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Abstract

Grain coarsening in metallic material microstructures is a phenomenon usu-

ally avoided in industrial settings due to the decrease in certain physical

properties of materials as the grain size increases. However, in cases where

it cannot be avoided, it needs to be modeled and simulated in order to be

controlled. Even so, individual grain boundaries in a material microstructure

have their own structure and their own behavior and, as such, uniform grain

boundary energy approaches arrive at their predictive limits when it comes to

certain types of local phenomena (abnormal grain growth, thermal twinning,

etc). This work presents a new heterogeneous grain boundary energy for-

mulation for grain growth built on the thermodynamics of the phenomenon

that can handle high grain boundary energy gradients. Using a full field

finite element numerical framework it verifies the precision and convergence

of this new formulation.
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1. Introduction

Grain growth is a ubiquitous thermally activated mechanism by which

the microstructures of crystalline materials coarsen at relatively high tem-

peratures. It is a phenomenon that can be found to occur during thermal

treatment operations [1, 2, 3, 4] as well as in-service at high temperatures5

in metallic components [5]. It is driven by the reduction of grain boundary

energy [6] and, as such, is dependent upon the grain boundary character dis-

tribution as well as the grain boundary network’s topology and morphology.

The thermodynamics of grain growth are relatively complex due to the

so called “macroscopic” dimensionality of the grain boundaries [7]. The five10

dimensional space of grain boundaries is non-euclidean and partitioned into

symmetric subspaces due to the inherent crystallography of the material. The

topology of the grain boundary space makes it difficult to define a metric [8, 9]

which makes any multivariate calculus one wishes to perform, such as that

required by the finite element method (FEM), complicated.15

Currently, the numerical simulation of this phenomenon is approached in

multiple ways. There are probabilistic methods based on energetic descrip-

tions of the microstructure such as Monte Carlo/Potts models [10] or some

Cellular Automata based programs [11, 12, 13]. These schemes are advanta-

geous in the relative ease of their implementation as well as the speed of their20

resolution. However, the pixelized description of the microstructure can be

a problem if one needs to evaluate local grain boundary properties such as

inclination or mean curvature. The assessment of these properties may be

improved by refining the grid. However, since the grid is homogeneous, this

2



refinement operates on the entire simulated domain and therefore increases25

the computational costs consequentially. There exist deterministic methods

of simulating grain growth as well which, generally, can be classified into

three families: phase-field [14, 15], vertex [16] and level-set [17, 18, 19, 20]

methods. The phase-field methodology is advantageous through its firm and

direct foundation in the thermodynamics of the problem being solved [21].30

However, in a grain growth with heterogeneous grain boundaries setting the

numerical formulation becomes unstable for high grain boundary energy dif-

ferences [22]. The level-set methodology is robust numerically and is easily

extended to other types of interfacial problems [23, 24, 25, 26]. However, its

formulation is purely kinetic and the thermodynamics are not inherent to35

the method.

Generally speaking, phase-field methods are more mature and more widely

used in the literature for simulating grain growth than level-set schemes.

Phase-field approches consist in the expression a global thermodynamic en-

ergy functional and the minimization of this functional with respect to order40

parameter displacements [21]. In order to consider varying properties of grain

boundaries, one must make certain parameters of the phase-field simulation

vary in space. These parameters must be calibrated such that the free energy

integrals over the boundaries result in the correct grain boundary energies

[14]. However, there is no unique way to callibrate the parameters related45

to the grain boundary properties in the phase-field formulation (thickness of

the order parameters, depth of the energy well potentials, etc.). Also, due to

the numerical instabilities of the phase-field framework, it appears difficult

to introduce ratios between the lowest and highest grain boundary energies
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higher than 3 or 4 [22, 27].50

This work deals with the development of a level-set finite element (LS-

FE) framework for grain growth with heterogeneous grain boundary energies.

Even so, multiple level-set grain growth frameworks already exist. For ex-

ample, in [18] the authors define a grain boundary energy “per grain” and

then use an adhoc averaging operation to define the energy at the interface55

between two grains. They then solve the grain growth problem isotropically

using the highest grain boundary energy followed by a mathematical pro-

cedure to correct the evolution of the grain boundary network to take into

account the presence of multiple boundary energies. This approach was also

studied and validated in [27]. However, this framework is almost exclusively60

geometric and, at the triple junctions, the authors define a seemingly arbi-

trary junction energy in order to obtain the correct behavior of the system.

In [19] the authors solve the classic isotropic equations of grain growth us-

ing a heterogeneously valued grain boundary energy field. At the multiple

junctions the isogonic point is imposed. This forces the multiple junctions65

to meet at equi-angles. This can be a limit in the resolution of the grain

growth problem due to the fact that the angles at multiple junctions can

influence the curvatures of the grain boundaries. This curvature influences

the kinetics of the microstructural evolution. Even if the grain boundaries

have the correct velocities considering their energies, since the curvatures are70

not correct, the kinetics can be inexact.

To summarize, when one considers grain growth there are many nuances

of heterogeneous boundary formulations. Studies such as in [14, 19] might

take into account the different energies of the grain boundaries but consider
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the effect of triple junctions as negligible. Other works attempt to take into75

account specific properties of the multiple junctions that are either combina-

tions of the surrounding grain boundary properties [18, 27] or intrinsic prop-

erties [22]. In any case, there are multiple different hypotheses and methods

one may use to simulate grain growth with heterogeneous grain boundary

energies with varying results.80

The following will establish a formalized mathematical formulation of the

physics of grain growth, propose a LS-FE approach to simulate the developed

formulation, and attempt to validate the results using a simplified test case.

2. The physics of grain growth

Before formulating the equations related to grain growth, the constituents85

of a metallic material’s microstructure must first be defined.

2.1. Crystallographic definitions

Considering a euclidean space Ω of arbitrary dimension D, parameter-

ized by an orthonormal reference frame R, one may fill Ω with an idealized

microstructure comprised of n grains Gi ∈ Ω , being open spaces of Ω, such90

that G = {Gi, i = 1, . . . , n} and a grain boundary network Γ such that:

Γ = ∪ni=1∂Ḡi, (1)

where ∂Ḡi is the boundary of the closure of the open set Gi.

Dealing with crystalline materials, such as metals or alloys, each grain Gi95

is a crystallite with its own crystallographic frame Ci = {xij, j = 0, . . . , D −

1}. One often considers a reference crystallographic frame CR (usually co-

incident with the general reference frame R) as well. This microstructure
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assumed ideal in the sense that each grain Gi is considered devoid of de-

fects (dislocations, point defects, etc.). Also, the scale of Ω allows for the100

approximation of the grain boundary network as a sharp interface as well

as the consideration of continuous variables in each grain. This polycrystal

formalism allows for the definition of a crystallographic orientation operator

Oi of the grain Gi such that:

Oi : CR → Ci. (2)105

In this case, where the polycrystal is monophase, the orientation operator

Oi is simply a rotation. As such, one may use whatever equivalent represen-

tation of a rotation in order to describe the crystallographic orientation.

The crystallography of the phase defines a symmetry group S. As such,110

one may generally define crystallographic equivalence ≡c between vectors u

and v expressed in the same frames as:

u ≡c v ⇔ ∃S ∈ S |v = S(u), (3)

which means that each grain Gi has not one crystallographic frame Ci115

but #S, where #S is the cardinality of the set S, number of equivalent

crystallographic frames and as many orientation operators.

Using these definitions, one may parameterize the description of a grain

boundary. A grain boundary Bij must be completely parameterized by its

adjoining grainsGi andGj. Of interest here is the morphology of the interface120

Γij = Ḡi ∩ Ḡj as well as its crystallographic properties. As such, in the three

dimensional case, one may describe each point of the grain boundary using

five variables: 2 shape properties, describing the surface Γij, as well as 3
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Figure 1: Schema depicting a grain boundary and its intrinsic parameters

crystallographic properties describing the passage from one crystallographic

orientation Oi to another Oj. These variables are respectively the unitary125

normal vector from Gi to Gj:

nij(X ∈ Γij) ⊥ Γij, (4)

which, as a unitary vector, has only D − 1 independent variables, that may

vary along the surface Γij, and the misorientation:130

Mij = O−1
i Oj, (5)

which represents the rotation operator that takes Ci to Cj, as illustrated in

Figure 1, and has
(
D
2

)
independant variables.

Therefore, in the framework defined here, any property of the grain135

boundary should depend on its parameters and knowing these parameters

should be enough to calculate any quantity related to the grain boundary it-

self. However, the space of grain boundaries, being a union between a space
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of unitary vectors and rotations, both stitched together by symmetries, is

complex and correlations are not linear [28].140

Even so, grain boundary space, being the direct product of the quotient

space SO(D)/ ≡c and the unit sphere SD ∈ RD, B = {SO(D)/ ≡c ×SD}

is a smooth manifold on which one can define continuous variables [29]. In

the following we will not only consider the grain boundary energy γ(B ∈ B)

continuously defined on B but also continuously differentiable γ ∈ C1(B) in145

it.

2.2. The driving force for grain growth

In order to successfully simulate the process of grain growth, the driving

forces acting on the grain boundaries must be expressed. To do so, the

thermodynamics of the microstructure as a whole must be formulated and150

the energy of the grain boundary network must be related to the forces acting

on it.

Continuing with the idealized microstructure in Ω as an isolated system,

one may define the free energy F of the system at an constant temperature

T , and volume V :155

F =

∫
Ω

fdΩ, (6)

with f the free energy density per unit volume, and dΩ an elementary volume

of Ω in which the hypotheses of statistical physics are still valid.

Given that the microstructure is defined as a union of grains in G and160

a grain boundary network Γ, one may decompose its free energy F (an ex-

tensive property) into the contributions of the bulk of the grains FG and the
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grain boundary network FΓ:

F (Γ,G) = FΓ + FG. (7)
165

Furthermore, defining an energy cost per unit volume of crystal β = ∂F
∂V

and an energy cost per unit surface of grain boundary γ = ∂F
∂Γ

one may define

integral expressions for the total free energy of the system:

F (Γ,G) =

∫
Γ

γdΓ +
n∑
i=0

∫
Gi

βdΩ.

(8)170

As such, using an appropriate expression for the variation of the free

energy of the system:

δF = δ

(∫
Γ

γdΓ +
n∑
i=0

∫
Gi

βdΩ

)
, (9)

175

one may distribute the variation to the individual components of the mi-

crostructure:

δF =

∫
Γ

δ(γdΓ) +
n∑
i=0

∫
Gi

δ(βdΩ), (10)

and:180 ∫
Ω

δ(fdΩ) =

∫
Γ

δ(γdΓ) +
n∑
i=0

∫
Gi

δ(βdΩ). (11)

Seeing as the volume of the system is constant, V =
∫

Ω
dΩ, one may

express: ∫
Ω

δfdΩ + fδ(dΩ) =

∫
Γ

δ(γdΓ) +
n∑
i=0

∫
Gi

(δβdΩ + βδ(dΩ)),185

∫
Ω

δfdΩ =

∫
Γ

δ(γdΓ) +
n∑
i=0

∫
Gi

δβdΩ. (12)
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The process occurring at constant temperature T and the grains being

devoid of defects, the energetic cost per unit of volume of crystal β is a

constant, δβ = 0. As such:190 ∫
Ω

δfdΩ =

∫
Γ

δ(γdΓ). (13)

Given the principle of locality, free energy lost at one point in the mi-

crostructrue cannot be instantly found in another another point outside the

first point’s neighborhood. As such, using χΓ as the dirac function at the Γ195

interface: ∫
Ω

δfχΓdΩ =

∫
Γ

δ(γdΓ). (14)

Considering a virtual infinitesimal grain boundary displacement δu(Γ) =

δu(Γ)nΓ:200

δf =
∑
i

[
∂f

∂ui
δui +O(δu2

i )

]
' ∂f

∂u
· δu, (15)

this term can be expressed using a thermodynamic pressure jump accross the

interface in the normal direction JPΓK:

δfχΓ =
∂f

∂u
· δuχΓ = JPΓKδu , (16)205

where JPΓK = ∂f
∂u
· nΓ χΓ.

As such: ∫
Ω

δfχΓdΩ =

∫
Ω

JPΓKδudΩ =

∫
Γ

JPΓKδudΓ. (17)
210

As for the other term in equation (14):

δ(γdΓ) = δγdΓ + γδ(dΓ), (18)
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one may express the change of area after a displacement of the surface δ(dΓ),

where (Kξ, Kη) represent the curvatures in the principal directions of curva-215

ture of the surface (τξ, τη), using the classic relationship:

δ(dΓ) ' −(Kξ +Kη)dΓδu, (19)

for which the authors present a demonstration in Appendix A.

Concerning the first term δγdΓ of equation (18), the calculus is more220

difficult. The variation of δγ takes place in the grain boundary space B

defined in the previous section. As the interface Γ changes, so too does the

nature of the grain boundary B(X ∈ Γ) ∈ B. In the first order:

δγ ' ∂γ

∂B
δB =

∂γ

∂B

(
∂B

∂MΓ

δMΓ +
∂B

∂nΓ

δnΓ

)
. (20)

225

While the variation in grain boundary energy due to the variation of the

inclination of the boundary is well treated, up to the second order, in [6],

there is no mention of the variation of the grain boundary energy with respect

to a crystallographical transformation such as one that could occur at a triple

junction as depicted in Figure 2.230

Rightly so, any variation δB must be measured with respect to a metric

defined in the space of grain boundaries. The definition of such a metric is

a field of study within itself [9, 8] that does not have a clear answer. In the

absence of the necessary mathematical tools to perform basic calculus in the

misorientation space, this work proposes a simplification of the problem in235

which the grain boundary space B is short circuited and the physical space

is preferred:

δγ '∇γ · δu. (21)
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Figure 2: Schema of the movement of a triple junction leading to a change in surface

length as well as a change in crystallographical nature of the boundaries.

One notable drawback of this formulation is that the system has limited240

knowledge of the avenues of minimization of interfacial energy open to it

through all its crystallographic degrees of freedom (annealing twinning for

example [30]) and therefore will not be able to exploit these avenues in its

evolution. However, the system will have access to the crystallographical

degrees of freedom already present locally in the microstructure. The ∇γ245

term represents the local energetic landscape in the microstructure and allows

the system to utilize those avenues, locally, in its energy minimization.

As such, combining the results of the calculations obtained in equations

(14), (16), (18), (19) and (21):

δfdΩ = δ(γdΓ),250

JPΓKδudΓ '∇γ · δudΓ− γ(Kη +Kξ)δudΓ,

JPΓKδudΓ ' (∇γ · nΓ − γ(Kη +Kξ))δudΓ,

JPΓK '∇γ · nΓ − γ(Kη +Kξ). (22)
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This thermodynamic pressure jump present along the grain boundary255

constitutes the driving force for grain growth. The real addition to this

derivation with respect to the existing literature is the ∇γ · nΓ term which

captures the local heterogeneity of the multiple junction. The −γ(Kη +Kξ)

term corresponds to the classic driving force per unit area for growth by

mean curvature.260

3. The level-set FEM for grain growth

The thermodynamics expressed in the previous section result in a formula-

tion of the driving force for grain growth with heterogeneous grain boundary

energies. However, in order to simulate this phenomenon in a full field FE

setting, one must evaluate this force as well as its effects on a microstructure265

in a discretized physical space, or mesh.

3.1. Representing the microstructure

The mathematical and numerical tools used in this work to represent

the numerical microstructure have been proposed in [17] and improved in

[31]. Initially, a microstructure is represented as a set of euclidean distance270

functions, called level-set functions, defined in the physical space Ω:

Φ =
{
φi(X ∈ Ω) = ±d(X,Γ), i = {0, ...,M − 1}

}
, (23)

with d(X,Γ) the minimum euclidean distance function of a point X from a

surface Γ, where φi(X) > 0 in the grain (X ∈ Gi) and φi(X) < 0 outside275

the grain (X /∈ Gi) and M the number of level-set functions needed to

represent the grains present in the microstructure. M is not necessarily

equal to the number of grains in the microstructure N . For computational
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efficiency reasons one may use coloring algorithms to reduce the number of

level-set functions one must solve for, as in [31].280

As such, one represents the grain boundary network Γ implicitly as the

iso-0 values of the level-set functions. An important numerical advantage of

this method is that the mesh is arbitrary, meaning that there is no need for

actual nodes of the mesh to reside on the interface. However, a drawback of

the method developped here, is that the level-set functions must remain true285

distance functions ||∇φi|| = 1, in order to avoid explicit calculations of the

mean curvature. This property is not necessarily conserved after a resolution

increment of the convective problem:

∂φi
∂t

+ v ·∇φi = 0, (24)
290

used to actually move the grain boundaries with a velocity v. In order to

ensure this property, a direct reinitialization algorithm is performed on all

the level-set functions after each resolution increment as described in [32].

Another procedure is utilized in order to deal with possible voids, areas

where all the level-set functions are negative, after a resolution increment295

and before reinitialization [25, 17]:

φi(X) =
1

2

[
φi(X)−max

j
(φj(X))

]
, ∀i = {0, ...,M − 1},∀X ∈ Ω, (25)

where voids, created at triple junctions for example, are closed by attributing

the space of the void closest to each boundary to the grain behind that300

boundary.

An interesting property of the level-set method is the ability to define

continuous fields on the entire Ω domain that describe hyper-dimensional

properties, such as a grain boundary network Γ. This means that, although
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this work is interested only in the evolution of the iso-0 values of the level-set305

functions, the variables that define this evolution are defined in the entire Ω

space. This can be a challenge for certain variables defined exclusively on the

grain boundary such as the misorientation MΓ or the grain boundary energy

γΓ.

3.2. Application to grain growth with heterogeneous grain boundary energies310

In order to simulate grain growth with heterogeneous grain boundary

energies in the numerical microstructure described above using the FEM,

one must first define a continuous version of the driving force JPΓK, defined

in equation (22), acting on the grain boundaries. With the chosen sign

convention and respecting the metric property ||∇φi|| = 1, certain variables315

such as the mean curvature κ = (Kη +Kξ) or nΓ (outward unitary normal)

can be obtained using the following equations:

nΓ = −∇φi(X ∈ Γ), (26)

κ = −∆φi(X ∈ Γ), (27)
320

and, as such, can easily be generalized for all X ∈ Ω through the level-set

field. However, the grain boundary energy γ needs special treatment in order

to be calculated as well as made to vary continuously in space.

3.2.1. Calculating a misorientation field

If one has a model for γ(MΓ,nΓ) such as those developed in [33, 34,325

35], then in order to calculate γ on the finite element mesh, one must first

calculate the misorientation MΓ and the normal to the interface nΓ. The

normal can be found using equation (26). However, given an orientation field
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Figure 3: Schema depicting the calculation of the misorientation field at a triple junction.

The dashed lines are the real zero iso-values of the three level-set functions describing the

three grains.

O(X ∈ Ω) describing crystallographic orientations at each point in space,

one must develop a procedure for computing a sufficiently representative330

misorientation field.

Using Figure 3 as an illustration, considering the element through which

passes a grain boundary and the orientation field defined at the nodes of the

mesh one can easily define the misorientation in the element as misorientation

calculated between the orientation Ol on the node on one side of the boundary335

and Ow on the other side of the boundary such that:

Mlw = O−1
l Ow, (28)

and taking into account the minimization of the disorientation angle

θ(Ol, Ow) for all possible symmetric representations of the orientations, for340
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(Si, Sj) ∈ S2 the space group of the crystal:

Mlw = S−1
i O−1

l OwSj
min
i,j

θ(OlSi,OwSj)

. (29)

However, in an element that contains a triple junction the misorientation

between three grains is undefined. A choice must be made concerning the345

value of the misorientation field in such an element. Very simply and arbi-

trarily, one can arbitrarily impose that within this element the misorientation

which has the maximum disorientation angle be the misorientation in that

element. This choice is potentially non-trivial regarding the results in later

sections of this paper. However, the sensitivity to the values imposed at the350

triple junction element have been studied and been found to be negligeable.

Given this choice, one can express the misorientation calculation per element

as:

Me = S−1
i O−1

l OwSj
max
w,l

min
i,j

θ(OlSi,OwSj)

. (30)

355

One can thus ensure the correct values for misorientations in elements not

traversed by grain boundaries as the identity, ensure the correct misorienta-

tion for elements traversed by one grain boundary and choose the maximal

misorientation allowed in cases where the element is the seat of a multiple

junction. Also, numerically, this procedure allows for a monotonic treatment360

of each element of the mesh which lowers the complexity of the algorithm.

However, this field is extremely discontinuous in that it is valued as the iden-

tity in all elements not traversed by boundaries and given a certain value in

elements that are.
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3.2.2. Defining a differentiable grain boundary energy field365

If one attempts to calculate γ(MΓ,n) per element of the finite element

mesh, one would transport the discontinuity of the misorientation field onto

the grain boundary energy field. As such, in elements traversed by grain

boundaries, the γ field would have the correct value, however, in elements not

traversed by grain boundaries the grain boundary energy would be zero. This,370

while being physically correct, introduces numerical issues in the calculation

of the ∇γ term defined in equation (21) which would be zero given the

piece-wise constant nature of the γ field.

Seeing as the only movement that is of interest for the simulation is that

of the zero iso-value of the level-set function, outside the area of Γ the values375

of the level-set function after a resolution increment are of little importance.

As such, the only constraints on the γ field are its values at the Γ interface

and its first order differentiability within the Ω domain.

With that in mind, an algorithm to construct a continuous differentiable

γΩ field on the nodes of the finite element mesh from the γΓ field positively380

valued only at the elements traversed by Γ can be implemented. This algo-

rithm is described in Algorithm 1.

The boundary conditions guarantee the grain boundary energy values at

the grain boundaries. The resolution of a classic Laplace equation renders the

field first order differentiable. The Laplace problem is solved using the FEM.385

Figure 4 shows an example of the fields both before and after the extension

procedure at a triple junction. The triple junction remains a singularity of the

field, however, the neighborhood of the junction is smoothed such that one

may calculate a sufficiently approximate value of the gradient if the spatial

18



Algorithm 1 γ extension

NΓ = {}

for node n in mesh do

γBC(n) = 0

for element e connected with n do

γBC(n) = max(γΓ(e), γBC(n))

end for

if γBC(n) 6= 0 then

put n in NΓ

end if

end for

solve ∆γΩ(X ∈ Ω) = 0 for boundary conditions γΩ(n ∈ NΓ) = γBC

discretization is fine enough. Of course, with each step in the evolution of the390

grain boundary network, the grain boundary energy field must be recomputed

with respect to the new misorientation and normal fields.

3.2.3. The weak formulation

The classical formulation for the velocities of grain boundaries in metals

is [1]:395

v = µF , (31)

where µ is the mobility of the grain boundary, which is assumed isotropic in

this work, and F the thermodynamic driving force per unit area acting on

19



(a) (b)

Figure 4: Images showing a dimensionless γ field at a triple junction both before and after

the extension procedure described in Algorithm 1.

the surface. If one inserts the expression developed in equation (22):400

F = JPΓKn, (32)

and:

v = µJPΓKn = µ(∇γ · n− γκ)n, (33)
405

and then considers the transport equation (24) along with (27), (26) and

||∇φi|| = 1:

∂φi
∂t

+ µ(∇γ · n− γκ)n ·∇φi = 0,

∂φi
∂t

+ µ(−∇γ · n+ γκ) = 0,

∂φi
∂t

+ µ∇γ ·∇φi − µγ∆φi = 0, (34)410

thus constituting the strong formulation of the proposed level-set heteroge-

neous grain growth problem.
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The weak formulation is then, with ϕ ∈ H1
0 (Ω):

∂φi
∂t

ϕ+ µ∇γ ·∇φiϕ− µγ∆φiϕ = 0,415 ∫
Ω

(
∂φi
∂t

ϕ+ µ∇γ ·∇φiϕ− µγ∆φiϕ)dΩ = 0,∫
Ω

∂φi
∂t

ϕdΩ +

∫
Ω

µ∇γ ·∇φiϕdΩ−
∫

Ω

µγ∆φiϕdΩ = 0,∫
Ω

∂φi
∂t

ϕdΩ +

∫
Ω

µ∇γ ·∇φiϕdΩ−
∫
∂Ω

µγϕ∇φi · n∂Ωd(∂Ω) +

∫
Ω

∇(µγϕ)∇φidΩ = 0,∫
Ω

∂φi
∂t

ϕdΩ +

∫
Ω

µ∇γ ·∇φiϕdΩ +

∫
Ω

µϕ∇γ ·∇φidΩ +

∫
Ω

µγ∇ϕ ·∇φidΩ

−
∫
∂Ω

µγϕ∇φi · n∂Ωd(∂Ω) = 0,∫
Ω

∂φi
∂t

ϕdΩ + 2

∫
Ω

µ∇γ ·∇φiϕdΩ +

∫
Ω

µγ∇ϕ ·∇φidΩ−
∫
∂Ω

µγϕ∇φi · n∂Ωd(∂Ω) = 0.

(35)

420

4. Validating the simulation methodology

This heterogeneous grain boundary energy formulation for grain growth

needs to be validated in order to test its robustness as well as its precision.

This grain growth model has never been used, to the authors’ knowledge,425

and its limits must be probed in order to discuss its relevance. As such, an

academic case will be simulated in order to ensure that the model gives the

correct results in cases where one can theoretically calculate them.

The simulations presented in the following paragraphs were carried out us-

ing an unstructured triangular mesh with P1 type elements for the space dis-430

cretization and using an implicit Euler time step resolution for the time dis-

cretization. The resolution of the convective diffusive equations were solved

using a Streamline/Upwind Petrov-Galerkin stabilized method [36].
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Figure 5: Illustrative diagram of the triangular test case proposed where the grain bound-

aries that have evolved over some time under arbitrary grain boundary energies are in red

and the initial configuration of the grain boundaries is dashed.

4.1. Presentation of the test case

In order to validate the results given by the heterogeneous grain boundary435

energy formulation in a LS-FE framework, a dimensionless test case was

constructed such that all effects not related to the different properties of the

grain boundaries of the system were minimized. To be more precise, given

a triple junction in 2D, the system must start from an initial configuration

that admits a 3rd order axis of rotation around the triple point. The simplest440

system the authors have been able to devise respecting this condition in terms

of topology, length and boundary conditions is the case proposed in Figure

5.

In this case, the lengths of the three initial grain boundaries are equal at

t = 0 and they each make 120◦ angles with the other two. In order for the445

boundary conditions to respect the 3rd order axis, the domain must have at
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least three sides that form an equilateral triangle. The case is simulated with

Dirichlet type boundary conditions. Therefore, the intersections of the iso-

zero values of level-sets and the edges of the triangle act as fixed points. Of

course, methods which rely on regular square grids will have more difficulties450

replicating this type of simulation. The fact this calculation was performed

on a unstructured triangular cell mesh allows for more arbitrary shapes of

the Ω space.

The following results will use the stationary dihedral angles obtained for

a triple junction, for which one has the exact solutions depending upon the455

energies of the grain boundaries meeting at the junction [37] through Young’s

equilibrium:

γ12τ12 + γ23τ23 + γ13τ13 = 0, (36)

where τij is the tangent vector to the grain boundary Γij. This imposes an460

analytical solution for the dihedral angles ϕi, ∀i = {1, 2, 3}:

sinϕi
γkj

= C, (37)

C being a constant for the three angles.

Also, the initial configuration is already stable with respect to an isotropic465

grain boundary energy case. This was also verified numerically to ensure

that the formulation can also accurately simulate isotropic grain boundary

energies as a special case of heterogeneous grain boundary energies.

In the following, the authors have imposed γ23 = γ13 (as illustrated in

Figure 5) and defined:470

r =
γ23

γ12

=
γ13

γ12

, (38)
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as the energy ratio. By modulating r one may inject more or less hetero-

geneity into the system. In the literature [22] this ratio rarely supersedes

3. In order to model grain boundaries in relatively heterogeneous systems475

(twinned microstructures for example) the numerical formulation must be

able to handle r ≈ 10 which is the goal of this work.

4.2. Presentation of the simulations

The mesh on which this academic case is simulated is isotropic. This

means that an element has approximately the same size in each direction.480

However, the mesh size is not the same everywhere. Mesh adaptation has

been performed in a region around the triple junction in order to be able to

refine the space discretization locally and not globally. This makes the simu-

lation more computationally efficient that refining the mesh comprehensively.

Figure 6 gives an idea of the mesh refinement with respect to the triple point.485

The time step used is imposed constant throughout a given simulation.

Multiple simulations were carried out using the case presented above while

varying certain terms. However, for the sake of consistency, most parameters

of the simulation do not vary. For reasons related to simplicity, the values of

the parameters are dimensionless. Table 1 summarizes the parameters that490

do not vary in the results that follow.

4.3. Results and Analysis

The goal of this section is first, to establish whether or not the grain

growth formulation for heterogeneous grain boundary energies is stable and

second, to ensure that the results of the formulation are precise, in agreement495
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Figure 6: Initial configuration of the test case with a mesh size close to the triple junction

of hTJ = 0.005 and a mesh size outside the triple junction of h = 0.01 with r = 10.

Parameter Value

Mobility of the grain boundaries (µ) 1

Length of the base of the domain 1

Reference grain boundary energy (γ23) 0.1

Radius of the refined zone (ε) 0.1

Mesh size outside the triple junction zone (h) 0.01

Table 1: Unvarying simulation parameters
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with theoretical junction angles and physically consistent. As such, a sensi-

tivity analysis to the numerical parameters of both time step ∆t and mesh

size hTJ , the mesh size close to the triple point, is presented in order to show

convergence of the method. Then, the solutions given by the simulations are

studied and compared with theoretical values. The solutions using the het-500

erogeneous grain boundary formulation for grain growth are then compared

with the equivalent solutions obtained by varying grain boundary energy

using the classical isotropic formulation (without a convective term), i.e.:

∂φi
∂t
− µγ(X ∈ Ω)∆φi = 0. (39)

505

The classical formulation must be expressed as a weak formulation before

solving it in an FE setting. However, as in the development of the het-

erogeneous grain growth weak formulation above, a supplemental convective

term due to the variation of γ in space appears as a gradient. In the following

results, “Classic” will refer to the formulation used in the majority of the cur-510

rent literature [18, 19, 27] using equation 39, a heterogeneous grain boundary

energy field and a weak formulation tha does not integrate the heterogene-

ity of γ. “Weak” will refer to the classic formulation with the correct weak

formulation, meaning that, as in the “Classic” case JPΓK = −γκ, however,

the weak formulation is regularized to take into account the variation in the515

γ field. “Hetero” will be used for the fully heterogeneous formulation, being

the weak formulation developped in equation (35) using equation (22).

The sensitivity analyses to both the mesh size and the time step were

undertaken for two energy ratios r = 2.5 and r = 0.77 which are on either

side of the isotropic case (r = 1). The criterion used to study the convergence520

and compare the simulations between each other was the error in the ϕ3 angle
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(in ◦):

eϕ3 = |ϕth3 − ϕsim3 | (40)

where ϕth3 is the theoretical value for the ϕ3 angle, given by Young’s equi-525

librium, and ϕsim3 is the simulated one. The mesh sensitivity analysis was

conducted using a time step of ∆t = 10−4 and the time step sensitivity

analysis was conducted using a mesh size of hTJ = 0.001.

The ϕsim3 angle was calculated automatically at each time step using the

method described in Appendix B.530

Both the mesh convergence and time convergence of the “Hetero” formu-

lation can be observed in Figures 7 and 8 respectively. The simulated data

is fitted using a least squares algorithm. The line equations are represented

on the figures.

There is a remarkable difference in convergence between the r < 1 and535

r > 1 cases. Taking a closer look at the convergence exponents in both cases

(the slopes of the fitted lines), the r < 1 case exponent is consistently about

ten times smaller than the r > 1 for both time and space. This means that,

assuming a dependence of the error on mesh size or time step x = (hTJ ,∆t)

of the form:540

eϕ3 = Axn, (41)

with A(r) and n(r), then n is around ten times smaller in the r < 1 case and

therefore the convergence with regard to the discretization of time-space will

be many orders of magnitude slower than in the r > 1 situation.545

Figure 9b, in which the evolution of the ϕ3 and ±eϕ3 , where ±eϕ3 is neg-

ative if ϕth3 < ϕsim3 , as a function of time for many values of r is represented
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Figure 7: ln(eϕ3
) as a function of mesh size ln(hTJ) for different energy ratios.
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) as a function of mesh size ln(∆t) for different energy ratios.

28



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

t

80

100

120

140

160

180

ϕ
3
(◦

)

r= 10
r= 5

r= 2.50

r= 1.67

r= 1.25

r= 0.91

r= 0.83

r= 0.77

r= 0.67

r= 0.53

(a) ϕ3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

t

80

60

40

20

0

20

40

60

±
e ϕ

3
(◦

)

r= 10
r= 5

r= 2.50

r= 1.67

r= 1.25

r= 0.91

r= 0.83

r= 0.77

r= 0.67

r= 0.53

(b) ±eϕ3

Figure 9: ϕ3 and ±eϕ3
as a function of t for different values of r with hTJ = 10−4 and

∆t = 10−4.

for the “Hetero” formulation, illustrates the results found in the convergence

analysis. For r relatively close to 1, the differences between r > 1 and r < 1

are not remarkable, however, as one approaches wetting r ≈ 0.5, the ana-550

lytical value for ϕ3 tends to zero, and the numerical formulation has more

difficulty acheiving the desired precision. For a given tuple (hTJ ,∆t) (here

(10−4, 10−4)), all the simulations performed in cases where r > 1 tend to

converge towards a solution with good precision, while the simulations for

which r < 1 arrive at a stationnary state that can be relatively far from555

the analytical solution. Even so, the trends in the evolutions for all simula-

tions performed with the “Hetero” formulation diminish the error. The same

cannot be said for the “Classic” or “Weak” formulations.

A graph representing the evolution of ϕ3 as a function of r for all the

formulations is represented in Figure 10. The best fit for the analytical560

dependence of ϕ3 on r is clearly the new “Hetero” formulation. The “Classic”
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formulation leads to ϕ3 angles that are completely wrong, while the “Weak”

formulation keeps the ϕ3 angle around 120◦ regardless of the values of the

grain boundary energies. Looking at the analytical solution to ϕ3(r), one can

possibly explain the convergence issues for r < 1. Indeed, the derivative of565

ϕ(r) becomes very steep as r tends to 0.5. It is possible that the numerical

formulation of this problem has difficulties taking into account this intense

gradient and either higher order terms or much smaller mesh sizes and time

steps might be needed in order to get arbitrarily close to wetting.

Regarding the configuration of the triple junctions, for r much higher570

than 1, non-minimal energy configurations can be observed in 11a. Under

the suspiscion that this was due to the Dirichlet boundary conditions, the

same case was simulated with Neumann conditions (i.e. the level-set are

imposed orthogonal to the border of the domain) for which the results are

presented in Figure 11b. Indeed, the configuration of the triple junction575

seems to be more energetically appropriate with comparable values of the

ϕ3 angle. The reason this study was not carried out using the Neumann

boundary conditions throughout is due to the dynamic nature of the simu-

lations. Indeed, the angles arrive at a stationnary state, however, the triple

junction continues to move until dissapearing outside the domain. When the580

triple junction approaches the borders of the domain, the automatic angle

calculation developped in Appendix B stops being accurate. As such, in

the Neumann boundary condition simulations, the stationnary state is more

elusive.
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Figure 10: ϕ3 as a function of r
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(a) Superposition of the configurations of the triple junction for different values of

r

(b) Superposition of the configurations of the triple junction for different values of

r using Neumann boundary conditions at t = 0.2.

Figure 11: Configurations of triple junctions for different boundary conditions.
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5. Conclusion585

A new LS heterogeneous grain boundary energy formulation for grain

growth has been derived by restating the thermodynamics of the problem

and taking into account a supplemental term. This formulation has been

implemented in a full field FE context, with the development of crystal-

lographical tools and methods for unstructured meshes, and tested on an590

academic case in order to test its precision and convergence. To the authors’

knowledge, no other study has developed a numerical framework capable of

simulating higher differences in grain boundary energies. The dependence of

the convergence exponent on the energy ratio has been shown as well as the

ability of the method to be precise at high energy ratios. In a forthcoming ar-595

ticle the formulation will be used to model polycrystal systems with different

levels of heterogneity and will be quantitatively compared with results from

the literature. A large part of the discussion will be devoted to the calibra-

tion of the mesh size and time step in regards to the relevant precision that

must be ensured at a triple junction in polycrystal annealing simulations.600

Some perspectives of this endeavor are to extend the formulation to in-

clination dependent grain boundary energy models in order to capture the

effects of the normal to the grain boundary. Also, texture evolutions during

annealing can be studied in order to explore the effect of grain boundary

properties in texture selection. Recrystallization can also be integrated into605

the formulation in order to start modeling twin nucleation mechanisms as

well as other recrystallization phenomena. The entire formulation is theoret-

ically valid for 3D simulations and should be generally applicable. Even so,

the scale up to 3D or larger 2D simulations must be accompanied by more
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intelligent time step adaptation techniques. A serious limitation to experi-610

mental validation of this work is the yet unknown exact dependance of the

grain boundary energy on its five parameter description.
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Appendix A. Virtual Surface Change

In order to express the change in surface area after a virtual displace-

ment of the interface (see the second term of equation (18)), one can define

curvilinear abscissa on the interface Γ : (η, ξ), as in Figure A.12, such that:625

dΓ = dηdξ, (A.1)

and:

δ(dΓ) = dηδ(dξ) + dξδ(dη). (A.2)
630
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Figure A.12: Schema of the small displacement of a surface.

In a first order approximation, with the suffix 0 representing the state

before displacement, one may express:

δ(dη) = dη − dη0

'
∑

i

[
∂η

∂xi
dxi −

∂η0

∂xi
dxi0

]
'
∑

i

[
∂η

∂xi
(dxi0 + δ(dxi))−

∂η0

∂xi
dxi0

]
'
∑

i

[
∂η

∂xi
δ(dxi) + (

∂η

∂xi
− ∂η0

∂xi
)dxi0

]
'
∑

i

[
∂η

∂xi
δ(dxi) + (

∂2η

∂u∂xi
)dxi0δu

]
'
∑

i

[
∂η

∂xi
δ(dxi) +

∑
j(

∂2η

∂xj∂xi
)
∂xj
∂u

dxi0δu

]
.

(A.3)

One may consider that the variation δ(dxi) is negligible before the length635

dxi0 and also that any displacement of the interface can only be in the di-

rection of the normal to the interface such that
∂xj
∂u
δu = nj0δu. Therefore:

δ(dη) '
∑
i

∑
j

(
∂2η

∂xj∂xi
)nj0δudxi0. (A.4)
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One may express δ(dξ) in a symmetric fashion using equation (A.2), such640

that:

δ(dΓ) ' dη
∑
i

∑
j

(
∂2ξ

∂xj∂xi
)dxinjδu+ dξ

∑
i

∑
j

(
∂2η

∂xj∂xi
)dxinjδu. (A.5)

If one considers the tangential directions τη and τξ of the interface Γ as

the directions of principal curvature, Kη and Kξ respectively, then one may645

simplify the equation by expressing it in the curvilinear reference frame as:

δ(dΓ) ' −Kξdξdηδu−Kηdηdξδu, (A.6)

δ(dΓ) ' −(Kξ +Kη)dΓδu. (A.7)

Which is the classical result for the variation of surface of an interface650

being displaced.

Appendix B. A method for measuring angles at a multiple junc-

tion

In order to automatically measure the evolution of the angles at multiple

junctions during a microstructural evolution simulation one must have two655

things:

1. A way to accurately track the position of a multiple junction.

2. A method for measuring the angles of a multiple junction given its

position.

In a LS-FE setting, both requirements are rather simply met. In order660

to track the multiple junction points in a domain Ω of dimension 2, one may

define a neighborhood parameter ε such the the set of points:

NJ = {X ∈ Ω |#{i |φi(X) < ε} > 2} (B.1)
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is the neighborhood of one multiple junction.665

If one takes the barycenter of this neighborhood set NJ than one obtains

the multiple junction point:

XJ =

∫
NJ
XdΩ∫

NJ
dΩ

. (B.2)

As such, one may track the multiple junction point throughout its evolu-670

tion. In order to calculate the angles created by the boundaries meeting at

the junction, one may define the circle:

Sε = {X ∈ Ω | d(X,XJ) = ε}, (B.3)

where d(·, ·) is the euclidean distance function, and the arc of the circle675

passing through grain Gi as:

Siε = Sε ∩Gi. (B.4)

Remarking that: ∫
Si
ε
dS∫

Sε
dS

=
εϕi
2πε

=
ϕi
2π
, (B.5)680

there is a simple expression for ϕi:

ϕi = 2π
Liε
Pε

(B.6)

where Liε is the length of the arc of Siε and P is the perimeter of Sε.685

One may calculate these values on a FE mesh for a given ε and junction

configuration by defining a radial distance function from the triple junction

point XJ and integrating the iso-ε arcs by parts in each element. However,

choosing the correct value for ε is relatively important. One would like to
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Figure B.13: Sensitivity study of the precision of angle calculations with respect to h and

ε

use a ε that is as small as possible in order to be as close as possible to690

the junction and large enough so that the angle calculations are precise.

Conducting a sensitivity analysis of the precision of the method with respect

to the mesh size h, as shown in Figure B.13, one observes that ε ≈ 10h is

sufficient for obtaining good results concerning the calculation of the angles.

One may also develop a comparable procedure for both multiple junctions695

in 3D using spheres as well as triple lines using cylinders.
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