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INTRODUCTION

Wind power is the second fastest growing renewable source of electricity (National Renewable Energy Laboratory, 2012) in terms of installed power. The construction of oshore wind farms is booming all over the world. In Europe, oshore wind energy is expected to grow to 23.5 GW by 2020, thereby tripling the installed capacity in 2015 [START_REF] Ernst | Oshore wind in europe: Walking the tightrope to success[END_REF]. The causes of this recent trend are the strength and regularity of the wind far from the shore, which should facilitate the mass production of electricity.

Two types of technology may be employed to exploit oshore wind energy: xed-bottom wind turbines (with the foundations xed into the seabed) and oating wind turbines (FWTs). Fixed bottom oshore wind turbines are too expensive for waters deeper than 60 m [START_REF] Musial | Energy from oshore wind[END_REF], which prevents their use in the most interesting elds. Thus, FWTs are a more attractive alternative. In particular, FWTs have little dependence on the seabed conditions for installation and they can be moved to a harbour to perform maintenance. However, the main drawback of FWTs is their sensitivity to the surrounding water waves which subject the wind turbine to increased mechanical loads [START_REF] Jonkman | Dynamics modeling and loads analysis of an oshore oating wind turbine[END_REF], thereby reducing the lifespan of the mechanical parts of the wind turbine.

Attached moving masses such as tuned mass dampers (TMDs) can be employed to improve the response of massive structures to external disturbances. One of the most economical and ecient variants of the TMD is the tuned liquid column damper (TLCD), which is also known as an anti-roll tank or U-tank. The TLCD was originally proposed by Frahm [START_REF] Frahm | Results of trials of the anti-rolling tanks at sea[END_REF][START_REF] Moaleji | On the development of ship anti-roll tanks[END_REF] to limit ship roll: it is a U-shaped tube on a plane orthogonal to the ship roll axis, which is generally lled with water. The liquid inside the TLCD oscillates due to the movement of the structure and the liquid energy is dissipated via a restriction located in the horizontal section. A TLCD is usually employed to damp the natural frequency of the structure.

In [START_REF] Coudurier | Passive and semi-active control of an oshore oating wind turbine using a tuned liquid column damper[END_REF], we considered damping a FWT with a semi-active TLCD (with a variable restriction) and derived the dynamics of the coupled system using a Lagrangian approach. A reduced model of the system was proposed along with a clipped LQR law. The clipping (saturation) of the feedback law was a simple, yet relatively ecient, solution as was shown in simulations that demonstrate the potential of this control law for reducing the pitch motion of the structure. The obtained performance was not optimal, but, as expected, was much better than the passive TLCD (without any actuation).

In this study, we seek performance improvement and consider the optimal control of the restriction of the TLCD.

Mathematically, we aim to damp a FWT subject to a sinusoidal wave. Solving such optimization problem can serve to quantitatively estimate the best possible performance (and, in turn, the performance loss of suboptimal strategies such as the clipped LQR mentioned earlier). In addition, if its computational burden is not too heavy, it could serve as online control algorithm, following the large trend of model predictive control [START_REF] Lee | Model predictive control: Review of the three decades of development[END_REF]. These questions are left for future studies. The question at stake in this article is the observed periodic nature of the optimal solution.

The paper is organised as follows. First, we numerically solve the optimal control problem of the reduced model, as proposed in [START_REF] Coudurier | Passive and semi-active control of an oshore oating wind turbine using a tuned liquid column damper[END_REF]. Next, using a similar but simpler system (the Toy Problem ), we analytically study the optimal control under a sinusoidal disturbance.

For this, we employ averaging methods [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF][START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector elds[END_REF] on the stationarity conditions obtained from the application of Pontryagin Minimum Principle (Pontryagin, 1987). This analysis conrms the numerical observations of periodicity.

OPTIMAL CONTROL OF A FWT

To quantify the best performance that can be achieved by a semi-active TLCD on a FWT, we consider an optimal control formulation.

Formulation

Following the model presented in [START_REF] Coudurier | Passive and semi-active control of an oshore oating wind turbine using a tuned liquid column damper[END_REF], the following optimal control problem is considered.

Problem 1. (Optimal control of the TLCD-FWT)

min η(t),X0 J = T 0 α (t) 2 dt subject to Ẋ = AX - 1 2 ρA h (ν ẇ)|ν ẇ|Bη + EF ∀t ∈ [0, T ] X 0 = 0 4×1 X L ≤ X (t) ≤ X U ∀t ∈ [0, T ] η L ≤ η (t) ≤ η U ∀t ∈ [0, T ]
where T is the horizon of the problem (T is large w.r.t. the period of the sinusoidal wave). We have X = (α w α ẇ) where α is the pitch angle of the platform and w is the liquid displacement. The dynamics are detailed in (Coudurier et al., 2015, 4.1). The control variable is η.

It is positive at all times, so that η L = 0. Also an upper bound η U = 1000 is introduced to avoid numerical issues (a larger value for this parameter does not create any practical change in the solutions as the gain of the control variable is null for large values, asymptotically). To satisfy the model hypothesis stating that the vertical columns of the TLCD are never empty, we must have X U (2) = -X L (2) = L v with L v the length of the vertical tubes of the TLCD as in Fig. 1, this is the only state constraint considered in this study . This is a safeguard only. In practical numerical experimentations, this constraint is not active. We note that classically X 0 X (t = 0). In Problem 1, F is the force created by the wave on the barge, which is a known time-varying signal (a sinusoid in this study).

Numerical resolution of the problem

We use the Matlab toolbox ICLOCS (Imperial College of London Optimal Control Software) [START_REF] Falugi | Imperial College London Optimal Control Software user guide (ICLOCS)[END_REF] to solve optimal control problems with a direct approach (the dynamics of the system and the cost are discretized, and then the resulting nite-dimensional optimisation problem is solved with an interior point algorithm). The control signal is restricted to being a discrete-time signal sampled at 5 Hz (this sampling time being very small compared with the time constants of our system).

In Fig. 2, we report a typical solution η (t) and α (t). One can see that the control is bang-bang (it commutes back and forth from η L to η U , which are the extremal admissible values) and it has two bangs per wave period. In the next section, we investigate this fact using analytic tools.

MATHEMATICAL ANALYSIS OF AN EQUIVALENT PROBLEM

The following investigations are conducted on a simplied version of Problem 1. The dynamics are structurally unchanged, but a change of input is introduced so that the dynamics become control-ane (with state-dependant gain). Formally, the system at stake is a double mechanical oscillator with similar physical characteristics to those in Problem 1, but with signicantly simpler dynamics. The ratio of the two masses is small. This system is called a Toy Problem and an illustration of this system is given in Fig. 3. The dynamics of this system are

M ẍ + C ẋ + Kx = B 1 (x)u (t) + E 1 F (t) with M = m 1 0 0 m 2 , K = k 1 + k 2 -k 2 -k 2 k 2 , E 1 = 1 0 C = 0 0 0 c , B 1 (x)= 0 c ẋ2 , x= x 1 x 2
where x 1 (respectively x 2 ) is the displacement of the rst (respectively second) mass.

We set

m 1 = 100 kg k 1 = 100 N/m c = 0.5 N.s/m m 2 = 2 kg k 2 = 3 N/m
The dynamics rewrite in a state space representation as 

Ẋ = AX + B(X)u (t) + EF (t) with X =    x 1 x 2 ẋ1 ẋ2    =    X 1 X 2 X 3 X 4    , A = 0 2×2 I 2 -M -1 K -M -1 C E = 0 2×1 M -1 E 1 , B = 0 2×1 M -1 B 1 (X) =     0 0 0 c m 2 X 4     or,
Ẋ1 = X 3 (1) Ẋ2 = X 4 (2) Ẋ3 = - (k 1 + k 2 ) m 1 X 1 + k 2 m 1 X 2 + 1 m 1 F (t) (3) Ẋ4 = k 2 m 2 X 1 - k 2 m 2 X 2 - c (1 -u (t)) m 2 X 4
(4)

Optimal control problem

The following optimal control problem is considered Problem 2. (Optimal control of the Toy Problem )

min u(t),X0 J (X, u) = T 0 1 2 X (t) Q X (t) dt subject to Ẋ = AX + B(X)u (t) + EF (t) ∀t ∈ [0, T ] X 0 = 0 4×1 -1 ≤ u (t) ≤ 1 ∀t ∈ [0, T ]
where F is a sinusoid with a period of 2π and T is the horizon of the problem, with T 2π. We set Q 11 = 1 as the only non-zero coecient of the cost matrix Q.

Classically, the Hamiltonian of our problem is written as

H = - 1 2 X Q X + λ (AX + B(X)u (t) + EF (t)) ,
which depends in a linear manner on u; therefore, according to Pontryagin Minimum Principle (Pontryagin, 1987) u is bang-bang and it is dened as u (λ, X) = sgn λ B(X) = sgn (λ 4 B 4 (X)) = sgn (λ 4 X 4 ) .

(5)

Classically, the other stationarity conditions give the ad-

joint dynamics λ = - ∂H ∂X = -A λ + QX -λ dB dX u (6)
where λ ∈ R 4 and dB dX =

0 3×3 0 3×1 0 1×3 c m 2
.

We change the adjoint variables using λ = P µ such that μ1 = µ 3 and μ2 = µ 4 . We select

P =       0 0 -1 0 0 k 2 m 2 0 0 1 0 0 0 m 2 m 1 0 0 1      
With these new variables, we rewrite ( 5) and ( 6) as follows u (µ, X) = sgn µ P B(X) = sgn

µ 1 m 1 + µ 4 m 2 X 4 (7) μ = P -1 -A P µ + QX -µ P dB dX u (8)
We note that the system (8) is unstable as the real parts of the eigenvalues of A are negative. The equation ( 8) expands as

μ1 = µ 3 (9) μ2 = µ 4 (10) μ3 = k 2 m 2 µ 4 - k 1 m 1 µ 1 -x 1 Q 11 (11) μ4 = c (1-u(µ,X)) m 1 µ 4 + c (1-u(µ,X)) m 2 µ 1 - k 2 m 2 µ 2 - m 2 m 1 µ 3 (12)

Sinusoidal form

We use averaging methods to solve Problem (2) [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF][START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector elds[END_REF]. Without any loss of generality, we consider T = 2π. Therefore, we have F = ε sin (t)

and we search for solutions of the stationarity conditions under the form

X 1 = a 1 cos(t + φ 1 ) µ 1 = a 3 cos(t + φ 3 ) (13) X 2 = a 2 cos(t + φ 2 ) µ 2 = a 4 cos(t + φ 4 ) (14) 
X 3 = -a 1 sin(t + φ 1 )

µ 3 = -a 3 sin(t + φ 3 ) (15) X 4 = -a 2 sin(t + φ 2 ) µ 4 = -a 4 sin(t + φ 4 ) (16) 
This periodic form implies that X and u stabilize the unstable system (8). Substituting ( 1316) into ( 12) and ( 910) for i = 1, ..4 yields ȧi cos(t + φ i ) -a i φi sin(t + φ i ) = 0

(17) Equations ( 34) and ( 1112) for i = 1, ..4 can be rewritten as -ȧi sin(t+φ i )-a i φi cos(t+φ i ) = a i cos(t+φ i )+f i (a, φ, t)

where f i (a, φ, t) are dened in (2326). By solving the system having 8 equations and 8 unknown variables ( 1718), we obtain ȧi (a, φ, t) = -(a i cos(t

+ φ i ) + f i (a, φ, t)) sin(t + φ i ) φi (a, φ, t) = - 1 a i (a i cos(t + φ i ) + f i (a, φ, t)) cos(t + φ i ).

Averaging

Following the averaging methodology, we approximate a and φ as sums of averaged values and oscillating terms

a i = āi + εv i ā, φ, t + O ε 2 (19) φ i = φi + εw i ā, φ, t + O ε 2 (20) with ȧi = 1 T T 0 ȧi ā, φ, t dt + O ε 2 (21) φi = 1 T T 0 φi ā, φ, t dt + O ε 2 , ( 22 
)
where āi represents the mean part of a i and εv i ā, φ, t is the oscillating part. We have u ā, φ, t = -sgn (Π) Π = ā2 sin(t + φ2 ) m 2 ā3 cos(t + φ3 ) -m 1 ā4 sin(t + φ4 )

f 1 ā, φ, t = - k 1 + k 2 m 1 ā1 cos(t + φ1 ) + k 2 m 1 ā2 cos(t + φ2 ) + ε m 1 sin (t) (23) f 2 ā, φ, t = - k 2 m 2 ā2 cos(t + φ2 ) + k 2 m 2 ā1 cos(t + φ1 ) + cā 2 m 2 1 -u ā, φ, t sin(t + φ2 ) (24) f 3 ā, φ, t = - k 1 m 1 ā3 cos(t + φ3 ) - k 2 m 2 ā4 sin(t + φ4 ) -ā1 Q 11 cos(t + φ1 ) (25) f 4 ā, φ, t = -ā 4 k 2 m 2 cos(t + φ4 ) -ā4 c m 2 1 -u ā, φ, t sin(t + φ4 ) + ā3 m 1 c 1 -u ā, φ, t cos(t + φ3 ) + ā3 m 2 m 1 sin(t + φ3 ) (26) 
The term λ B(X), in ( 5) is a product of two sinusoids of period T, so it has a period of T /2, and thus u is bang-bang with a period of T /2. For the same reason, ȧi ā, φ, t and φi ā, φ, t also have a period of T /2. Therefore, we can rewrite ( 21) and( 22) as follows.

ȧi = 2 T T /2 0 ȧi ā, φ, t dt + O ε 2 (27) φi = 2 T T /2 0 φi ā, φ, t dt + O ε 2 (28) 
According to (5), u switches when λ 4 or X 4 is zero. On the interval 0, T

2 we have λ 4 (t) = 0 ⇐⇒ t = arctan m 1 ā4 sin( φ3 -φ4 ) + m 2 ā3 m 1 ā4 cos( φ3 -φ4 ) -φ3 + k λ π r λ4 X 4 (t) = 0 ⇐⇒ t = -φ2 + k B π r B4
where k λ , k B ∈ Z. We dene r m min(r λ4 , r B4 ) and r M max(r λ4 , r B4 ) .

Then, one can rewrite ( 27)-( 28) as follows 

ȧ1 ā, φ = - k 2 ā2 2m 1 sin φ1 -φ2 - ε 2m 1 cos( φ1 ) + O ε 2 (29) ȧ2 ā, φ = u ā, φ, 0 cā 2 m 2 T × π -2 (r M -r m ) -sin(2r m + 2 φ2 ) + sin(2r M + 2 φ2 ) + ā1 k 2 2m 2 sin( φ1 -φ2 ) - ā2 c 2m 2 + O ε 2 (30) ȧ3 ā, φ = k 2 2m 2 ā4 cos( φ3 -φ4 ) + ā1 Q 11 2 sin( φ3 -φ1 ) + O ε 2 (31) ȧ4 ā, φ = ā3 2m 1 c sin( φ3 -φ4 ) -m 2 cos( φ3 -φ4 ) + ā4 c 2m 2 + u ā, φ,0 c T ā3 m 1 × -π-2 (r M -r m )-cos(2r m + φ3 + φ4 )+cos(2r M + φ3 + φ4 ) + u ā, φ,0 c T ā4 m 2 × -π-2 (r M -r m )-sin(2r m +2 φ4 )+sin(2r M +2 φ4 ) +O ε 2 (32) φ1 ā, φ = 1 2 k 1 + k 2 m 1 -1 - ā2 k 2 2ā 1 m 1 cos( φ1 -φ2 ) + ε 2ā 1 m 1 sin φ1 + O ε 2 (33) φ2 ā, φ = u ā, φ, 0 c m 2 T × -cos(2r m + 2 φ2 ) + cos(2r M + 2 φ2 ) + 1 2 k 2 m 2 -1 - ā1 k 2 2ā 2 m 2 cos( φ1 -φ2 ) + O ε 2 (34) φ3 ā, φ = 1 2 k 1 m 1 -1 + ā1 Q 11 2ā 3 cos( φ1 -φ3 ) - ā4 k 2 2ā 3 m 2 sin( φ3 -φ4 ) + O ε 2 ( 
φ4 ā, φ = 1 2 k 2 m 2 -1 - ā3 2ā 4 m 1 m 2 sin( φ3 -φ4 ) + c cos( φ3 -φ4 ) + u ā, φ, 0 c T cos(2r m +2 φ4 )-cos(2r M +2 φ4 )+ ā3 ā4 m 1 + u ā, φ, 0 c T ā3 ā4 m 1 × -cos( φ3 -φ4 ) (-π -2 (r M -r m )) + sin(2r m + φ3 + φ4 ) -sin(2r M + φ3 + φ4 ) + O ε 2 (36) 
Equations ( 2936) are dierential equations with equilibrium points, which dene the quantities we are looking for.

Below we detail the obtention of the numerical parameters of this averaged model.

Numerical results

For this numerical study, we set the oscillating force to be a sinusoid of amplitude ε = 10 -4 N, which is insignicant for the mass of our system (m 1 = 100 kg and m 2 = 2 kg).

We search for the equilibrium point closest to the values identied based on the data provided by ICLOCS. The amplitudes and phases identied according to the numerical solution to Problem 2 are reported in Table 1.

This solution is actually very close to the solution estimated as the equilibrium point of the equations (29 36) obtained using the averaging technique, reported in Table 2.

Therefore, a trajectory exists 1 written as ( 1316) and

(1920) close to that provided by ICLOCS verifying Pontryagin Minimum Principle. The results of ICLOCS are in accordance with the analysis obtained with the averaging method. We also conrmed that the optimal command is bang-bang with a period of T /2

CONCLUSIONS AND PERSPECTIVES

In this study, we investigated the optimal control of a semi-active TLCD for damping a FWT subject to a sinusoidal wave. First, we numerically solved the optimal control problem. The optimal command appeared to have periodic nature, so we employed a simpler model with similar physical characteristics to the original problem in order to perform an analytic study of the optimal control using averaging methods. We showed that the optimal command was a bang-bang command with a period of T /2. We also found that the optimal control obtained analytically was very close to the command obtained by the numerical routine, which conrms the validity of the averaging technique employed here.

It seems very reasonable that an optimal control of a set of coupled oscillators subjected to a sinusoid input generates a periodic solution. What is less easy to anticipate is the frequency doubling eect. Interestingly, the frequency of the solution does not depend on the natural frequency of the system. Only its phases and amplitudes do.

We believe that this result is relatively general, and that one could benet from studying the general question of optimal control of sets of oscillators, under periodic disturbances. More generally, if the disturbance is not monochromatic but contains more than one, say two, frequencies, the questions will certainly be more complex. If the frequencies are harmonic (i.e. dene an integer ratio) then the calculations presented here could be generalized. The two frequencies will be coupled, implicitly, through the constraint, most likely involving some arithmetics connecting the various extremums of the signal. If the two frequencies dene a rational ratio (ratio of two prime integers), the situation will also be governed by some arithmetic equation, dening the periodic distribution of extremums. However, these last two cases, of theoretical interest, are not wellsuited to cover practical problems where the waves have widespread spectrum. For such cases, the questions of replacing a genuine real-time optimal control solver by an analytically derived approximate solution as is done in this article remains vastly opened.

However, the case of single frequency wave is of interest for applications. Future studies could use the properties of the optimal control to develop computationally ecient model predictive control [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF] to control the restriction of the TLCD in association with short-term wave forecasting algorithms [START_REF] Fusco | Short-term wave forecasting for real-time control of wave energy converters[END_REF] with some adaptation on the frequency which could be considered as a slowly-varying parameter.
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 1 Fig. 1. Scheme of the TLCD in motion.
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 3 Fig. 2. Numerical solution for T=15 s