2], assistive technologies receive
more and more interest, as they can help compensate for cognitive impairment,
improve quality of life and reduce care costs, by favoring autonomy, so people
can remain in their homes longer.

In that context, computer-based applications can be of great help. Introduc-
ing computer technology in the care of older adults with cognitive impairment
poses however two main challenges: usability and acceptance. The former can
be simply defined as user-friendliness or ease of use and the later corresponds to
one’s willingness to use a technology on the short and long terms. According to
Davis [3], technology acceptance is mostly conditioned by two factors: perceived
usefulness and perceived ease of use. According to Chen and Chan [4], in the
context of older adults, perceived usefulness means “believ[ing] and realiz[ing]
that those technologies might be used to improve their lives and satisfy their
needs”. In additions, Chen and Chan noted that, for most older adults, per-
ceived ease of use is one of the predictors of perceived usefulness. To produce
assistive software or devices that are most likely to be accepted by elders, it is
therefore critical to address usability issues. As age and cognitive impairment
make it very difficult to learn how to use new products and applications, the
ideal user interface is one that would not require any learning and relies on
people’s remaining capabilities.

Human beings communicate with each other thanks to a myriad of ar-
ticulated sounds, voice intonations (prosody), facial expressions and gestures.
Learning this very complex mean of interaction starts at birth and quickly be-
comes very natural. Relying on natural verbal and nonverbal communication
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for older adults with neurodegenerative diseases to interact with assistive tech-
nologies therefore seems like an interesting path to explore. To do this, several
researchers [5, 6, 7, 8, 9] have proposed to use virtual humanoid characters,
called Embodied Conversational Agents (ECAs), that are able to interact with
a person through verbal and nonverbal communication. However, the current
literature on the use of ECAs by older adults with cognitive impairment does
not provide many guidelines for adapting ECA technology for this public. In-
deed, very few of the systems proposed in the literature are specifically designed
to address the cognitive limitations faced by older adults with cognitive impair-
ment. In addition, as little evaluation data is available, little is known about
how these users interact with ECAs and how the interaction should be managed
by the system.

To bridge this gap, we propose an ECA system, called LOUISE (LOvely
User Interface for Servicing Elders), that specifically targets elders with cogni-
tive impairment. More specifically, it is meant to be used by people with mild
or moderately severe cognitive impairment (MMSE > 10), depending on the
application. LOUISE has several key features to be adapted for use in assistive
technologies targeting this public: attention management capabilities; context
reminders; reminders of the valid answers to a question; and image and video
displays, to illustrate concepts and actions. Our system also features a sim-
ple conversation manager for task-oriented interactions, which can be scripted
thanks to a dedicated XML description language. As motivated in Section 2,
we believe our work is the first to introduce advanced interaction management
mechanisms to address the specificities of interactions between an ECA and
elders with cognitive impairment. Thanks to this capability, we created four
simple, yet realistic, use case scenarios to conduct a limited exploratory user
study: remind to drink; taking medicine; measuring one’s blood pressure; and
choosing the menu for a meal.

This study has several goals: (1) obtaining feedback from elders about
LOUISE’s pleasantness and perceived usefulness; (2) gathering precise infor-
mation regarding the way older adults with cognitive impairment interact with
LOUISE; (3) identifying the technical limitations of our implementation to gain
insights for future development; and (4) better evaluating the suitability of the
LOUISE system for our target public, depending on each person’s cognitive
capabilities. Ultimately, the main contributions of this work are:

• the design and implementation of LOUISE’s unique set of features to
target older adults with cognitive impairment;

• the design and implementation of four LOUISE use cases that have been
selected to illustrate the diversity of possible applications of its interaction
capabilities;

• the detailed laboratory evaluation of LOUISE and its use cases in a hos-
pital with a group of 14 older adults with mild to severe cognitive impair-
ment.
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We start this paper by reviewing the related work on the use of ECAs by
older adults with cognitive impairment and some of the work about assistive
technologies for cognition in Section 2. We present the design of LOUISE, our
assistive ECA (Section 3), and describe its evaluation with older adults with
cognitive impairment (Section 4). We discuss our findings in Section 5. Lastly,
in Section 6, we summarize our key findings, highlight our contributions and
present ideas for future work.

2 Related work

2.1 Embodied Conversational Agents and older adults
Researchers around the world investigate the possibility of building machines
with social interaction capabilities, in the form of social robots and embodied
conversational agents (ECAs). ECAs have many foreseeable applications in
elderly care. Compared to assistive robots, which are just beginning to enter the
marketplace, the technology is less mature and the the applications presented
here are only at the research state. This is also due to the fact that robots can be
helpful even with limited social interaction capabilities (vacuum cleaner robots,
for instance). ECAs, on the contrary, mostly play the role of user interfaces in
assistive scenarios. However, for cognitive assistance, ECAs have the potential
to provide many services that social robots would, but for a much lower price.

Globally, current results [10, 11, 5, 6, 12] lead to the conclusion that the use
of ECAs could improve the accessibility and acceptance of computer-based assis-
tive technologies, compared to graphical user interfaces and voice interfaces, es-
pecially for older adults with cognitive impairment. The aforementioned authors
have identified the following advantages of ECAs over other kinds of interfaces:
naturalness [11, 5, 6], higher levels of attention [10, 11, 5], easy understanding
[11, 5], believability [10, 11], higher motivation [10, 12, 13] and effectiveness
[10, 11, 5].

Even though ECAs may end up not being the ideal solution for all appli-
cations targeting older adults with dementia, there is a significant and growing
list of use cases for ECAs targeting older adults, with or without cognitive im-
pairment, or their caregivers that have been investigated by researchers around
the world:

• virtual coaches that encourage older adults to change life-long habits for
a healthier way of life, such as following a diet or doing more exercise [13];

• virtual companions for isolated older adults that aim at providing enter-
tainment and restoring/maintaining social links [14, 7, 15];

• virtual personal assistants that provide help for organizing or taking medi-
cation, for instance, or other tasks that get more difficult due to age-related
declines or cognitive impairment (in the case of mild cognitive impairment
and dementia) [8];
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• virtual butlers, that is to say, ubiquitous user interfaces for a smart con-
nected home with ambient intelligence [16, 17];

• training tools to help formal and informal caregivers [18].

Among the studies cited above, some were designed to evaluate if ECAs are a
good way of presenting information for older adults with cognitive impairment.
In [11], three information presentation modalities were compared: ECA, on-
screen text with speech and text only. The results show that the participants,
older adults with and without cognitive impairment, liked the ECA better and
performed significantly better in a guided task with the ECA than with the other
prompting modalities. In [5], the authors found similar results by comparing
a photograph with animated lips with a text and speech prompt in a Wizard
of Oz1 (WoZ) [19] study involving 10 elderly people with cognitive impairment.
They later confirmed this result in a larger study involving 12 older adults with
cognitive impairment and 12 non-disabled seniors [20]. Our results also concur
with such preliminary findings.

Carrasco et al. conducted the first work in which people with dementia ac-
tually interacted with an ECA, by pressing buttons (green for “yes” and red
for “no”) on a remote control [6]. More recently, some authors have proposed
systems that allow verbal and nonverbal interaction. An effort to design an
ECA as a companion for older adults with memory impairment was proposed
by Huang et al. [7]. The ECA proposed there mostly performs active listening:
the user’s prosody is analyzed for power and pitch to make the virtual char-
acter produce backchannel behaviors, such as head nods and acknowledgment
vocalizations, at appropriate moments. Unfortunately, to the best of our knowl-
edge, no evaluation of this prototype has been published so far. Other authors
have proposed a somewhat more sophisticated active listening system for older
adults with cognitive impairment in [9]. Our approach with LOUISE intends to
introduce a more balanced, richer, two-way communication between users and
the ECA.

As stated earlier, an assistive ECA-based system may also act as a virtual
personal assistant. Yaghoubzadeh et al. [8] conducted a feasibility study of a
daily assistant for older adults and cognitively impaired people. This usability
study involving 11 cognitively impaired adults aged from 24 to 57 and 6 healthy
older adults aged from 76 to 85. The participants were asked to interact with
the WoZ-based ECA to set appointments and task reminders in a calendar.
Overall results were very encouraging: 10 of the 11 cognitively impaired users
successfully entered their appointment and could spot and correct 75% of the
(purposefully introduced) errors. All the elderly participants completed the task
successfully and could repair about 80% of the errors introduced. Regarding
acceptance, feedbacks were mostly positive. In a follow-up article [21], the
same authors have proposed and evaluated an automated conversation manager;

1A protocol consisting in giving the illusion that the system is automatic when it is in fact
remotely controlled by an operator. This method is often used in social robotics and ECA
research.
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this dialog manager is highly specialized for the calendar management task
and does not allow for other applications. In our work, we introduce a more
general framework to specify and implement arbitrary interaction scenarios with
cognitively impaired adults.

Recently, Hanke et al. [22] have proposed an ECA system capable of verbal
and non-verbal interaction as a “virtual support partner” for older adults. It is
intended to centralize several computer-based services for daily life support of
older adults, such as an agenda, medication reminders, motivation for physical
exercise, assistance in locating objects at home and entertainment services. It
was evaluated in laboratory conditions with 14 older adults, which has shown
mitigated usability results. A long-term evaluation of the system is said to be
in progress, but the results have not been published yet at the time we write
this article.

To the best of our knowledge, the only system that explicitly targets verbal
and non-verbal interaction between the ECA and older adults with cognitive
impairment is presented in [7]. However, the system proposed by these au-
thors does not seem to include features that are specifically designed for people
with cognitive impairment, our work being thus the first to introduce dedicated
interaction management mechanisms for this public.

Lastly, few studies were conducted about the long-term use of ECAs by older
adults at home. The only ones were conducted by Bickmore et al. [12, 13] and
Vardoulakis et al. [14]. These three studies evaluated very similar systems, all
of which used interaction through multiple choice touch interfaces. In addition,
none of these studies involved older adults with cognitive impairment and the
study conducted by Vardoulakis et al. was a WoZ study. To the best of our
knowledge, there is no publication presenting a usability evaluation of an ECA
that interacts through verbal and non-verbal channels with older adults with
cognitive impairment. Our paper thus contributes to the field by offering a
detailed evaluation of LOUISE.

2.2 Assistive technologies for cognition
In the past two decades, there have been countless works about assistive tech-
nologies for cognition, sometimes called “cognitive prosthesis” [23]. The term
assistive technology (AT), in the context of older adults, refers to any device,
product or equipment that helps people to perform a task they would be unable
to do otherwise or facilitates seniors’ daily lives, whether it was designed for
that specific purpose or is an off-the-shelf piece of equipment [24]. According
to Sanford [25], what differentiates AT from other technology is that it is “indi-
vidualized and usually follows the person” [26]. Given this definition, assistive
technologies may take many forms, from low-tech devices, such as automatically
ignited lights, to high-tech personal robots.

Among the works most closely related to LOUISE, though they do not in-
clude ECAs, we can list task support systems. The most cited one is probably
the COACH system [27, 28], which uses both a model of the task to accomplish
and activity recognition through video analysis to perform timely auditory and
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visual prompts to help people with dementia wash their hands. This system was
evaluated in ecological conditions [29]. Hamada et al. [30] have proposed a sim-
ilar system for assisting people with dementia when they go to the bathroom.
More recently, Peters et al. [31] have proposed TEBRA, similar to COACH,
to help people with cognitive impairment wash their teeth. ECAs like LOUISE
could enrich the interaction with this type of systems and have the power of pro-
viding richer instructional cues to guide through complex instrumental tasks;
however, they may also distract the user from the task and render the system
less effective [31]. This is partly why we chose to investigate attention manage-
ment for ECA-based task guidance. A review of other assistive systems can be
found in [32].

Like any assistive system, ECAs face usability and acceptance issues, which
impact the products’ adoption by the target end users [3]. These criteria are not
always met by the systems currently available on the market. To avoid this, it is
necessary to understand the needs and abilities of people with cognitive impair-
ment. Summaries of the main medical conditions causing cognitive disabilities
(Mild Cognitive Impairment and Alzheimer’s disease) and design recommenda-
tions to avoid the main pitfalls can be found in [33] (see also [34]). We believe
our work on LOUISE, and in particular the in-depth usability research reported
here, strives to adhere to what we think should become "best practice" in the
field of assistive technologies.

3 LOUISE
Our main technical contributions in LOUISE are to propose (1) a specific dialog
management approach for older adults with cognitive impairment, based on a
finite state machine, and (2) a specific scenario description language in XML to
create such dialogs. We provide a general overview of LOUISE before delving
into these issues.

3.1 System overview
The LOUISE ECA software is meant to run on a standard PC, under Microsoft
Windows, and the character is displayed on either a computer screen or a tele-
vision set, with the Kinect sensor used for sensing placed on top, as depicted on
Figure 1. The software architecture of LOUISE is similar to the state-of-the-
art framework for creating ECAs [35, 36]. The user behavior data is extracted
thanks to the Kinect sensor and used as input for a multimodal behavior analy-
sis module; the results of the analysis are passed on to the interaction manager,
which uses an XML dialog description, tagged “scenario” on Figure 2. The
verbal and nonverbal behaviors to be produced by the virtual character are
represented using the Behavior Markup Language (BML) [35]. Once the behav-
ior that should be produced by the character is determined by the interaction
manager, its BML description is sent to the behavior realizer, composed of a
behavior controller, a voice synthesizer and a game engine. The behavior anal-
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Figure 1: The LOUISE system, as used in the evaluation.

Behavior realizer

Behavior
analysis

Scenario

Kinect
data

Interaction
manager

Game
engine

Voice
synthesizer

Behavior
controller

Figure 2: Architecture of the LOUISE ECA system.

ysis and interaction manager modules are implemented in the same program
and communicate with the behavior realizer by exchanging messages through
the Apache ActiveMQ2 middleware, a centralized message broker.

Our system implements the following key features:

• attention estimation;

• user speech turn detection;

• automatic speech recognition;

• interaction management allowing for prompting in case of inattention,
context reminders when the user is paying attention again and handling
of wrong answers or speech recognition errors;

• XML dialog description;

• BML behavior realization allowing for gestures, facial expressions, head
movements, gaze direction, eye saccades and blinks;

• display of images for concept illustration and example videos for step-by-
step task guidance.

2http://activemq.apache.org/
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3.2 Behavior analysis
The behavior analysis module combines four sources of information: (1) user
body tracking, in the form of a skeleton, (2) user face tracking, (3) speech
signal, and (4) sound source localization. User body and face tracking are used
to estimate the user’s attention; the speech signal is used for automatic speech
recognition (ASR); and the sound source localization is combined with the user
body tracking to detect the user’s speech turns. To perform ASR, we used the
Microsoft Speech API speech recognition engine. The ASR is performed given
reduced grammar sets, which only include typical words or phrases for greetings,
positive answer and negative answers.

Our attention estimation method relies solely on determining, in real time, if
the user is gazing towards the screen or away from it. It combines the measures
of orientation of the user’s shoulders, as done in [37] and [38], and head pose, as
in [39], seen here as proxies for his or her intensity of attention towards LOUISE
([40, 41])

This method relies on the Kinect’s skeleton and face tracking data. Only
the 3D positions of the shoulders and the yaw and pitch rotations of the head
are used. It assumes that the sensor is placed on top and in the middle of the
screen displaying the ECA. The obtained attention level values range from 0
to 10, 10 being the maximum level, when the user’s body and face are directly
oriented towards the sensor. These values are then used to decide the user’s
attentional state, i.e., whether the user is engaged or not, using a hysteresis
threshold rule: the user is considered engaged if the attention value is more
than 8. Transition from engaged to disengaged is triggered when the attention
value decreases below 6. Two more states are used: “user detected” (at the
beginning, when the user has been detected and is not engaged yet) and “no
user”.

To detect users’ speech turns, since the Kinect ended up not to be reliable
enough to detect movements of the lips observed thanks to face tracking data,
whether by detecting opening of the mouth or the variations of mouth openings,
we implemented a very simple method; it consists in comparing the sound source
angle estimation, given only when the energy of the signal is sufficient, with the
angular position of the tracked user. The sound source angle estimation is
provided by the Kinect SDK with a confidence indicator γ, between 0 and 1.
To determine if the user is speaking or not, the confidence has to be greater
than 0.3 and the difference between the estimated sound source angle and the
user’s position has to be less than the tolerance threshold τ = 13 − 10γ. For
typical confidence values, this corresponds to an angular difference of 5◦ for a
high confidence of 0.8 and 10◦ for the minimum acceptable confidence of 0.3.

3.3 Interaction manager
To allow for arbitrary interactions to be used with LOUISE, we designed a
Domain-Specific Language (DSL) called Assistive Interaction Scenario Markup
Language, or AISML. This description language, for now an XML specification
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Attention acquired

Com. executed

Com. executed

[valid scenario]

Reload

End

Next utterance [What transition]

[What transition]

Figure 3: Dialog state representation in LOUISE’s interaction manager.

for defining assistive scenarios, is based on the concepts of finite state machines
(FSM) and dialog trees presented in this section. Utterances by LOUISE are
seen as states, which have transitions to other utterances, with or without con-
dition, depending on whether it is a statement or a question. Each utterance has
to contain at least a command specified using the Behavior Markup Language
(BML) and/or the Speech Synthesis Markup Language (SSML) (see [42] for the
technical details about AISML, as well as its XML schema specification).

Given an AISML scenario, LOUISE interaction manager maintains a finite
state machine with five orthogonal regions. Each of these regions is responsible
for the internal representation of one aspect of dialog management, i.e., three
states (dialog, speech turn and user) and two timers. We describe in this section
the main features of LOUISE interaction management.

3.3.1 Dialog state representation

The dialog state region, depicted on Figure 3, keeps track of the current state of
the dialog, once a scenario file has been loaded. A dialog “tree” is represented as
a set of utterances, with transitions between utterances that can be conditional
or not. Each utterance corresponds to a speech turn (or part of a speech turn)
of the ECA. Transitions are then performed without condition if the utterance
is a statement, or only a part of a speech turn, quickly followed by another
utterance; or with conditions if the utterance is a question. In the later case,
the next utterance is selected based on the user’s answer. This region of the
FSM is also responsible for performing interruptions when the user stops paying
attention, attention recapture prompting, outputting transition sentences and
handling context reminders.
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New statement

New question

Com. executed End waiting
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Figure 4: State of speech turns representation in LOUISE’s interaction manager.

As depicted on Figure 3, the dialog starts when attention is acquired by a
transition from the Ready state to the Dialog state. When an utterance has
been completed, a Next utterance event is triggered by the speech turn manager
described below, possibly containing user answer data. Based on the scenario,
the type of the current utterance (statement or question) and the answer data,
the next utterance is selected and sent to the speech turn manager.

When the user is inattentive for more than 2 seconds, an Attention lost event
is sent by the user state representation region. This triggers a state transition
between the Dialog state and the Prompting state. The FSM remains in this
state and sends prompting utterances sequentially (several different prompting
utterances can be chained), until the user pays attention again and an Attention
acquired event is received. The FSM then changes its state to the Transition
phrase state, then to the Context reminder state, then back to the Dialog state.
The last two transitions occur when the corresponding utterances are done being
spoken by the behavior realizer.

3.3.2 Speech turn handler

The interaction manager can have LOUISE generate two types of utterances:
statements and questions. In the case of statements, LOUISE will keep the
speech turn in the next utterance. In the case of questions, LOUISE will give
the next speech turn to the user. Utterances are therefore managed in two
submachines: statement and question. The corresponding region of the global
state machine is depicted in Figure 4.

The utterance handler of LOUISE is composed of an empty state, which is
the default initial state and the two submachines mentioned above. Transitions
occur when a new utterance is sent by the dialog manager and the target sub-
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(a) (b)

Figure 5: (a) Louise Character in the default posture. (b) Louise character in
the listening posture.

machine simply depends on the type of utterance, that is to say whether it is a
question or a statement (attention prompts are considered to be statements).

The statement submachine is composed of three states: send command, wait
and end. The send command state performs the action of sending the BML
behavior instruction to produce to the behavior realizer. Once the behavior has
been executed by the virtual character, a feedback message is received and a
com. executed event is fired, which triggers a transition to the wait state. This
state allows to control the time between the current statement and the next
utterance. Once the waiting time is up, signaled by the end waiting event, the
statement submachine transitions to the end state and the dialog manager can
send the next utterance.

The question submachine has the same basic functioning but, instead of
waiting for a time delay before the next utterance can be sent, it waits for an
answer from the user. In addition, it handles incorrect answers and/or speech
recognizer errors. When the state machine is in the wait for answer state, the
character adopts a listening posture, as depicted on Figure 5. If an error occurs
for the first time for the current question, it goes to the error state, in which
an error resolution behavior is sent to the behavior realizer. Then, once the
behavior has been executed, the state machine goes back to the wait for answer
state and the user has a second chance to answer. If a second error occurs, a
context reminder is sent in the recontextualize state; then the question is asked
again and the possible answers are listed in the list possible answers state, before
going back to the wait for answer state. Lastly, if after a given time the user
does not answer, the question is asked again. This sequence is repeated until a
valid answer is provided and can potentially loop forever, as there is no escape
case.
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Figure 6: User state representation in LOUISE’s interaction manager. The+flag
labels indicate that when the state that contain them is active, the corresponding
flag has to be raised to notify the other regions of the FSM of the current state
of the user.

3.3.3 User state representation

Our interaction manager includes an internal representation of the user’s state,
depicted on Figure 6. It is composed of a no user state and a user detected
submachine. The transition between no user, which is the entry state, and user
detected occurs when a user is detected by the Kinect sensor. The opposite
transition occurs when user tracking is lost.

The user detected submachine is composed of three orthogonal regions. The
first region represents the attentional state of the user, which is updated on
every data frame by the attention estimation component of the behavior analysis
module. It is also possible to disable attention estimation, by transitioning to the
in task state. This feature is useful for step-by-step task guidance applications:
when LOUISE asks the user to perform an action with an object, it is likely, even
desired, that he or she directs his or her attention towards the object, instead of
the ECA’s display. In this case, we would not want LOUISE to perform attention
recapture prompts. This is why we added the in task state. The second and
third regions are used to manage speech turns and allow to represent if the user
is currently speaking or not and if he or she already has spoken, or not. These
parts of the machine are reset to not_speaking and has_not_spoken after each
user speech turn, that is to say every time a situation requiring the user to
provide an answer has just been resolved.

3.4 Behavior realizer
The behavior realizer component in LOUISE is able to interpret and execute
Behavior Markup Language (BML) [35] commands, and performs all communi-
cation functions allowed by this behavior description DSL: speaking with syn-
chronized lip animations, gesturing, showing facial expressions, performing head
movements, directing the character’s gaze, blinking, and performing eye sac-
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(a) (b)

Figure 7: (a) The Charlotte character showing a bottle of sparkling water. (b)
The Charlotte character showing an example video of taking a water bottle’s
screw cap off.

cades. In addition, it allows to display images and a virtual television screen,
on which example videos of expected actions can be shown.

Our behavior realizer is built on top of SmartBody [43], a state-of-the-art
BML realizer. It can be seen as an animation controller, or behavior controller,
as it is labeled on Figure 2. Its role is to interpret BML commands and transform
them into character animations and sounds. It comes with a large database of
animation for nonverbal behaviors. A game engine is used for rendering the
character and playing the synthesized sounds. The game engine that we used is
Panda 3D3. For the character rendered in the game engine to be controlled by
the BML Realizer, we use two “skeletons” or “rigs”, one in SmartBody, the other
one in Panda 3D. Smartbody animates the skeleton it controls, based on the
specified BML behaviors, and the rotations of that skeleton’s joints are copied
over to the skeleton in Panda 3D at each frame refreshment.

We programmed our application so that any model created with Autodesk
Character Generator4 can be added with little work. The full process of creating
and adding a new model should take less than an hour. For our experiments,
we had two different female character models available, so participants had a
choice of embodiment : Louise (Figure 5) and Charlotte (Figure 7).

We used BML events to perform several additional actions: notifying the in-
teraction manager when a behavior is completed, by sending a message through
the middleware, which in turn fires a com. executed event upon reception; dis-
playing and removing images; displaying and removing the virtual television
set; start and stop playing videos on the virtual television set; and having the
character speak louder for one utterance. Figure 7 shows the renderings of the
virtual scene when displaying images and videos.

3https://www.panda3d.org/
4https://charactergenerator.autodesk.com/
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4 Usability and acceptance testing
The main goal of this study is to assess the usability of the LOUISE ECA. This
means two things: evaluating the system as a whole, particularly our model
of interaction management; and proposing, testing and refining conversational
structures for goal-oriented dialogs between LOUISE and elders with cognitive
impairment. All of this is done through “usability” testing, based on “believable”
use cases. To this aim, we created several scenarios containing the basic actions
that will very frequently be used in assistive applications in which LOUISE is
susceptible to be included: asking questions and reacting to answers, having the
user make a choice and providing step-by-step instructions to complete a task.

The secondary goal is to test the system with people with varying levels of
cognitive functioning, to identify the maximum level of cognitive impairment
that LOUISE, and likely most tailored ECA systems, can handle.

4.1 Structures of conversation
For each of the basic actions that compose the scenarios, we propose a specific
conversational structure. These are based on the observations made in a previ-
ous study [41], in which we conducted an anthropological analysis of interactions
between elders and a Wizard of Oz version of LOUISE. We also took inspiration
from the knowledge of the symptoms of dementia.

4.1.1 Dialog initiative

In the previous Wizard of Oz experiment, none of the participants complained
that the ECA always had the dialog initiative, neither did they try to take the
initiative themselves. This is why we built our system with the assumption that
LOUISE will always keep the initiative and did not try to accommodate for
mixed-initiative dialogs. This assumption is also in line with the knowledge of
dementia symptoms: people with dementia seldom take actions spontaneously,
because of apathy and prospective memory disorders.

4.1.2 Asking questions and reacting to answers

Our interaction manager could very well handle open questions with multiple
possible answers, though choosing the appropriate response could be challenging
and would likely require some language processing of the user’s answers, to
interpret his or her intents, in the behavior analysis stage. However, with our
target user group, we have identified that narrow or contrasted questions, such
as yes/no questions, should be privileged [41]. This is also in line with the
recommendations of Zajicek [44], who suggested that menus in speech-based
interfaces for older adults should be limited to 3 items at a time. Hence, our
conversational trees, which in fact are more like conversational graphs, as there
can be branches that reunite at some points, will normally have a maximum of
two branches at each node.
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4.1.3 Multiple choices

To perform multiple choices, all options are presented first, then a yes/no ques-
tion is asked for each item. Each time an item is mentioned, a picture illustrating
the concept is displayed, as shown on Figure 7. When an image is displayed,
the character points at it and directs its gaze towards it, by turning its eyes
and head, so its body posture is still facing the user. Then, when the image
disappears, the character turns its head and eyes towards the user again. This
is meant to direct the user’s attention towards the object of interest when neces-
sary. This specific choice of gaze direction and posture behaviors is inspired by
the findings of Pejsa et al. [45], who studied the influence of gaze and postures
on the user’s quality of attention and reported that the best compromise is for
the ECA to fully look towards the user when speaking (affiliative strategy) and
fully looking towards the object of interest when making mentions of it (ref-
erential strategy). This also resembles the model of engagement behaviors for
collaborative tasks involving a human and a robot proposed by Rich et al. [46].

If no item is selected, there are two options: choosing none or starting over
at the first option. After one option has been selected, an explicit confirmation
is asked. When a choice is confirmed, an acknowledgment behavior is executed
and the dialog can go on. This is similar to the approach for confirmations
recommended by Yaghoubzadeh et al. [8], who stated that it is best to confirm
each bit of information individually.

The typical conversation graph we used for having the user choose one option
in several possibilities is depicted on Figure 8. The “None?” option represents
the case in which it is allowed not to choose an item. In that case, the con-
versation will jump back to the first item proposition only after the question
of picking no item is asked, instead of doing it right after the nth option was
refused.

4.1.4 Step-by-step task instructions

For task instructions, each step is managed in the following order:

1. the ECA explains the action to perform, while pointing and gazing at the
virtual television set, on which the example video has started looping;

2. it lets the user watch the example video as it loops on the virtual TV
screen for a few seconds and keeps gazing at the screen during that time
– this is when the wait parameter for statement utterances is the most
useful (see Section 3.3);

3. LOUISE directs its gaze towards the user and instructs him or her to
perform the action (the attention estimation is disabled and the video is
still looping on the virtual screen);

4. LOUISE waits for a few seconds, thanks to the wait parameter in state-
ment utterances;
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no

no

no

yes

no

Figure 8: Conversation graph for selecting items with multiple choices.

5. the attention estimator is enabled again, the video is stopped and the
ECA asks if the user has finished performing the action;

6. if the answer is “yes”, the task is assumed completed and the dialog can
go on to the next instruction, or to the conclusion;

7. if the answer is “no”, the dialog manager goes back to the first step and
the instructions are given again;

8. when the task is complete, the ECA congratulates the user and the video
is stopped;

9. in case of attention loss, the video is stopped and only gets restarted after
the context reminder is performed.

Note that the gaze and posture management approaches are the same as when
still images are shown, except that the character keeps looking at the screen
when the user is supposed to watch the example video. In addition, the fact
that LOUISE gazes at the user again when it asks him or her to perform an
action is supposed to make the user think that it is checking for the execution
of the action.
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4.2 LOUISE use scenarios
For this experiment to have some ecological validity, we wanted to use believable
use scenarios for LOUISE. These scenarios were also selected based on the fact
that they include the typical situations present in most potential applications
of LOUISE: asking questions, having people choose among several items and
guide step-by-step through a task. Throughout the study, we have used four
different scenarios, which were validated by physicians or in previous exchanges
with older adults:

1. reminding to drink water and guiding through the task of preparing a
glass of water;

2. reminding medication intake and guiding through the task of taking pills;

3. guiding through the task of measuring one’s blood pressure;

4. choosing the composition of a meal.

A blood pressure scenario was created to replace the medication intake for test-
ing with the most strongly impaired patients, as the physicians of the hospital
were afraid that someone would choke when taking the Tic-Tac candies, used
as fake pills (in the Broca hospital’s services, pills are administered to the pa-
tients with moderate to severe dementia by mashing them down and mixing
them with compote). The water-drinking scenario could be used both at home
or in institutions; the medication intake and blood pressure scenarios mostly
target patients still living in their homes; and the menu scenario mostly targets
institutionalized patients.

4.3 Experiment Protocol
This study was approved by the Committee of Ethical Evaluation for Research
in Health held jointly by the Broca hospital and the Paris Descartes University.
The participants who tested the family of scenarios described in Section 4.2
were seated at a table in front of a screen on which the ECA was displayed;
the Kinect sensor was placed on top of the screen, in the middle. The software
ran on a Toshiba laptop with an Intel i7 quad core CPU, an Intel HD Graphics
GPU and 8GB of RAM; the Kinect sensor we used was the Kinect for Xbox
360; and the character was displayed on a DELL 22-inches display. All of the
necessary objects for the experiment (a glass, a bottle of still water, a bottle of
sparkling water and the pill dispenser or the blood pressure monitor, depending
on the case) were placed on the table, as depicted on Figure 1. Participants
were informed of what was going to happen, that they had to greet the ECA
back when it greets them and that they had to answer questions by “yes” or “no”.
If the participant agreed, a video recording of the session was done. We used
two cameras: one to film the person and one to film the table and the ECA. In
addition, the LOUISE application was instrumented to record the input data
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and the evolution of the dialogs, including the states of the interaction manager
FSM.

Participants had to interact with LOUISE through 3 scenarios in a row,
always in the same order: reminder to drink water, meal menu choice and
medication intake reminder or blood pressure measurement, depending on the
participants, since we were not allowed to have hospitalized patients do the
medication intake scenario. Before the interaction, they were asked to choose
their favorite embodiment between the Louise and Charlotte characters. During
the tests, the Microsoft Speech API speech recognizer was used, except for the
last test, in which we tried a cloud-based speech recognizer (Microsoft Bing
Speech API5).

Once the test, which took about 20 minutes, was over, we conducted in-
dividual semi-structured interviews with each participant and had them fill a
questionnaire of 4-level-scale (1 to 4) questions regarding their impressions of
the ECA during the test and 7 general questions about ECAs. To build the
questionnaire, inspiration was taken from the assistive social agent technology
acceptance model proposed by Heerink et al. [47], which is specifically designed
for older adults. The questions were about how pleasant they thought the char-
acter was, how much they liked its appearance, how clear the character’s speech
was, how clear the instructions it gave were and if the conversation’s pace was
too fast. The general questions were about the possibility of personalization, the
applications of ECAs, how the character should address them (using their first
name of their last name, calling them “vous” or “tu” – a very frequent issue in
French6), the type of display they would like the ECA to be visualized on, their
acceptance of the perception system and the activation parameters (always on,
activation times or user-activation only).

4.3.1 Participants

To be included in the study, participants had to be over 65, have a diagno-
sis of cognitive impairment and give written informed consent. People with
severe auditory impairment, unable to speak or with severe visual disability
were excluded. Following general guidelines on the appropriate group size for
usability studies [48], which state that, on average, a group of 5 allows to un-
cover about 85% of usability issues, while 10 participants reveal about 95% of
them, 14 participants, 11 females and 3 males, were enrolled. They were be-
tween 71 and 89 years old (mean = 78.8, standard deviation = 5.8) and their
MMSE scores ranged from 8 to 30 out of 30 (mean = 23.8, standard deviation
= 4.9). All were diagnosed with Mild Cognitive Impairment (MCI) [49] (9/14)
in at least one cognitive domain (participants who achieved a perfect score at

5https://www.microsoft.com/cognitive-services/en-us/speech-api
6In French, when addressing a single person, a choice of pronoun has to be made between

“tu”, the normal pronoun for the second-person singular, and “vous”, the pronoun for second-
person plural. The former is considered to be informal and is usually used by friends and
family, while the later is considered formal and is a mark of politeness. In an institutional
health care context, the use of “vous” is mandatory for care staff to address patients.
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the MMSE had attentional disorders, a cognitive domain that is not covered in
the MMSE) or Alzheimer’s disease (5/14) at the Broca hospital’s memory con-
sultation center by a multidisciplinary team composed of neuropsychologists,
geriatricians, neurologists and psychiatrists through comprehensive assessment
including, but not limited to, Magnetic Resonance Imaging (MRI), Electroen-
cephalogram (EEG), blood tests and a full battery of neuropsychological tests.
All participants were given details about the protocol and signed an informed
consent form for participating in the study. The participants who agreed to a
video recording of the test session also signed a recording authorization form.

4.3.2 Evaluation methodology

11 participants, out of 14, agreed to the video recording of the experiment. The
videos, for a total of about 3.5 hours, were annotated using Noldus The Observer
XT 11.57, a specialized software for event logging on videos. We counted the
following events: valid answers; incorrect answers; no answer; answer attempts
when the ECA is not listening; system not reacting to an answer; speech recog-
nizer error; correct actions; incorrect actions; appropriate timing of the actions;
attention estimation (AE) error; reaction of the AE when participants per-
formed an action at an inappropriate time; looking for help; intervention of the
experimenter.

4.4 Results
Overall, 13/14 participants were capable of interacting with LOUISE, leaving
out the participant with the most severe cognitive impairment (male, age = 73,
MMSE = 8/30) who seemed to be intimidated by the character. Furthermore,
11/14 participants completed 3 scenarios each: in one test, the third scenario
(taking pills) was interrupted early by the experimenter because the attention
estimator was failing; and one of the participants could not do the blood pressure
scenario because she could not move her only arm. 3 participants, hospitalized
patients who were not allowed to do the pill dispenser scenario (because of the
risk of choking on the candy), did the blood pressure scenario; the other 9 did
the pill dispenser scenario. In addition, only 3 participants went through the
whole water reminder scenario (choosing between mineral and sparkling water
and being guided through the process of serving themselves a glass), as most
participants told the ECA that they were not thirsty. While this is unfortunate
for the data collection in our study, this asks the more profound question of
how convincing an ECA may be and how it can best influence users’ behav-
iors. We further discuss this matter in Section 5. All participants with MCI
(9/14) successfully accomplished the pill task. Only one of the participants with
Alzheimer’s disease (female, age = 83, MMSE = 26) successfully accomplished
the much more complex blood pressure task without help.

Table 1 presents, for each evaluation indicator we have used, the minimum
and maximum totals for one participant, the per participant average and stan-

7http://www.noldus.com/
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dard deviation, the number of participants with whom the corresponding situa-
tion occurred and the total number of occurrences (or global percentage, when
the values are percentages). This data was gathered thanks to video annota-
tions and experiments’ logs. It only includes data for 9 participants: only 10
of the participants who agreed to be filmed did interact with LOUISE; and the
last test, in which the cloud-based speech recognizer was used, was actually
conducted in WoZ mode (the system allowed the experimenter to press keys to
notify answers in case of malfunction), since the speech recognition did not work
because of a configuration error. Also note that the attention estimation data
was not included for Participant 11, who could not be tracked by the Kinect
sensor as she had only one arm that she could not move.

The first issue we observed is that some of the test participants tended to
forget that they could only answer by “yes” or “no” and answered incorrectly,
particularly the participants with the most severe memory impairment, scoring
less than 20/30 at the MMSE, who account for 29 of the 56 incorrect answers
(52%). This confirms the observations revealed in the anthropological analysis
we conducted in the first round of experiments, reported in [41], that people
with cognitive impairment tend to provide more elaborate answers and interact
in a “social” way. Given this result, our error management strategy that lists the
possible answers proved useful, as participants could correct their mistakes in all
cases, especially after the system was changed for the valid answer reminder to
be performed after two errors instead of three. Although the cloud-based speech
recognizer did not work for Participant 14, considering that it was supposed to
spot the “yes” and “no” keywords in the recognized sentence, all of her answers
were considered as correct in the video annotation.

Regarding speech recognition, the performance of the ASR we have used
are far from satisfying, with a word error rate of more than 20%. In addition,
the system sometimes did not react to the participant’s answers, when they
did not speak loud enough (9.9% of all answers) or reacted to the ECA’s own
speech (the exact number of times could not be computed, since the logs are not
reliable enough due to the amount of speech recognition errors). These three
factors combined were quite confusing for the participants.

Regarding the attention estimator, it sometimes made errors that led to
unwanted attention prompting (on 23 occasions). Most of these errors are due
to losses of face tracking caused by participants being too close to the sensor.
Indeed, they were seated close to the screen whereas the theoretical minimum
distance for the Kinect sensor for Xbox 360 to work properly is about 80 cm and
this distance is closer to 1 m in practice. This was particularly problematic when
users came closer to the sensor to reach for objects on the table. We therefore
mounted the Kinect slightly behind and above the screen. This positioning, as
well as the hunched posture of some participants, caused the pitch angle measure
to be incorrect and the attention estimator produced more errors than in the
first round of experiments. Attention estimator errors also negatively impacted
the user experience and caused confusion. In addition, attention management
does not seem sufficient to keep people with dementia engaged in the interaction,
since participants 10 and 14, who respectively scored 14 and 22 at the MMSE,
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Table 1: Quantitative results for 9 participants (7 females, 2 males), aged be-
tween 72 and 89 (mean = 79, standard deviation = 6) with MMSE scores
comprised between 14 and 30 (mean = 25.2, standard deviation = 4.3), ob-
tained through video annotation and experiment logs. The “Nb. part.” column
indicates the number of participants for whom the situation occurred.

Indicator Min Max Mean ± Std. dev. Nb. part. Total

Questions 22 103 38.2 ± 15.0 9 344
Actions 0 13 4.8 ± 2.9 8 43

Participants
Valid answers 21 55 28.7 ± 7.6 9 258
Invalid answers 0 20 6.2 ± 4.7 8 56

% invalid answers 0% 28.2% 14.4% ± 8.6% 16.3%
No answer 0 28 3.3 ± 5.5 3 30
% no answer 0% 27.2% 3.6% ± 5.2% 8.7%
Answers when 0 13 6.7 ± 3.8 8 60
not listening

Correct actions 0 8 4.1 ± 2.1 8 37
Incorrect actions 0 5 0.7 ± 1.0 2 6

% incorrect actions 0% 38.5% 7.3% ± 11.0% 14.0%
Wrong action 0 4 1.1 ± 1.3 4 10

timing

System
No reaction 0 12 3.4 ± 3.3 6 31
to answer

% no reaction 0% 21.0% 8.2% ± 6.2% 9.9%
Speech reco. errors 2 16 6.6 ± 3.2 9 59
Word error rate 6.9% 33.3% 19.7% ± 6.2% 20.8%

AE errors 0 11 2.6 ± 2.3 6 23
AE unwanted reactions 0 3 0.5 ± 0.9 2 5

Requests for help 0 6 2.0 ± 1.3 7 18
Experimenter 0 11 5.9 ± 5.2 8 23
interventions
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sometimes did not answer the ECA although they were looking at it (Patient 10
did not answer on 28 occasions). However, when participants did get distracted,
which happened once with Participant 2 and 3 times with Participant 10, the
ECA could successfully recapture their attention.

Given the structure of dialog management for step-by-step task instructions
presented in Section 4.1.4, 3 of the first 4 participants, who all had MCI, tended
to perform the action while the video instruction was being shown (9/10 actions
were performed too early) and the fourth one did not because she had asked
the experimenter if she had to perform the action right away. This caused the
attention estimator to react at an inappropriate moment on 5 occasions. The
structure of interaction management for tasks was thus changed to allow the user
to perform the task right away, as detailed in Section 5. This was successful,
since the issue did not occur for the other participants with MCI. However, this
only seemed suitable for one of the participants with Alzheimer’s disease, who
had the highest MMSE in the Alzheimer’s group. Attention prompting was
also triggered on 3 occasions by the last participant while she was performing
actions of the blood pressure task, because she went past the time allowed (5
or 10 seconds, depending on the action).

On many occasions (60 in total), the participants tried to talk to the ECA
while it was not listening to them. In particular, in the menu choice scenario,
we observed that several participants wanted to choose a dish right after the
presentation of the available options. As this was not allowed by our scenario, it
caused them some frustration. In addition, the explicit confirmation after each
choice annoyed some participants, who complained that the ECA was repeating
itself a lot. Participants with MCI also tended to anticipate their answer to
the confirmation question or after two speech recognition errors, when the ECA
kept the speech turn for a longer time than usual to remind them of the valid
answers. Another issue we encountered is that 2 participants with Alzheimer’s
disease tended to state that they had correctly performed an action when they
had not, on a total of 8 occasions (this includes Participant 14, who is not
counted in Table 1). In addition, the “welcome back” transition sentence after
a loss of attention turned out to be confusing for several participants. This was
also due to the phrase we used (“vous revoilà”, which translates “you are back”),
which did not seem very natural.

Lastly, most of the requests for help and interventions of the experimenter
were caused by system malfunctions (attention estimator errors or speech recog-
nition error). The few exceptions had to do with participants formulating in-
correct answers but not getting reminded of the correct answers soon enough
(this is why we changed the system to perform the valid answers reminder af-
ter 2 errors instead of 3), helping participants with the lowest MMSE perform
a difficult action (putting on the blood pressure monitor’s armband), so they
could go on to complete the task, and to remind people that they had to answer
the ECA when they were not responding.
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Table 2: LOUISE ratings, on a scale from 1 (very negative) to 4 (very positive).

Question Mean Std Dev. Min Max 4 3 2 1

Pleasantness 3.38 0.43 2 4 7 4 2 0

Appearance 3.31 0.43 3 4 5 8 0 0

Clarity of speech 3.54 0.50 3 4 7 6 0 0

Ease of instruction following 3.38 0.47 3 4 5 8 0 0

Pace of conversation 3.46 0.66 1 4 8 4 0 1

4.5 Feedback
The feedbacks in the questionnaires were mostly positive. The results to the
questions in the questionnaire are given in Table 2. This includes answers from
13 participants out of 14, as the one who did not interact with LOUISE was not
asked to fill in the questionnaire.

Regarding pleasantness, most participants had a positive or very positive
impression of LOUISE and only two participants out of 13 had a negative opin-
ion. Regarding the appearance, all participants expressed a positive or very
positive opinion. In addition, all participants thought LOUISE’s speech was
clear or very clear, and that the instructions were easy or very easy to follow.
Lastly, regarding the pace of the conversation, only one participant, with a
low MMSE score (17/30), said that the conversation was too fast; all others
said it was not too fast or not fast at all. However, several participants (5, all
with MCI) complained that the system was too slow. Overall, the feedbacks
from the participants are very positive, which is encouraging; this suggests that
our participants may perceive LOUISE as being a medium with inherent user-
friendliness. Some results, however, regarding the ease of following the ECA’s
task instructions are surprising, as they do not match our observations: two
participants obviously had some difficulties following the instructions but said
it was easy. These participants had low MMSE scores (14/30 and 22/30). This
may be due to the fact that they did not realize that what they were doing was
incorrect or did not want to admit it. It could also be linked to the white-coat
effect.

The feedback given in the semi-structured interviews were not as positive.
As already mentioned, 5 participants complained that the system was too slow
to speak and to respond to their answers. One of the participants said it was
because the ECA’s utterances were too long. Two participants were not sure
when the time was appropriate to give their answers, which partly explained
the many times when they attempted to answer whereas the system was not
ready to listen to them. A participant made a comment about her expectations
of the ECA’s capabilities being too high because of its appearance; this may
partly explain why several participants tended to formulate invalid answers,
thus not adapting to the fact that they were talking to a computer, and tried to
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answer when the ECA was not listening. Only 2 participants emitted negative
comments about the system’s malfunctions. Regarding the system’s usefulness,
only 1 participant formulated comments spontaneously: she did not think it
would be useful for her; however, she mitigated her answer by saying that it
could be useful if it were meant for cognitive stimulation exercises. Two other
participants said it could be useful in some situations. Lastly, participants 2 and
8 spontaneously formulated positive comments about the system, regarding the
presentation of the task instructions and the system’s ease of use.

4.6 General questions about ECAs
As mentioned above, in the questionnaires filled after the tests, we also asked
more general questions about ECAs. The results are shown in Table 3.

Regarding the possibility of personalizing the character’s appearance, more
than half of the participants (7/13) said they would like to be able to do that.
This is a smaller proportion than in the previous phases of the study.

Regarding the applications of ECAs they would be interested in, 6 partici-
pants selected the virtual assistant (providing information and doing reminders);
6 were interested in the coaching application; 7 said they would like step-by-
step task instructions; 7 thought that it would be useful for controlling home
appliances; and 2 said it was not useful for anything.

Regarding the type of display, similar results as the ones observed in the
previous phase were obtained: only one participant wanted a dedicated display
for the ECA; 7 said they would like it to be displayed on a television set, which
is a larger proportion than in the first study; 7 participants selected the tablet;
only three selected the smartphone; and one said “nowhere, I do not want to use
this technology”. Again, most people would like an assistive ECA to be added
on a device that they already own or is not only dedicated for this use.

Regarding how the ECA should address people, 9 participants said it should
use their first name; 3 would prefer it to call them Mr or Mrs X; and one
participant did not have an opinion. For the very frequent issue in French
language regarding the use of “tu” (informal) or “vous” (formal), each possibility
was selected by 6 participants and one did not know. This means that these
options should be configuration parameters, as this kind of preferences depend
on each user and may influence their adherence to the system. For instance,
people who wants the ECA to address them in a very polite manner may reject
the ECA, thinking it is disrespectful, if it calls them by their first name and
uses the “tu” pronoun. In addition, it might change over time, as this also
depends on the kind of relationship that exists between people and their ECA.
For information, the guidelines for positive treatment of people with dementia
impose the use of “vous”, without exceptions. This should therefore be the
default setting. However, we do not see why the ECA could not call its user
“tu” if that is what he or she wants.

Lastly, regarding the acceptability of the perception system, few people (5)
said they would want it to be installed in their homes, and only 3 would want it
to be always on and one person did not know. By comparison, 7 people would
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Table 3: Results of the questionnaire about ECA usability (13 participants).

Topic Type Answer Total (%)

Personalization of embodiment single answer Yes 7 (54%)

Applications multiple answers Task helper 7 (54%)
Butler 7 (54%)

Assistant 6 (46%)
Coach 6 (46%)
Nothing 2 (15%)
Other 0

Addressing single answer Tu 9 (69%)
the user Vous 3 (23%)

Do not know 1 (8%)

Naming single answer First name 6 (46%)
the user Last name 6 (46%)

Do not know 1 (8%)

Display multiple answers TV 7 (54%)
Tablet 7 (54%)

Computer 6 (46%)
Phone 3 (23%)

Dedicated screen 1 (8%)
Nowhere 1 (8%)

Camera acceptance single answer No 7 (54%)
Yes 5 (38%)

Do not know 1 (8%)

Activation single answer By user only 8 (61%)
Always on 3 (23%)

Programmed 1 (8%)
Do not know 1 (8%)
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not accept it and 8 said it should only be activated when they decide it. It is
however difficult to say if they fully understood the implications of the question,
especially the ones with the strongest cognitive impairment.

5 Discussion
Performing LOUISE usability testing allowed us to debunk several issues and
sometimes fix them, or at least get ideas for solutions. In addition, the fact
that we allowed some slight changes between tests to be performed enabled us
to iterate quickly and evaluate our solutions right away.

Globally, the fact that all but one participants were able to interact with
the ECA and that inability to do so was more linked to system malfunctions or
limitations (i.e., the speech recognizer only allowing to answer by “yes” or “no”)
than to the person’s capabilities suggest that LOUISE, after some improve-
ments, could be suitable for people with MCI or moderately severe dementia
(down to 10/30 at the MMSE) who are still capable of speaking, provided that
they do not have severe hearing impairment. However, it will probably not be
suitable for guiding through a task, at least, not in its current state, that is to say
without activity recognition capabilities. It would likely be the most useful as a
cognitive prosthesis for people with dementia, particularly to address memory
loss by performing reminders (date, time, place where they are, appointments,
medication intakes, etc.). However, it could also find useful applications for
people with MCI, such as cognitive stimulation exercises, eased access to video
chat to remain socially active or entertainment.

5.1 Technical aspects
The most limiting factor is the quality of automatic speech-to-text transcription,
especially for elderly voice [50]. In fact, Aman et al. [51] have demonstrated that
performance in automatic speech recognition dropped significantly when users
were disabled older adults, which are the ones who need assistive technologies
the most. In addition, the ECA tended to react to its own speech, which is a
problem we put a lot of effort in trying to fix but could not eliminate completely.
This last issue proved to be a difficult point as the speech recognizer we used,
the Microsoft Speech API, did not allow to turn it on and off as desired. We thus
used our speech turn management protocol to make the system more robust, by
ignoring speech recognition results outside of user speech turns, but, because of
delays in the system, the problem still occurred in some cases. In addition, this
caused some of the participants’ answers to be ignored by the system. Another
reason why this flaw is difficult to fix is that, if the delay between the end of the
ECA’s speech turns and the moments when it starts reacting to speech recog-
nition data is too long, we may miss the user’s answer. These malfunctions are
very damaging to the quality of experience and also causes misunderstanding
and confusion for our users with cognitive impairment. However, the technolo-
gies on which ECAs are built have made progress in the past decade and keep
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improving fast. We thus believe that these technical limitations will soon be
overcome. This issue can also be addressed by using a directional microphone
or using a headset-mounted microphone. However, the former would make the
system more expensive and more complex to install, while the later would be
cumbersome for the user and is not feasible in a real-world scenario for people
with cognitive impairment and, possibly, reduced mobility. In our system, we
have implemented a new speech recognition module at the end of the testing
phase, using the recently launched Microsoft Bing cloud-based speech recogni-
tion API. It seems more reliable than the one performed locally and it allows
to handle word-spotting, as it provides a full transcription of the user’s speech.
In addition, it can be turned on and off as desired, which also fixes the problem
of undesirable recognition of the ECA’s own speech. Unfortunately, we have
not evaluated it with patients yet. Using this new tool could change our error
management strategy, since it may enable the system to distinguish between
recognition errors, which should make the ECA ask the user to repeat his or
her answer, and incoherent answers, which should trigger a context reminder
utterance.

Related issues are the facts that people were not sure when to answer and
that their expectations of the ECA’s understanding capabilities were too high.
As a result, they sometimes tried to formulate answers when the system was not
listening. They also were not always sure if the system had heard their answer
when it took some time to react and repeated their answer. It therefore appears
that the listening pose (with hand on ear) is not sufficient and the system’s
feedback notification capabilities should be augmented with other visual cues to
indicate more clearly when the person should speak, when their answer has been
heard and when it is being processed. This would likely diminish frustration.
Furthermore, reminding people of the valid answers when the ECA does not
understand them proved useful.

Regarding the Kinect’s placement and functioning range, the best solution
would be to use another sensor, which works at a closer range. The Kinect sensor
for Xbox One8 could be a good solution. Interestingly, its API contains attention
estimation functionalities, which deserve to be compared to our own method. It
also allows lip-reading and mouth movements detection, which could be useful
to improve user speech turn detection. However, using this device is very costly
in terms of computing power. A cheaper solution may be to use a simple camera
with a powerful and well-optimized face-tracker such as OpenFace9. This would
also provide the system with more platform independence and not rely on a
manufacturer’s SDK support. Getting rid of the Kinect would also lead to a
more portable system, since SmartBody is already compatible with Linux, Mac
OS, iOS and Android.

The questionnaire results presented in Section 4.6 provide some information
about the opinions of older adults regarding deployment devices for an assistive
ECA in a home context. The first two choices are TV and tablet computer. The

8http://www.xbox.com/en-US/xbox-one/accessories/kinect
9https://github.com/TadasBaltrusaitis/OpenFace
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television set offers several advantages: it has a large display, loud and clear
speakers, and usually a central position in the living space. However, it also has
practical issues of computing power and availability at all times to display the
ECA. The computing power issue could however be solved by using an Android
smart TV or implementing the program on a set-top box (TV decoder), as done
by Carrasco et al. [6]. The issue of availability is however more challenging.
The tablet computer, on the other hand, would be quite practical: it has enough
computing power, built-in connectivity, camera, speakers and microphone and is
quite cheap. However, it would require to use at least some external loudspeakers
and a directional microphone. The screen may also be too small for some
applications. For care home and hospital contexts, the deployment devices
could also be either TVs or tablets. The main additional practical constraints
would reside in placement aspects: the TV or tablet would have to be fixed to
the wall, either in a high position or in a sturdy case.

5.2 Interaction management
So far, LOUISE is a research system that uses a custom XML language (AISML)
to specify pre-scripted interaction scenarios in the form of state machines with
simple question-answer pairs. It allows full control over the virtual character’s
behavior and speech as well as extra displays such as icons, pictures and videos.
Conversational structures, question/instruction formulation, visual information
placement and timing relative to speech and gestures and nonverbal behavioral
cues can be tested. As further discussed below, we obtained here useful infor-
mation about the efficacy of our attention recapture strategy, the efficacy of our
reminder to drink some water and the way verbal and visual instructions should
be arranged with regards to a person’s cognitive abilities.

The system’s attention management proved useful in a few cases and is likely
to be even more useful in a less controlled environment. However, in some cases,
people with Alzheimer’s disease did not answer the ECA’s questions, although
they were looking at it. This suggests that a strategy to handle this kind of
situation should be proposed; e.g., the ECA could prompt the person and call
him or her by name (first or last, depending on their preferences) to make clear
that it is addressing him or her.

In the water scenario, the majority of the participants said that they were not
thirsty and did not want to drink, which cut short the interaction. Dehydration
is known to be an issue in older’s adult care. This is partly due to the fact that,
with age, elders tend not to feel thirst as much as when they were younger.
As a consequence, it could be desirable for a daily-life support ECA to be able
to encourage people to drink more water. Behavior change coaching is a vast
subject that was investigated by Bickmore et al. [13] for encouraging older adults
to exercise more. In their study, the ECA is prescribed by a physician and is
coupled to a step counter to monitor the participant’s activity. While this study
shows the potential of ECAs to influence people’s behaviors, more research is
needed to understand the underlying mechanism of this influence and it is not
warranted that the ECA can be influencial by itself, without the intervention of
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an authority figure (the physician in Bickmore’s study). Inspiration can also be
taken from linguistic anthropology to select the most effective formulation of the
reminder to drink some water. For instance, Carletti [52] has found that some
formulations of the offer to drink water could be more effective than others. It
is also worth mentioning that the matter of using ECAs to manipulate people
into healthy behaviors also has ethical and philosophical implications.

To address the issue linked to task instructions, we re-arranged the scenar-
ios for the dialog to be structured slightly differently. Instead of explaining and
showing what action should be performed first and then asking the person to
perform the task, we let the user do the task right after it is explained. We then
ask if it is completed, and only explicitly ask the person to act if the answer
is negative. This also changes the policy of attention estimation deactivation
and gaze direction. Note that, if the answer is still “no” after the prompt to
perform the action, the ECA does not go back to the instructions, but keeps
repeating the prompt and asking if the action has been completed. This strat-
egy worked better with the participants with MCI, but the participants with
dementia struggled when they had to look at the example and perform the ac-
tions at the same time. This is due to their reduced attentional capabilities, as
it requires switching attentional focus rapidly and several times. As a result,
they performed incorrect actions and thought they were correct. This suggests
that there should be a different mode for task guidance that depends on the
person’s level of cognitive impairment. We think that the first way of managing
step-by-step task instructions we have described in Section 3.3 would be well
adapted to the patients with severe cognitive impairment, but it should be more
explicit that they have to concentrate on the instruction first and wait for the
ECA to tell them to perform the action. In addition, the instruction sentences
have to be carefully written, not to make people think that they have to perform
the action right away.

Following the steps of a task is more difficult for people with dementia than
for people with MCI and, in our experiment, this situation was worsened by
the fact that the blood-pressure measurement task is more complex than the
pill dispenser task. However, this allowed us to observe that guiding patients
through the task step-by-step and asking them for confirmation at each step is
not sufficient for them to perform it autonomously, as soon as it is a bit complex.
In that regard, some very encouraging results were obtained by Hoey et al. [28],
who worked on automated task assistance for patients with dementia using
activity recognition (see Section 2.2). Given the results of their work and our
own observations, we think that having people with dementia do things they can
no longer do alone, thanks to an assistive ECA system, seems achievable, at least
in some cases, but it would require activity recognition and/or feedback from
the objects involved in the task. This would also allow to compute a confidence
indicator for task completion, which could be harnessed by a caregiver to help
only when necessary, as also suggested by Hoey et al. [28]. Furthermore, training
users to use the ECA could increase the success rate.

Regarding item selection in a list, the way the interaction is managed by
the ECA worked quite well, since all 13 participants who did interact with the
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ECA were able to complete the scenario. It could be improved by adding a
step when people can say what they want, if they know, before reviewing the
items one by one. To introduce more flexibility in dialog management, some
inspiration could be taken from the work of Yaghoubzadeh et al. [21], who have
obtained some good results in using a conversation manager that allows for
mixed-initiative interaction in a scheduling assistant ECA, though their system
was only tested with a few older adults without cognitive impairment. However,
it would be difficult to let the person interrupt the ECA to say what he or
she wants. This remains a challenging issue to address because, as we have
mentioned above, the ECA will react to its own speech. In addition to the
microphone approach already discussed, another solution could consist in using
advanced speaker identification techniques. A simpler improvement, however,
would be to remove the confirmation step and confirm all chosen items at the
end of the dialog, checking them one by one, as recommended in [8], to avoid
annoying repetitions.

Lastly, after checking with two psychologists, we decided to remove the “wel-
come back” transition phrase because they said that it sounded very unnatural
and it was redundant with the recontextualization phrase. In addition, when the
inattention time was too short, the ECA spoke that sentence directly, without
doing the prompting, which was confusing for our test participants.

6 Conclusion and future work
We have conducted the design and laboratory evaluation of LOUISE, an ECA
meant to serve as a generic, application-parameterizable user interface in assis-
tive technologies for older adults with cognitive impairment. LOUISE includes
(1) rich animation capabilities, thanks to the use of the state-of-the-art BML
realizer SmartBody, (2) the display of images and example videos, (3) the ability
of easily adding new character models for the embodiment and (4) a custom-
built interaction manager module that allows to describe interaction scenarios in
a dedicated XML syntax. Our new ECA-based interaction management frame-
work tailored for older adults with cognitive impairment is able to (1) manage
their attention, (2) perform context reminders after the user gets distracted and
(3) specify the possible answers for a given question if people do not answer
adequately.

We used LOUISE to explore the specifics of dialog management for elders
with dementia; in particular, we created interaction scenarios, based on realis-
tic use cases, to study two tasks that would intervene in most applications of
ECAs as user interfaces for assistive technologies – choice with multiple options
and step-by-step task guidance – for which we proposed a dialog structure. We
then conducted a usability study, in a geriatric hospital, to refine and validate
our system with 14 older adults with mild to moderately severe cognitive im-
pairment. Our results suggest that LOUISE is an innovative ECA that the
majority of participants of our study enjoyed using, paving the way to a new
type of general UI for elder patients with cognitive disabilities. We found that
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LOUISE in its current state could be used for simple functions, such as offering
to drink water, having people choose the menu for their meals or guide them
through the steps of a simple task. However, in our experiments, it did not
perform well in encouraging participants to drink some water and guide people
with Alzheimer’s disease in performing a task, while it worked for people with
MCI. In particular, we found that interaction management should not be the
same for people with Alzheimer’s disease and for those with MCI, mainly be-
cause the former struggle when required to divide their attention between two
stimuli.

So far, our work in the LOUISE project has focused on attention and interac-
tion management. However, the conversation management we have proposed is
quite elementary and must be improved in our future work, especially to account
for the interpersonal variability of dementia and its evolution in time for each
person. Moreover, besides making the system more robust, it could be worth
looking at adding extra sources of information, such as emotion detection or
data from external devices, connected to the Internet of Things (pill dispenser,
refrigerator, etc.), which could add value to the system, particularly for people
with moderate to severe dementia, who have difficulties expressing themselves
and performing simple tasks. Furthermore, as LOUISE is a multi-purpose tool,
it could be used in larger systems, such as assistive homes, or in mobile robots
and in other research works. It is worth considering how the availability of bet-
ter off-the-shelf software and hardware may improve the system, with a little
refactoring work. Lastly, after improvements are made, the system should be
validated in a larger study that would include more subjects. As neurodegen-
erative diseases such as Alzheimer’s have high interpersonal variability, a larger
study will also have to group participants in terms of severity of impairment
in specific cognitive domains and not solely according to their global medical
condition diagnosis.
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