Adilla Susungi
email: adilla.susungi@mines-paristech.fr-norman.rink@tu-dresden.de

Norman A Rink

Albert Cohen

Jerónimo Castrillón

Claude Tadonki

Meta-programming for Cross-Domain Tensor Optimizations

Keywords: program ::= stmt program Texpression | Lexpression Texpression ::= tensor ([ints]) | eq (id, iters ? → iters) | vop (id, id, [iters ?, iters ?]) | op (id, id, [iters ?, iters ?] → iters | stripmine (id, int, int

Design and semantics of a tensor optimization meta-language

Functional transformation meta-language with high-level abstractions for tensor computations to enable the composition of different type of transformations (e.g. loop, algebraic or layout transformations). Formal specification of tensor operations and loop transformations using denotational semantics.

Examples of use: empirical tuning engines, meta-programming optimizations by experts.

iters ::= [ids] ids ::= id (, id)* ints ::= int (, int)*

Code Sample

--Begin program specification w = tensor(double, [13]) u = tensor (double, [13, 13, 13]) L = tensor(double, [13,13]) M_ = outerproduct ([w, w, w]) Lh = div (L, w, [[i1, i2]

, [i2]] -> [i1, i2]) → M = entrywise_mul(M_, u) r1 = contract(Lh, M, [[2, 1]]) r2 = contract(Lh, M, [[2, 2]]) r3 = contract(Lh, M, [[2, 3]]) # --End program specification # Code generation without transformations l1 = build(M_) l2 = build(Lh) l3 = build(M) l4 = build(r1) l5 = build(r2) l6 = build(r3)
codegen ([l1, l2, l3, l4, l5, l6]) # Code generation with loop fusions only l7 = fuse(l4, l5, 3) l8 = fuse(l7, l6, 3) codegen ([l1, l2, l3, l7]) # Code generation with fusion, parallelism and vectorization → l9 = parallelize(l1, 1, None) l10 = parallelize(l2, 1, None) l11 = parallelize(l3, 1, None) l12 = parallelize(l8, 1, None) l13 = vectorize(l9, 3) l14 = vectorize(l10, 2) l15 = vectorize(l11, 3) codegen ([l13, l14, l15, l12])

Semantics Foundations

Domains and state

T = { (op, S, I), ts | (ts = []) ∨ (ts = [t 1 , . . . , t k] ∧ t i ∈ T)} L = { id, [x 1 , . . . , x k] | x i ∈ L ∪ T } σ : identifier → (T + L)
Valuation functions

P prog s p = P prog p • P stmt s E t tensor(S) = λσ. (, S,), [] E t eq(t, I 0 → I 1) = λσ.let (op, S, I), ys = σ(t) y = (op, S, I), ys x = (, S , I 1), [] in (=, •, •), [x, y] ,
where

I = ∧ I = I , if I 0 = I = ∧ I = I 0 , if I 0 = E l build(t) = λσ.let r = "number of iterators in σ(t)" i k = (0, ub k , 1) for k = 1, . . . , r in i 1 , . . . , i r , [σ(t)] . . . , where σ(t) = (=, •, •), [x, y] E l stripmine(l, r, v) = λσ.let i 1 , . . . i r , xs . . . = σ(l) (b, e, 1) = i r i r = (0, (e -b)/v -1, 1) i r+1 = (b + v • i r , b + v • i r + (v -1), 1) in i 1 , . . . i r , [i r+1 , xs] . . . E l interchange(l, r 1 , r 2) = λσ.let i 1 , . . . i r 1 , . . . i r 2 , xs = σ(l) in i 1 , . . . i r 2 , . . . i r 1 , xs

Tensor Expressions

Matrix transposition

A = tensor([N1, N2]) B = eq(A, [i1, i2] -> [i2, i1]) (=, •, •) (B, [N2, N1], [i2, i1]) (A, [N1, N2], [i1, i2]) E l build(B) σ 2 = i1, [i2, [σ 2 (B)]] : for (int i1 = 0; i1 <= (N1-1); i1++) for (int i2 = 0; i2 <= (N2-1); i2++) B[i2][i1] = A[i1][i2];
Compositions Contraction

P stmt t = contract(t 0 , t 1 , [r 0 , r 1]) = P prog t 2 = vmul(t 0 , t 1 , [I, J]) t = add(t , t 2 , [I ,] → I
) where I = [i0, . . . , i(r 0 -1), k, i(r 0 + 1), . . . , is 0] J = [j0, . . . , j(r 1 -1), k, j(r 1 + 1), . . . , js 1] I = (I \{k}) || (J \{k}) Tiling Initial loop nest

i 1 i 3 i 5 xs stripmine n(, 3, v) has introduced i 2 , i 4 , and i 6 i 1 i 2 i 3 i 4 i 5 i 6 xs
* After three times interchange n.

i 1 i 3 i 5 i 2 i 4 i 6 xs

Experiments

 90GHz, 8 hyperthreads, 8192KB of shared L3 cache), Ubuntu 16.04. Generated C programs compiled with the Intel C compiler ICC 18.02 (flags: -O3 -xHost -qopenmp) With TeML: Pluto (v 0.11.4) optimizations reproducible Capability to express better optimization paths Future Work Abstractions for memory virtualization, stencil patterns, sparse tensors and corresponding semantics, extensions for parallelism support, type system This work was partially supported by the German Research Council (DFG) through the Cluster of Excellence 'Center for Advancing Electronics Dresden' (cfaed) and by PSL University through the ACOPAL project.