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Particle observers for state estimation and adaptation
in deterministic systems with random piecewise constant inputs

Silvère Bonnabel and Jean-Jacques Slotine

Abstract— In this paper we develop a methodology for state
estimation of partially contracting systems inspired by the par-
ticle filter (PF). If a system is partially contracting, in the sense
that once some state variables are assumed known and viewed
as inputs, the remaining reduced system is contracting, then
only those variables need to be estimated. Indeed, once those
variables are known, the remaining variables are asymptotically
recovered owing to the contraction properties. To estimate the
state of such a system, we thus suggest to use a PF approach to
estimate only the non-contracting part, whereas the other part is
naturally recovered. The methodology is applied to a nontrivial
tracking problem. The trajectories of objects one seeks to track,
such as aircraft and marine vehicles, typically consist of smooth
sections with large, but infrequent, unpredictable changes. As a
result, their motion is well modeled by nonlinear deterministic
ordinary differential equations driven by piecewise constant
random control inputs. Following our methodology, we combine
a type of PF called the variable rate particle filter (VRPF) with
a bank of observers assumed to have convergence properties.
Using the notion of virtual system, we devise a hybrid variable
rate particle observer, that uses the particles to detect changes,
and the observers for state estimation in between changes.

I. INTRODUCTION

Particle filters have attracted a lot of attention over the past
two decades, with the advent of powerful computers, see e.g.,
[1]. Nowadays, they are able to execute at many hundreds
of Hertz for realistic problems, as object tracking (with
early implementations dating back to [2]), automotive state
estimation, and parameter learning. Virtually all practical
implementations of the particle filter resort to the Rao-
Blackwellized particle filter (RBPF): the state consists of
two groups variables (r,z), such that given r the distribution
of variable z may be estimated analytically, typically via a
Kalman filter. It thus suffices to use particles to estimate r,
and, using Bayes’ theorem the whole distribution of (r,z)
is then estimated. This reduces the number of particles and
improves estimation accuracy [3].

Building upon this idea, we propose a methodology of
particle observers (PO) for partially contracting systems, i.e.,
systems with state (r,z), and such that if r(t) is known and
viewed as an input, the reduced system governing z(t) is
deterministic and is contracting, see [4]. Along the lines of
the RBPF methodology, the rationale is to use particles to
estimate the statistical distribution of variable r, whereas
z may be asymptotically recovered owing to contraction
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properties [5]. This leads to a parsimonious representation
of the state, and makes the particle filtering problem more
tractable and the filter possibly more accurate.

Intuitively, the main difference is as follows. In the RBPF,
r(ω, t) and z(ω, t) are stochastic processes, and if r(·, t)
is known, then the distribution of z(·, t) is supposed to
be analytically computable. In our approach, z(·, t) is de-
terministically related to r(·, t) owing to the conditionally
deterministic assumption. Thus, given r we need to estimate
a value for z(t). This is where contraction properties allow
us to derive an approximation ẑ(t) of this “true” value
z(t) instead of an entire distribution, making the use of an
observer more suited to estimating the z part of the state.

We then tackle a tracking application. Trajectories of
aircraft and marine vehicles are in fact smooth and well
described by continuous time ordinary differential equations
(ODE) driven by constant inputs, but subject to abrupt
changes at each maneuver. Based on this approach to mod-
eling the tracking task, S. Godsill with various co-authors
proposed the variable rate particle filter [6], [7], [8], a particle
filter well suited to piecewise deterministic models.

On the one hand, it is well known that particle filters have
trouble converging in the presence of low process noise, and
are subject to divergence when dealing with (even partially)
deterministic models, see e.g., [9]. In particular, to the au-
thors best knowledge, the stability of the variable rate particle
filter has never been studied. On the other hand, the field of
nonlinear observers, and notably the theory of contraction
[5], provide powerful tools from dynamical systems theory
to achieve stable estimation for noise-free models, but are
not suited to tasks such as change detection. This prompts
an application of our methodology of particle observers
for partially contracting systems. We consider deterministic
systems with inputs jumping randomly at unknown times,
and run many observers in parallel (the particles), each
assumed to be contracting in the absence of jumps. This
way, we obtain a hybrid filter which is able to detect the
jumps, and to reconverge to the true state between jumps. The
theory is made rigorous using the notion of virtual systems
introduced in [4], see also [10]. Our approach may be related
to the flow particle filter [11], and the feedback particle filter
[12]. Some preliminary ideas can be found in our recent
paper [13].

Section II is devoted to the particle observer methodology.
Section III considers the piecewise deterministic estimation
problem, and the variable rate particle filter is introduced. In
Section IV, assuming we have at our disposal an observer
with some convergence properties, a hybrid strategy that



combines it with a particle filter is proposed.

II. PARTICLE FILTERS AND PARTICLE OBSERVERS

A. The Rao-Blackwellized particle filter (RBPF)

Consider a discrete Markov process rn having initial distri-
bution p(r0) and transition kernel p(rn | rn−1). The variable
rn is supposed hidden, and assume we have observations in
the form of a random variable yn at time n correlated with
rn. Moreover, assume the observations to be conditionally
independent given the hidden variables. The goal of discrete
time filtering is to estimate the hidden variables at best from
the observations, i.e., to ideally compute

p(rn | y1:n), where y1:n = {y1, · · · ,yn}, (1)

or more generally p(r1:n | y1:n), a task known as smoothing.
Assume now, that observations involve another process zn,
such that p(zn | y1:n,r1:n) may be analytically evaluated,
typically using a Kalman filter.

If we may approximate the desired distribution using a set
of weighted particles, i.e., p(r1:n | y1:n) ≈ ∑

N
1 w(i)

n δ
r(i)1:n

(r1:n),
then the best estimate based on past observations y1:n of any
quantity F(zn,rn) in the sense of minimal mean squared error
may be approximated as:

Ep(zn,rn|y1:n) (F(zn,rn))≈
N

∑
i=1

w(i)
n E

p(zn|y1:n,r
(i)
1:n)

(
F(zn,r

(i)
n )

)
where we used p(zn,r1:n | y1:n) = p(zn | r1:n,y1:n)p(r1:n | y1:n).

This gives rise to the celebrated Rao-Blackwellized Parti-
cle Filter (RBPF). Algorithm 1 provides its basic version.

Algorithm 1 RBPF with prior sampling
Draw N particles from the prior initial distribution p(r0)
for i = 1 · · ·N do

Sample from the prior

r(i)n ∼ p(rn | r(i)n−1), and let r(i)1:n =
(

r(i)n ,r(i)1:n−1

)
Evaluate and update weights

w(i)
n = p(yn | y1:n−1,r

(i)
1:n) w(i)

n−1

Normalize weights w̃(i)
n = w(i)

n /[∑ j w( j)
n ]−1

Our estimate for value F(zn,rn) given past observations is

∑
i

w̃(i)
n E

p(zn|y1:n,r
(i)
1:n)

(
F(zn,r

(i)
n )

)
.

Resample if necessary, i.e., multiply/delete particles to
obtain N random samples with weights equal to 1/N.

end for

B. Particle observers for partially contracting systems

In this paragraph, we summarize the results of [13].
Consider a noisy dynamical system of the form

d
dt

z = f (z,r) (2)

d
dt

r = g(r)+w(t) (3)

where f , g are smooth maps, and w(t) process noise.
Definition 1: If equation (2) is a contraction when r(t) is

considered as a known input, system (2)-(3) is said to be a
partial contraction [4].
This implies, see [5], that if r(t) is known and viewed as
an input of (2), then (2) has the property that for any two
trajectories z1(t),z2(t) we have:

d(z1(t),z2(t))≤ d(z1(0),z2(0))e−2λ t , (4)

with λ the contraction rate, and d a well-chosen distance.
Assume discrete time noisy measurements are available:

yn = h(z(tn),r(tn))+Vn at times t0 < t1 < t2 < · · · , (5)

with Vn unknown independent identically distributed random
variables with density l, i.e., p(y | z,r) = l(y−h(z,r)).

Note that, by denoting (rn,zn) := (r(tn),z(tn)) one may
want to apply the RBPF methodology to dynamics (2)-(3)
with observations (5). However, the usual assumption under-
lying the RBPF that p(zn | y1:n,r1:n) may be analytically eval-
uated does not hold. It may yet be approximated under the
partial contraction assumption introduced in Definition 1. In-
deed, if we call ẑ(t) a solution of (2) associated to some given
trajectory {r(t)}t≥0, then asymptotically we have p(z(t) |
{r(s)}s≤t) ≈ δ (z(t)− ẑ(t)), since (4) implies exponential
convergence of ẑ(t) to z(t). Thus, letting (ẑ(t)(i),r(t)(i)) be a
solution to the stochastic differential equations (SDE) (2)-(3),
we have the approximations:

p(z(t) | y1:n,{r(s)(i)}s≤t)≈ δ (zt − ẑ(t)(i)), t ≥ tn (6)

Ep(z(t)|y1:n,{r(s)(i)}s≤t )

(
F(z(t),r(t)(i))

)
≈ F(z(t)(i),r(t)(i)),

p(yn | y1:n−1,{r(s)(i)}s≤tn)≈ l(yn−h(ẑ(tn)(i),r(tn)(i))). (7)

An application of the RBPF methodology to (2)-(3) with
observations (5) under the partial contraction assumption and
the subsequent approximations (6)-(7) thus yields the particle
observer (PO) Algorithm 2.

Algorithm 2 The PO with prior sampling
Draw N particles from the prior initial distribution p(z0,r0)
for i = 1 · · ·N do

Sample (z(tn)(i),r(tn)(i)) by numerically integrating the
stochastic differential equations (2)-(3) from tn−1 to tn.
Evaluate and update weights

w(i)
n = l(yn−h(z(tn)(i),r(tn)(i))) w(i)

n−1.

Normalize weights w̃(i)
n = w(i)

n /[∑ j w( j)
n ]−1.

Our estimate for value F(z,r) given past observations is

∑
i

w̃(i)
n F(r(t)(i),z(t)(i)).

In particular the state estimate is ∑i w̃(i)
n (r(t)(i),z(t)(i)).

Resample if necessary.
end for



III. STATE ESTIMATION FOR DETERMINISTIC SYSTEMS
WITH RANDOM JUMPS

The reader might wonder to what extent it is realistic to
consider systems of the form (2)-(3) where noise affects only
(3). First, it may serve as a meaningful approximation, if
for instance (2) is subject to small noise. Then, and above
all, it may readily be applied to various realistic systems.
One example consists of nonlinear piecewise deterministic
systems subject to abrupt unpredictable jumps. These are
relevant to tracking applications, and in the remainder of
this paper we apply the ideas of Section II to such systems.
Various other perspectives are offered in Section V.

A. Original considered model

In this section we review the conditionally deterministic
inference problem addressed by the variable rate particle
filter [6], see also [8] for a somehow more concise presen-
tation. We consider a deterministic dynamical model with
continuous-time state x(t) ∈ Rn, and parameter (or control
input) u∈Rm. We assume that changepoints occur at random
times {τ0 = 0,τ1, · · · ,τk, · · ·}, each with associated parame-
ters {u0,u1, · · · ,uk, · · ·}. The pairs (τk,uk) form elements of a
marked point process. Consider some discrete measurement
times t0, t1, · · · , tn, · · · , along with associated measurements
y0,y1, · · · ,yn, · · · of the form

yn = h(x(tn))+Vn (8)

with Vn a random variable with known distribution. By letting
l denote the probability density function of Vn we have

p(yn | x(tn)) = l(yn−h(x(tn))). (9)

The objective is to estimate from partial and noisy measure-
ments of x(t), the changepoints, the associated parameters,
and the state x(t) in real time.

Let θn represent the past and present variables

θn = {τ1, · · · ,τ j,u1, · · · ,u j : 0≤ τ j < tn ≤ τ j+1}.

Let us define the following quantities

K(t) = max{k : τk < t}, Kn = K(tn)

Note that, we could alternatively write Kn = K̃(θn) as

Kn = max{i : τi ∈ θn} (10)

Processes τk and uk are assumed to be Markov, and the
transitions to be given by

p(τk | τk−1) = pτ(τk− τk−1), pu(uk | uk−1)

with pτ a probability density such that pτ(τ) = 0 for τ < 0.
The state evolution is assumed to be governed by an ODE

which depends on the changepoints and the corresponding
parameters as follows:

d
dt

x(t) = f (x(t), t,uK(t)). (11)

This means that the state is governed by an ODE driven by
parameters that remain constant over random time intervals.
Let us denote φ the flow of the ODE ẋ = f (x, t,u), that is,

φ(x1,u, t1, t2) is the solution at t2 to the latter ODE with fixed
parameter u and initial condition x1 at t1. We have:

x(t) = φ(x(τKn),uKn ,τKn , t), τKn < t ≤ τKn+1. (12)

By choosing t = τKn+1, this equation specifies the state at
the next changepoint, and by reiterating to the following
changepoints, we get the whole future trajectory. This proves
that the knowledge of the process θn and the initial state
x(0) uniquely specifies the state x(t). For simplicity, we will
systematically assume x(0) to be known. This is not a very
restrictive assumption, as the aim of tracking is to keep track
of x(t) despite the random changepoints, and after a few
jumps this knowledge about the initial state is forgotten.

Recalling (1), the goal of the variable rate particle filter is
to compute an approximation to the posterior

p(θn | y1:n) (13)

and x(t) as a byproduct, through (12), i.e. by integrating (11).

B. The variable rate particle filter

The bootstrap variable rate particle filter (VRPF) is a
particle filter that computes an approximation

p̂(θn | y1:n) =
N

∑
j=1

w( j)
n δ

θ
( j)
n
(θn) (14)

to the posterior (13). In its simplest bootstrap form, the
piecewise deterministic VRPF is implemented along the lines
of Algorithm 1, see [8], yielding Algorithm 3.

Algorithm 3 Variable rate particle filter

For all 1≤ j≤N, initialize changepoint sequence as θ
( j)
0 =

(τ
( j)
0 ,u( j)

0 ) with τ
( j)
0 = 0, u( j)

0 ∼ pu(u0), and x on x(0).
for measurement time tn do

for j = 1 · · ·N do
Sample θ

( j)
n ∼ p(θn | θ ( j)

n−1) for each particle j.
Using equation (10) to get K( j)

n , we calculate the
associated x(t) at current measurement time tn:

x( j)
n = φ(x(τ

K( j)
n
),u

K( j)
n
,τ

K( j)
n
, tn). (15)

Evaluate and update weight w( j)
n = p(yn | x( j)

n )w( j)
n−1

using (9), and normalize weights to get w̃( j)
n .

Resample if necessary.
end for
The seeked distribution is approximated by (14). This
yields ∑ j w̃( j)

n x( j)
n as an estimate for the state x(tn).

end for

Let us now comment on some of the steps. Regarding
the sampling step, assume that we want to sample τKn given
τ

K( j)
n−1

. This means there has been exactly K( j)
n−1 changepoints

before tn−1. We can sample then the next changepoint time
as τ

K( j)
n−1+1

∼ pτ(τ− τ
K( j)

n−1
). Either tn ≤ τ

K( j)
n−1+1

, then we let

τ̄ denote the latter time and we let K( j)
n = K( j)

n−1. θ does not



need to be sampled anymore until the first measurement time
tk, k > n to become larger than τ̄ . Or τ

K( j)
n−1+1

< tn, then we

integrate the flow (12) to obtain x( j)(τ
K( j)

n−1+1
), then sample

u
K( j)

n−1+1
∼ pu(u | uK( j)

n−1
), and reiterate until the changepoint

time becomes larger than tn.
Regarding the weight update, particles are sampled us-

ing the prior and the weights are classically defined as
w( j)

n = p(yn | θ ( j)
n ,y1:n−1)w

( j)
n−1, see Algorithm 1. As x(0) is

known (and thus considered as a fixed parameter), given the
sequence θ

( j)
n of changepoint times and parameters, the state

corresponds to the integration of system (11), that is x( j)
n

as defined by (15). Using that x( j)
n is a function F (θ

( j)
n )

of the past changepoints we have p(yn | θ
( j)
n ,y1:n−1) =

p(yn | θ
( j)
n ,F (θ

( j)
n ),y1:n−1) = p(yn | x( j)

n ) indeed, as yn is
independent of all the other variables conditionally on xn.

C. Possible caveats in a partially deterministic context

It is well known that particle filters are not efficient
for systems governed by deterministic dynamics, typically
for fixed parameter inference. Actually, they are prone to
divergence, see e.g., [9]. In the context of the VRPF, though,
the state space is continually explored thanks to the jumps.
But asymptotic convergence may necessitate a large number
of particles to get full coverage. Another possible limitation
of PF is in the presence of low measurement noise. Since
p(yn | xn) is then peaked, virtually all weights drop to zero
after one measurement, leading in turn to estimation failure.

IV. A PARTICLE OBSERVER BASED APPROACH

In the present section, we consider the model of Section
III-A, and propose a particle observer, that addresses some
of the issues raised in Section III-C.

Up to a few subtleties related to marked point processes
in place of discrete-time Markov processes, Algorithm 3 is
close in essence to the standard Algorithm 1, since θ = (τ,u)
plays the role of hidden variable r, and x plays the role
of auxiliary variable z, see notably the discussion after
Algorithm 3. As a result, one may want to pursue the
methodology of particle observers described at Section II-B
for this application. Our idea is that, indeed, if the sequence
of jump times τ1,τ2, · · · were known, then an asymptotic ob-
server might be devised to estimate the remaining variables,
that is, x(t) and input u(t). And under contraction properties
of the observer’s dynamics, approximations akin to (6)-(7)
may then be used. To formalize this approach, we will need
to split the observations in two. One type of observation
will be used by the observer, and the other type by the
particle filter to assess the weights. We will assume to have
discrete the noisy measurements (8), but also some auxiliary
continuous-time noise-free measurements of the form:

z(t) = h̃(x(t)). (16)

Note that the two sources of information are assumed inde-
pendent, and h and h̃ may bear a quite different structure.
For instance, z(t), albeit noise free, may be of very small
dimension compared to x(t).

A. Considered problem and further assumptions

To recap, the considered system is

d
dt

x(t) = f (x(t), t,uK(t)) (17)

yn = h(x(tn))+Vn, t1 < t2 < · · · (18)

z(t) = h̃(x(t)) (19)

where uK(t) are parameters jumping at random times. Be-
sides, let us consider the following alternative system

d
dt

x(t) = f (x(t), t,u(t)) (20)

d
dt

u(t) = 0 (21)

z(t) = h̃(x(t)) (22)

which corresponds to the noise free continuous-time system
(17)-(19) between two jumps (as the parameters are fixed be-
tween jumps). Furthermore, assume we have at our disposal
an asymptotic observer for the latter system of the form:

d
dt

x̂ = f (x̂, t, û)+L1(t, x̂, û)(z− h̃(x̂)) (23)

d
dt

û = L2(t, x̂, û)(z− h̃(x̂)) (24)

having asymptotic convergence properties for arbitrary initial
condition (x̂(0), û(0)). Typically, a desirable property would
be exponential contraction [5], leading to

d(x̂(t),x(t))≤ d(x̂(0),x(0))e−2λ t . (25)

On the one hand, this observer can readily be used on
the original problem (17)-(19). This will lead to a solution
that is unlikely to diverge (provided average time between
consecutive jumps is larger than the convergence time of the
observer), but in the transitory phases that follow change-
points, it will yield inaccurate estimates until (x̂(t), û(t)) has
re-converged to (x(t),uK(t)).

On the other hand, the variable rate particle filter cannot
readily account for the information provided by z(t) of eq.
(19), since noise free measurements (as they appear in the
theory of observers), or very small measurement noise, lead
to failure of particle filters as explained in Section III-
C. Besides, owing to the fact the dynamics are piecewise
deterministic, the variable rate particle filter based solely on
the information brought by yn of eq. (18) will never be able
to guarantee asymptotic convergence to the true parameters,
even if the time between jumps is large (as the particles
u( j) remain fixed between two jumps). For those reasons,
we propose a hybrid strategy, combining both approaches.

B. Proposed hybrid strategy

Our idea is to devise a variable rate particle filter for
system (17)-(18), and to use the side partial information (19)
to help the sampled parameters u( j) (and thus the state) move
towards the “true” parameters and state between consecutive
changepoints. Crucially, this can be done by resorting to
the notion of virtual systems [4], [10], i.e., by applying the
variable rate methodology to an auxiliary virtual system.



Consider indeed the following virtual system associated to
the observer

d
dt

χ = f (χ, t,ν)+L1(t,χ,ν)(z− h̃(χ)) (26)

d
dt

ν = L2(t,χ,ν)(z− h̃(χ)) (27)

and rewrite those dynamics as

d
dt
(χ,ν) = f̂ (χ,ν , t,z) (28)

Building upon the latter systems, we let z(t) = h̃(x(t))
as before, and we define auxiliary dynamics (recall that
τ1,τ2, · · · ,u1,u2 · · · are in fact unknown) as

τk−1 < t < τk ⇒ d
dt
(χ,ν) = f̂ (χ,ν , t,z),

t = τk ⇒ ν(t) = uk,
(29)

that is, we integrate (28) between two consecutive change-
points, and, at each changepoint at time τk, the variable ν

jumps to the corresponding parameter value uk.
Letting φ̃ denote the flow of (28), i.e.,

φ̃(χ1,ν1, t1,z(t1,t2), t2) is the solution at t2 to (28)
being initialized on (χ1,ν1) at t1, and where we let
z(t1,t2) = (h̃(x(s))t1≤s≤t2 . Our auxiliary virtual system can be
alternatively defined by

(χ(t),ν(t)) = φ̃(χ(τKn),ν(τKn),τKn ,z
(τKn ,t), t), τKn < t ≤ τKn+1

yn = h(χ(tn))+Vn, t1 < t2 < · · ·
(30)

that is, we recover an auxiliary system to which the variable
rate methodology of Section III-B can be applied. This yields
the proposed Algorithm 4.

Algorithm 4 Hybrid variable rate particle observer

For all 1≤ j≤N, initialize changepoint sequence as θ
( j)
0 =

(τ
( j)
0 ,ν

( j)
0 ) with τ

( j)
0 = 0, ν

( j)
0 ∼ pu(ν0), and χ( j)(0)= x(0).

for measurement time tn do
for j = 1 · · ·N do

Sample θ
( j)
n ∼ p(θn | θ ( j)

n−1) for each particle j.
Using equation (10) to get K( j)

n , we calculate the
associated χ(t),ν(t) at current measurement time tn:

(χ
( j)
n ,ν

( j)
n ) = φ̃(χ( j)(τ

K( j)
n
),ν( j)(τ

K( j)
n
),τ

K( j)
n
,z

(τ
K( j)

n
,t)
, t).

Evaluate weight w( j)
n = p(yn | χ

( j)
n )w( j)

n−1 = l(yn −
j(χ( j)

n ))w( j)
n−1 and normalize weights to get w̃( j)

n .
Resample if necessary.

end for
∑ j w( j)

n χ
( j)
n is an estimate for x(tn).

end for

Using the flow of auxiliary system (26)-(27) in place of
the flow of original system (17) to estimate the state of the
original system through a VRPF, may be justified through
the notion of virtual system, see Section IV-C below.

Remark 1: Particle filters have drawn criticism regarding
their execution time. In this respect, our method is partic-
ularly efficient, owing to the use of observers as building
blocks, each being very cheap to implement, as for each
particle we need to integrate an ODE and weight computation
is also cheap since p(y | χ) = l(y− h(χ)), see (9). This is
in contrast to the standard RBPF where Kalman filters are
commonly used to estimate the z variable, see Section II.

C. Discussion and formal results
System (17)-(18)-(19) is stochastic, since it is driven by

the process ω 7→ (τk(ω),uk(ω)), and ω 7→Vn(ω) is a random
variable. Notably, z(t) is a random process ω 7→ z(t,ω).
Based on the fact that in the VRPF methodology the initial
condition x(0) is assumed to be known, the following result
is noteworthy:

Lemma 1: Consider system (17)-(19) on the one hand,
and system (29) on the other. Then, if χ(0) = x(0), we have
χ(t) = x(t) at all times t ≥ 0.

Proof: It suffices to note that, since z(t) = h̃(x(t)), we
have z(t)− h̃(x(t)) = 0, and the pair (x(t),uK(t)) is thus a
solution to the stochastic differential equation (29).
This property lies at the heart of the use of virtual sys-
tems for observer design [4], [10]. In terms of our particle
filter approach, this means Algorithm 4 may be viewed
as a (bootstrap variable rate) particle filter for the original
problem, given that initial conditions coincide χ(0) = x(0).
Indeed, in this case both dynamical systems coincide as
explained in the proof of Lemma 1. Normally, Algorithm
4 should use observations related to its own latent variables,
i.e., of the form ỹn = h(χ(tn)) +Vn, whereas it evaluates
the weights based on the measurements yn = h(x(tn))+Vn
instead. However, it is legitimate to use yn as measurements
for the auxiliary system since we know from Lemma 1 that
at all times χ(t) = x(t) and thus ỹn = yn indeed.

However, Lemma 1 does not hold under an arbitrary small
error in measurements described by (19), or for χ(0) 6=
x(0). But those are precisely the cases where our observer-
based approach applies. Indeed, by assuming observer (23)-
(24) to have convergence properties, each simulated particle
(χ( j)(t),ν( j)(t)) obtained through φ̃ in Algorithm 4 tends to
move closer to (x(t),uK(t)) between jumps. As a result, par-
ticles tend to be less dispersed around x(t) and to yield more
precise and robust estimates, see Fig. 1 for an illustration.

D. Generalizations
Note that Eq. (17) being quite general, our approach can

be used to enhance existing adaptive observers to track more
rapidly variations in some unknown parameters u subject to
abrupt changes.

Another possibility is to let u denote a model index, and
then τ denotes the unknown times of switching.

Besides, the assumption (21) of constant u(t) between
jumps is not necessary. Between jumps, generic dynamical
behavior for u(t) may in fact be assumed as long as it is
contracting or may be tracked by an observer. In this case
uK(t) in (17) shall be replaced with uK(t)(t) and (21) by the
ad hoc differential equation d

dt u(t) = g(u(t), t).



Fig. 1. Graphical illustration of Algorithm 4 with x(t) ∈ R2. Plain stars
indicate changing points at unknown times τ1,τ2, · · · , each being associated
with unknown parameter ui. The particle observer of Algorithm 4 keeps
exploring the space of jump times τ and parameter u by constantly creating
tentative couples (τ j,ν j) with associated variable χ j(t) referred to as
particles, and makes use of a great number N of such particles. Owing to
the assumed convergence properties of observer (23)-(24) for each particle
1 ≤ j ≤ N, variable χ j(t) tends to move towards true x(t) even if the
corresponding tentative couple (τ j,ν j) is misidentified. The philosophy
of particle filtering, that has been compared to Darwin’s “survival of the
fittest”, consists in evaluating weights w j for each particle indicating its fit
to measured data. Particles with low weights are discarded, and particles
with high weight are multiplied to populate the likely regions of the space,
yielding quicker convergence. Here particle i corresponds to a tentative
(τ i,ν i) being close to actual (τn+1,un+1) and thus χ i(t) rapidly converges to
the true x(t). Particle i is thus likely to be selected and multiplied, whereas
particle j having less adequate (τ j,ν j) might be suppressed.

V. PERSPECTIVES

Building upon the notion of virtual systems [4], we
proposed a novel method which bridges the gap between
nonlinear observer theory and particle filters for a broad class
of practical applications.

We anticipate the method might prove useful in various
contexts. One such instance is target tracking using one
particular model of the nonlinear deterministic models with
random piecewise constant inputs proposed in [7]. For a 3D
target model inspired by [7], an invariant extended Kalman
filter based on the work [14] was shown in [15] to yield good
tracking performance, and might be used as a building block
in a particle observer approach.

The method can also be applied to adaptive estimation of
deterministic systems parameterized by an unknown vector
selected from a finite set of known vectors. The switch is
randomly connected to one of the vectors and may either
remain there throughout the duration of the process, or
change at random times associated to a prior temporal distri-
bution. A typical example application would be Simultaneous
Localization and Mapping (SLAM) with a vector accounting
for the multi-hypotheses that stem from perceptual ambigu-
ity, as e.g. in [16]. To address such questions one could
combine the contracting observer of [17], based on the
construction of simple synthetic measurements for SLAM,
with the particle approach developed in this article. Another
possible application is contact detection in robotics, see also
Section IV-D. In the recent paper [18] for instance, leg
state switching is based on a periodic phase-based state
schedule, which provides a prior on times of change of a
contact parameter s between stance (s= 0) and swing (s= 1).

Disturbance observers [18] with convergence properties for
known s might be run in parallel using our approach.

The methodology of particle observers might also prove
useful in the context of differentially positive systems [19],
where the state is known to converge to a Perron-Frobenius
curve: the use of particles might allow us to identify accu-
rately where the state is located on the curve.
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