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Abstract This paper is a state-of-the-art review of 

computational damage and fracture mechanics meth- 

ods applied to model ductile fracture at the microscale. 

An emphasis is made on robust and stable methods 

that can handle heterogeneous structures, large defor- 

mations, and cracks initiation and coalescence. Duc- 

tile materials’ microstructures feature brittle and duc- 

tile components whose heterogeneous behavior can give 

raise to cracks initiation due to stress concentration. 

Due to large deformations, cracks initiated by brittle 

components failure transform into large voids. These 

major voids interact and coalesce by plastic localiza- 

tion within ductile components and lead to final failure. 

This process can involve minor voids nucleated directly 

within ductile components at sub-micron scales. 
State-of-the-art discontinuous approaches can be  ap- 

plied to discretize accurately brittle components and 

model their failure, given that large deformations can 

be handled. For ductile components, continuous ap- 

proaches are discussed in this review as they can model 

the homogenized influence of minor voids, hence allevi- 

ating the burden and computational cost overhead that 

an explicit discretization of those voids would require. 

Close to final failure, when major voids are coalesc- 

ing, and the influence of minor voids becomes compa- 
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rable to that of major voids, the transition from a con- 

tinuous damage process within ductile components to 

the initiation and propagation of discontinuous cracks 

within these components has to be modeled. This re- 

view ends with a discussion on computational meth- 

ods that have successfully been applied to model the 

continuous-discontinuous transition, and that could be 

coupled to discontinuous approaches in order to model 

ductile fracture at the microscale in its full three-dimensional 

complexity. 

Keywords ductile fracture; heterogeneous structure; 

microstructure; computational fracture mechanics; 

computational damage mechanics 

 

 
Nomenclature 

 

2D Two-Dimensional 

3D Three-Dimensional 

CDM Continuum Damage Model 

CDT Continuous-Discontinuous Transition 

CZM Cohesive Zone Model 

DNS Direct Numerical Simulation 

FE Finite Element 

GFEM Generalized Finite Element Method 

GTN Gurson-Tvergaard-Needleman 

LS Level-Set 

PF Phase-Field 

RVE Representative Volume Element 

X-FEM eXtended Finite Element Method 

 

 
1 Introduction 

 
Predicting ductile fracture is of high interest to the 

metal forming, transport and energy industries among 
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others. In order to improve the predictive capabilities 

of existing modeling approaches, it will be necessary 

to improve the understanding of this phenomenon, but 

also to propose numerical methods that can model it in 

its full complexity. For instance, the severe plastic de- 

formation that occurs in ductile materials prior to final 

failure, as opposed to brittle materials, raises a number 

of challenges for computational methods. 

Plasticity, which is incompressible, leads to well- 

known locking issues if one does not choose an appropri- 

ate discretization. Thus, a robust Finite Element (FE) 

modeling of ductile fracture first requires a robust FE 

implementation of plasticity. This can be done by using 

mixed formulations, which introduce additional pres- 

sure degrees of freedom and a higher order displacement 

discretization (Lorentz et al (2008)) or bubble stabi- 

lization terms (Areias et al (2011); El khaoulani and 

Bouchard (2013)). The latter is also known as MINI 

or P1+/P1 element formulation. Other options are the 

F-bar element (Andrade Pires et al (2004)), and selec- 

tively reduced integration (Mediavilla et al (2006b)). 

All these formulations consist in isolating the volumet- 

ric parts of the strain and stress tensors and discretizing 

or integrating them separately. The reader is referred 

to nonlinear FE textbooks for more details on these 

methods (Belytschko et al (2013)). 

Additionally, ductile fracture is the result of inter- 

acting plastic localization and failure mechanisms at 

different scales (Pineau et al (2016)). There has been 

a great interest in the recent literature for experimen- 

tal and computational methods that can be applied at 

multiple scales. On the experimental side, in situ load- 

ing machines and X-ray imaging can now provide full 

three-dimensional (3D) visualization of ductile fracture 

at the microscale, and be coupled to force sensors and 

surface images to also acquire macroscopic information 

(Shakoor et al (2017c)). On the computational side, 

current and future efforts towards integrated computa- 

tional materials engineering are motivating the devel- 

opment  of  multiscale  computational  methods  (Matouš 

et al (2017)). 

 
As a first step, an attempt can be made at account- 

ing for ductile materials’ microstructures and their role 

during failure. These microstructures are often assumed 

to be composed of a metallic ductile component, the 

matrix, in which are embedded brittle components, the 

particles1. Ductile fracture initiates by void nucleation 

due to particle fragmentation or debonding. The sub- 

sequent voids grow and interact by plastic localization, 
 

 

1 Other variants such as dual phase steels and polycrystals 

with multiple ductile components are also considered in the 

present review. 

until this void coalescence mechanism becomes domi- 

nant and leads to final macroscopic failure (Pineau et al 

(2016)). 

Experimental observations of these micromechanisms 

are shown in Figure 1. Due to the low particles and 

voids volume fraction of the material shown in this fig- 

ure, the influence of the microstructure on the crack 

propagation path can be observed, but void nucleation 

micromechanisms cannot be clearly distinguished. A 

better view of ductile fracture at the microscale is shown 

in Figure 2. The material shown in this figure has a high 

nodules volume fraction, which allows to distinguish 

void nucleation mainly by debonding, with some frag- 

mentation, followed by void growth and coalescence. 

The initiation and propagation of a macroscopic crack 

by void sheeting along the shear band can also be ob- 

served. 

Modeling all these micromechanisms is a computa- 

tionally challenging problem. Indeed, it raises a num- 

ber of issues for computational fracture mechanics ap- 

proaches. While crack modeling techniques that can 

handle multiple crack initiation sites can be found, it 

will be shown in this review that there are only a few 

methods that can also handle large deformations and 

cracks coalescence. For instance, Antretter and Fischer 

(1998) have focused on simple two-dimensional (2D) 

configurations with a single pre-existing crack, and ad- 

dressed only the influence of particles on crack prop- 

agation within the matrix. Simulations with multiple 

crack initiation sites at arbitrary locations with both 

particle fragmentation and debonding modeling in 3D 

can be found in Shakoor et al (2017a). The latter study 

assumes a brittle fracture of particles and their inter- 

faces, while void growth and coalescence are assumed 

to be purely plasticity driven. 

As  pointed  out  by  Tekoğlu  et  al  (2015),  recent  ex- 

perimental evidence suggests that for some materials 

and loading conditions a minor void population nucle- 

ates, grows, and coalesces within the matrix. This void 

population is coined as minor due to its small size com- 

pared to voids that nucleate due to particles debonding 

and fragmentation. As explicitly meshing these voids 

along with particles and voids of the major popula- 

tion would be computationally extremely demanding, 

Areias et al (2015) among others have relied on contin- 

uous approaches. Continuous approaches are compu- 

tationally interesting as they can represent very large 

numbers of voids at low computational cost, and with 

low implementation burden as opposed for instance to 

remeshing techniques or the eXtended Finite Element 

Method (X-FEM). However, continuous approaches re- 

quire to define a so-called Continuous-Discontinuous 

Transition (CDT), at which the minor void population 
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Fig. 1 Cross section from 3D X-ray images of the microstructure of a thick notched specimen under tensile loading at different 

crack mouth opening displacements: (a) 0 mm, (b) 1.625 mm, (c) 1.875 mm, (d) 2.0625 mm, (e) 2.3125 mm, (f) 2.375 mm. The 

material, an aluminum alloy with less than 1% initial particles/voids volume fraction, fails by the initiation and propagation  

of a macroscopic crack in a zig-zag pattern due to the influence of the microstructure. Reprinted from Morgeneyer et al (2011), 

with permission from Elsevier. 
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Fig. 2 Cross section from 3D X-ray images of the microstructure of a flat specimen with two machined holes at 45
◦ under 

tensile loading. The material, nodular cast iron, fails by debonding and fragmentation of the nodules, and then void growth, 

coalescence and sheeting in the shear band between the two machined holes. Reprinted from Shakoor et al (2017c), with 

permission from Elsevier. 

 
has grown and coalesced enough so that its size and in- 

fluence becomes comparable to that of the major void 

population. At this critical point, one has to consider 

3D crack initiation and propagation criteria within the 

matrix, for instance using the method proposed by Feld- 

Payet et al (2015). 

 
To follow the emergence of these sophisticated nu- 

merical methods, the present review starts in Section 2 

by a discussion of numerical methods with a discontin- 

uous modeling of fracture. Here discontinuous implies 

that the crack is explicitly modeled, with a discontin- 

uous jump of the displacement field across crack faces. 

These methods have been developed mainly for brittle 

materials. They can be applied to model the fracture 

of brittle components of the microstructures of ductile 

materials, and also the fracture of ductile components 

if the softening effect due to the minor void population 

can be neglected. 

Then, methods that can model the softening re- 

sponse of ductile materials are reviewed in Section 3. A 

focus is made on the application of these methods to the 
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matrix component of these materials’ microstructures 

to account for minor void populations. Additionally, 

multiscale methods can be seen as continuous meth- 

ods where the effect of micro-cracks and microstructural 

damage is modeled using continuous analytic or compu- 

tational homogenization. This is of particular interest 

as ductile fracture has to be modeled simultaneously at 

two or more scales. 

Finally, the limitation of continuous methods during 

the final stage of ductile fracture, where the softening 

effect becomes predominant over the hardening effect, 

up to final failure, lead to the CDT problem. This prob- 

lem can be modeled by coupling continuous models to 

discontinuous approaches. As detailed in Section 4, this 

coupling raises other issues that make 3D problems still 

challenging. 

Discussions throughout the paper and in Section 5 

should give the reader insights on current and future ef- 

forts on micromechanical modeling of ductile fracture. 

In particular, the authors wish to highlight methods 

that seem to be the most promising options to han- 

dle all difficulties raised by ductile fracture modeling in 

heterogeneous structures. 

 
 

2 Discontinuous approaches 

 
If the softening effect before crack initiation and prop- 

agation can be neglected, ductile fracture can be mod- 

eled using the same numerical methods as brittle frac- 

ture. Some differences arise regarding the crack initia- 

tion and propagation criteria, as plastic strain and load- 

ing path should be accounted for in the ductile case. 

As this review article does not focus on the criteria but 

the crack modeling methods, we discard discussions on 

the criteria. It must however be pointed out that crack 

propagation criteria are rare for the 3D case, in par- 

ticular if there are multiple initiation sites as in void 

nucleation in ductile microstructures. Void nucleation 

itself is a challenging application for discontinuous ap- 

proaches, as at the microscale void nucleation can be 

considered as the brittle failure of particles or parti- 

cles/matrix interfaces. The main challenge in that case 

is that these micro-cracks open to a quite large extent 

before propagating, which restricts the applicability of 

brittle fracture modeling methods that cannot handle 

large deformations. 

 
 

2.1 Element erosion 

 
A simple way to dynamically introduce discontinuities 

in a FE simulation is to remove elements from the FE 

mesh and/or the associated contributions from the FE 

formulation based on an appropriate fracture indicator. 

This method is often referred to as element deletion, el- 

ement removal or kill element. The terms element ero- 

sion are used to depict the fact that elements are gener- 

ally removed after eroding their load carrying capacity 

over several load increments to avoid convergence issues 

(Wulf et al (1996)). 

When it comes to ductile fracture, the element ero- 

sion method is most often associated to Continuum 

Damage Models (CDMs, see Subsection 3.1). However, 

some studies can be found where a failure criterion was 

used to trigger element deletion or erosion without ac- 

counting for the softening effect. 

 
Wulf et al (1996) presented an application of ele- 

ment erosion to a 2D aluminum alloy microstructure. 

Matrix failure was modeled by progressively setting the 

stress and stiffness of matrix elements to zero depend- 

ing on a plastic strain based failure criterion. As pointed 

out by Wulf et al (1996), a strain based criterion is 

convenient as it also removes distorted elements that 

should otherwise be treated with mesh adaption (Sub- 

sections 2.4 and 4.4). Another important remark of the 

authors is that nodes surrounded with eliminated ele- 

ments must also be eliminated to avoid the discretiza- 

tion of balance equations to be ill-defined. 

A plastic strain based criterion was also used by 

McHugh and Connolly (2003) to trigger a progressive 

release of stress and stiffness in given elements. It is 

important to point out that while the progressive re- 

laxation is justified as a numerical technique used to 

improve convergence by Wulf et al (1996), it is defined 

as a gradual process comparable to the mechanical pro- 

cess of ductile failure by McHugh and Connolly (2003). 

Thus, the number of load increments over which ele- 

ment erosion occurs is defined as a material parameter 

by McHugh and Connolly (2003). The proposed appli- 

cation is the microstructure of a metal alloy, wherein 

the matrix is modeled using a crystal plasticity FE 

method coupled to element erosion. 

A more advanced empirical criterion accounting for 

plastic strain and also the stress state was applied to a 

dual  phase  steel  by  Perzyński  et  al  (2017).  In  particu- 

lar, 2D and 3D micromechanical simulations accounting 

for ductile fracture of the ferrite phase were conducted. 

The ductile fracture indicator was fitted to experimen- 

tal data giving the plastic strain at failure for ferrite  

at different stress triaxiality ratios. As shown in Figure 

3, promising simulation results of the failure process of 

dual phase steel microstructures were obtained. These 

results showed the interaction between brittle fracture 

in the martensite phase, and ductile failure in the fer- 
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rite phase. 
 
 
 

Fig. 3 Micromechanical simulation of a 3D dual phase steel 

microstructure showing in white  the  martensite  phase,  and  

in blue eroded elements from the ductile ferrite phase. The 

reader  is  referred  to  Perzyński  et  al  (2017)  for  indications 

on the relation between punch displacement and boundary 

conditions at the microscale. Reprinted from Perzyński et al 

(2017), with permission from Elsevier. 
 
 

In spite of these interesting applications, element 

erosion has well-known mass loss, mesh size dependence 

and element shape dependence issues (Mediavilla et al 

(2006a)). Computational approaches to ductile fracture 

at the microscale decades ago (Wulf  et al (1996)),  at 

a time where high performance computing capabilities 

were not as accessible as today, used this method. This 

is mainly due to its ease of implementation and low 

computational cost compared to the methods that are 

discussed in the following. The aim of these methods 

is to allow the modeling of cracks as new interfaces in- 

serted dynamically during the FE simulation. To avoid 

the numerical issues raised by the element erosion method, 

the following methods are designed so that cracks can 

be initiated at arbitrary locations and propagated along 

arbitrary directions, independently of the FE mesh. 

 

 
2.2 Enriched Finite Element methods 

 
2.2.1 Introduction 

 
In order to model discontinuities without element ero- 

sion or remeshing, a family of enriched FE methods 

have been developed and have been documented by 

different  authors  (Jirásek  (2000);  Oliver  et  al  (2006); 

Fries and Belytschko (2010)). The most popular of these 

methods  is  the  X-FEM  (Moës  et  al  (1999)),  which  is 

based on the partition of unity concept (Babuska and 

Melenk (1995)). The Generalized Finite Element Method 

(GFEM) is another relevant enriched method (Strouboulis 

et al (2000)). Initially, in GFEM, all the nodes in the 

discretization were enriched; later, local enrichment was 

adopted. The distinction between X-FEM and GFEM 

has become less clear as the methods have evolved (Fries 

and Belytschko (2010)). A very attractive feature of 

these methods is the fact that discontinuities might be 

modeled independently of the mesh, i.e., conformity is 

not required. Most of the applications of enriched FE 

methods have been dedicated to brittle fracture. This 

subsection discusses some of the works that have dealt 

with ductile fracture. 

 
 

 
2.2.2 Strong discontinuities 

 
Strong discontinuities such as cracks and holes can be 

modeled with enriched FE methods. The material/void 

interface is captured thanks to a discontinuous enrich- 

ment, typically using the Heaviside function as enrich- 

ment function (Moës et al (1999)). To capture the stress 

singularity in the near crack tip region, an additional 

enrichment is necessary (Belytschko and Black (1999)). 

The latter requires careful choice of the enrichment 

function, and knowledge of the analytic solution. These 

enrichment techniques are usually implemented locally 

and not in the whole FE mesh. This constitutes the 

basis of X-FEM. 

Sukumar and Belytschko (2000) showed how the ba- 

sic methodology can be extended to account for ar- 

bitrary branched and intersecting cracks in 2D cases 

such as a cross or star shaped crack. An extension to 

3D of the basic X-FEM methodology was provided by 

Sukumar et al (2000) by enriching the elements near 

the crack front with the radial and angular behavior of 

the 2D asymptotic crack tip displacement field. Anal- 

ogous development have been made with the GFEM 

(Duarte et al (2001)). Further flexibility in the descrip- 

tion of the crack geometry was introduced by coupling 

the Level-Set (LS) method (Osher and Sethian (1988)) 

to the X-FEM: the zero isovalue of a signed distance 

function gives the position of the crack surface, and its 

intersection with a second and almost orthogonal signed 

distance function describes the crack front (Moës et al 

(2002); Gravouil et al (2002)). The semicircular crack 

in  a  Maltese  cross  modelled  by  Moës  et  al  (2002),  is 

an example of the more complex and non planar crack 

geometries that can be studied with this technique. 
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2.2.3 Weak discontinuities 

 
When the X-FEM is used to model a strong discon- 

tinuity, the crack is embedded within some FE ele- 

ments, that will distort significantly due to the displace- 

ment jump. The X-FEM can also be used to define      

a stress/strain jump with a continuous displacement. 

This is relevant for the modelling of inclusions in duc- 

tile fracture simulations. 

Sukumar et al (2001) presented 2D examples of in- 

clusions to show the potential of this approach to repre- 

sent complex internal boundaries. In the elements con- 

taining the matrix/inclusion interface, i.e., the weak 

discontinuity, the absolute value of an LS function was 

used as enrichment function. This aspect was further 

explored by Huynh and Belytschko (2009) with 2D and 

3D examples in composite materials. More sophisti- 

cated approaches for modeling inclusions with the X- 

FEM have been developed more recently. Wang et al 

(2016) proposed an adaptive X-FEM strategy coupling 

the X-FEM to mesh adaption techniques (Subsection 

4.4), and compared its accuracy and computational per- 

formance with standard X-FEM. 

Some works have applied the capabilities of X-FEM 

to modelling weak discontinuities along with cracks in 

ductile materials. Singh et al (2011) studied the effect 

of the presence of minor cracks, voids and inclusions in 

the vicinity of a major crack for multiple configurations. 

Ye et al (2012) analyzed the stress dissipating effect un- 

der small strain of reinforcing particles on fatigue close 

to the crack tip. Metal matrix composites of various 

particle sizes were investigated. A multiscale approach 

with the projection method (Loehnert and Belytschko 

(2007)) was used by Liu et al (2017a) to assess the effect 

of micro-cracks, inclusions and voids for different rela- 

tive positions with respect to the tip of a major crack 

under mode I and mode II loading. These three cited 

works investigated only 2D configurations. 

 

2.2.4 Discussions 

 
Enriched FE methods provide the capability of mod- 

elling weak and strong discontinuities, i.e., interfaces 

between two material phases (Sukumar et al (2001); 

Huynh and Belytschko (2009)) and void/material in- 

terfaces  (Moës  et  al  (1999)),  as  well  as  stress  singu- 

larities (Belytschko and Black (1999)). These methods 

can handle branching and intersecting cracks (Suku- 

mar and Belytschko (2000); Belytschko et al (2001)), 

non  planar  cracks  (Moës  et  al  (2002);  Gravouil  et  al 

(2002)) and complex 2D and 3D geometries (Sukumar 

et al (2000)). These features are relevant for the study 

of ductile damage. 

Yet, most of the literature is dedicated to brittle 

fracture. Even in works in which ductile materials are 

the object of study (Loehnert and Belytschko (2007); 

Liu et al (2017a)), the focus is on the calculation of 

stress intensity factors and large deformations are not 

pursued. The small number of works with enriched FE 

methods dedicated to ductile fracture might be par- 

tially explained by the fact that these methods were 

conceived precisely to avoid remeshing, which might be 

necessary if the considerable deformation associated to 

ductile fracture is to be accounted for, even with an en- 

riched FE formulation. 

 
The practical application of enriched FE formula- 

tions is less straightforward than the implementation of 

its basic techniques; limitations and additional compli- 

cations arise. Their implementation can be burdensome 

depending on the structure of the FE code due to the 

variable number of degrees of freedom that comes with 

local enrichment (Rabczuk et al (2010)). 

Traditional Gauss quadrature is not adequate for 

enriched elements. There are different strategies to tackle 

this problem, but the most common one is subpartion- 

ing of enriched elements, with higher order integration 

for crack tip elements (Moës et al (1999)). 

In the first X-FEM implementations, topological en- 

richment was used for the crack tip enrichment, i.e., 

only those nodes whose support contained the crack 

tip were enriched. This resulted in a deteriorated order 

of convergence. To solve this issue, a geometric enrich- 

ment was proposed where enrichment is added for all 

nodes within a distance to the crack tip (Laborde et al 

(2005)). Although this improves the convergence rate, 

the conditioning is deteriorated and the problem size 

increases (Sukumar et al (2015)). Another factor that 

might affect the order of convergence is the use of ap- 

proximate enrichment for the crack tip instead of full 

enrichment (Huynh and Belytschko (2009)). 

Ill-conditioning can also arise if an element is cut by 

an interface such that one of the resulting subvolumes 

is comparatively very small with respect to the other. 

To alleviate the conditioning problems associated to X- 

FEM, ad hoc preconditioners have been proposed, an 

example of which can be found in Béchet et al (2005). 

X-FEM related convergence issues are, however, lesser 

than those that have been found for mixture laws and 

multiphase elements (Wulf et al (1996)). 

An additional obstacle to the application of enriched 

FE methods to ductile fracture problems is related to 

their application beyond elastic problems. Even though 

bimaterial interfaces or void/material interfaces can be 

handled transparently independently of the behavior of 

the material, crack tip enrichment functions depend on 
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material behavior. Although some developments have 

been made for elasto-plastic materials (Elguedj et al 

(2006)), their application remains restricted to confined 

plasticity, and enriching crack tip elements for more ad- 

vanced material laws remains a considerable challenge. 

 
These drawbacks of X-FEM might deter from its 

application to ductile fracture problems. Indeed, the 

number of works that employ it to study ductile frac- 

ture is very small with respect to brittle fracture. It 

should nevertheless not be discarded as it can be ap- 

plied to model the fracture of brittle components in duc- 

tile materials’ microstructures. For instance, the failure 

of ductile dual phase steels has been studied at the mi- 

croscale by applying the X-FEM to the brittle marten- 

sitic phase (Vajragupta et al (2012); Ramazani et al 

(2013);  Perzyński  et  al  (2017)).  As  shown  in  Figure  4, 

remarkable results can be obtained using this approach. 

However,  due  to  technical  limitations,  Perzyński  et  al 

(2017) used two separate codes for brittle and duc- 

tile failure, and enriched elements were considered as 

deleted in the ductile fracture code. 
Void nucleation by fracture of brittle components 

within ductile materials’ microstructures can hence be 

modeled using the X-FEM. Enriched FE methods are 

nevertheless not applicable yet to model the growth of 

these cracks into large voids. 

 

2.3 Cohesive Zone Models 

 
While enriched FE methods solve completely the mass 

loss, mesh size dependence, and element shape issues 

raised by the element erosion method, they fall short 

in modeling the energy dissipation rate. Indeed, once 

a displacement jump is introduced within an element, 

its load carrying capacity is instantly lost. In element 

erosion, the energy dissipation rate could be controlled 

based on numerical (Wulf et al (1996)) or physical ar- 

guments (McHugh and Connolly (2003)) by progres- 

sively setting the stress and stiffness to zero. When the 

crack is defined not by element removal but by an ac- 

tual interface across which the displacement is defined 

as discontinuous, Cohesive Zone Models (CZMs) can be 

introduced to model the energy dissipation rate. 
The origins of CZMs date back to the 60’s and the 

concepts were initially introduced by Barenblatt (1962) 

and latter described by Rice (1968a). The concept of 

CZM is simple and states that, at the crack tip, there 

is a finite size region where the material transitions from 

a fully broken material to a sound material. Figure 5 

shows a schematic representation of a fracturing pro- 

cess taking place on a brittle material and its interpre- 

tation using a CZM model. This region, called the cohe- 

sive region or process zone, corresponds to prospective 

fracture surfaces ahead of a crack which are permitted 

to separate under loading. This separation process and 

crack surface creation process are opposed by atomic 

or molecular cohesive forces (Rice (1968b)). The en- 

ergy dissipated by the breakage of the atomic bounds 

corresponds to the fracture energy required to create 

the new free surfaces and break the material. 
 

The force opposed to the opening of the new sur- 

faces is called cohesive force and modeled by a phe- 

nomenological traction-separation law. There are many 

traction-separation laws that can be used to model the 

fracture process. 
 

In comparison with other methods used to model 

fracture, cohesive elements are independent from me- 

chanical behavior of the bulk material, the extend of 

the cracks and the size of the plastic zone (Ortiz and 

Pandolfi (1999)), which represents a very interesting 

advantage. Within the context of FE models, there are 

different ways of using CZMs. Enrichment based nu- 

merical  techniques,  such  as  XFEM  or  GFEM  (Moës 

et al (1999); Strouboulis et al (2000); Reed and Hill 

(1973);  Aragón  and  Simone  (2017)),  will  not  be  dis- 

cussed in this subsection. These techniques are used 

by a large part of the community, in particular XFEM 

approaches which are discussed in Subsection 2.2. An- 

other technique is based in the insertion of “cohesive el- 

ements” into the mesh. These cohesive elements, which 

can be seen as some kind of special surface element, 

obey a constitutive law that corresponds to the selected 

traction-separation law. 
 

In practical terms, a cohesive element is inserted at 

a face separating two bulk elements as it can be seen in 

Figure 6A. The insertion is simply performed by dupli- 

cating the nodes forming the separating face and insert- 

ing a new cohesive element linking the original nodes to 

the new duplicated ones (Figure 6C). It is worth men- 

tioning that cohesive elements are initially flat (Figure 

6B) and, in contrast to a regular bulk FE, this flatness 

does not represent any issue regarding the capability of 

cohesive elements to properly describe the mechanical 

response of the process zone. 

 
 

The implementation of CZMs into a FE framework 

has strong implications on the way cohesive elements 

can be used to model fracture and, in some cases, can 

represent a limitation of the method. Some of these 

limitations are presented here and classified by differ- 

ent topics: insertion methods and crack propagation ap- 

proaches. 
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Fig. 4 Micromechanical simulation of a 2D dual phase steel microstructure showing the ductile fracture of the ferrite phase  

modeled using element deletion and the brittle failure of the martensite phase modeled using X-FEM. (a) Microstructure with 

ferrite in gray and martensite in red. (b) Damage variable in ferrite phase. (c) Von Mises stress field. (d) Equivalent plastic strain 

field. Reprinted from Perzyński et al (2017), with permission from Elsevier. 

 
 

2.3.1 Insertion methods 
 
 

Intrinsic methods The simplest way of handling cohe- 

sive element insertion is to insert these elements since 

the beginning of the simulation. This approach is very 

interesting since its implementation in any standard FE 

code is straightforward and many problems such as par- 

ticle debonding can be simulated with this approach. 

However there is a strong drawback: an artificial re- 

duction of the stiffness of the material is induced. In 

fact, most traction-separation laws have an initial re- 

gion where the traction increases monotonically from a 

zero up to a maximum value (in some cases this increase 

is linear). This increase of the traction level as a func- 

tion of the opening displacement leads to the introduc- 

tion of an artificial stiffness into the system that mod- 

ifies the macroscopic response of the material (Tomar 

et al (2004)). A way to overcome this problem is to 

use an infinite cohesive stiffness up to the critical co- 

hesive traction. This can be achieved by introducing 

Lagrange multipliers in such a way that the opening  

of the element is only allowed once a critical traction 

is achieved (Lorentz (2008)). However this solution re- 

 

quires the modification of the standard FE formulation 

and, in this way, the main advantage of the approach 

(the use of a standard FE code) is lost. 
 

Extrinsic methods An alternative method to handle the 

insertion of cohesive elements is to dynamically dupli- 

cate the nodes of faces where a given criterion is sat- 

isfied and then insert the new cohesive element. This 

technique is very interesting because it allows to get 

rid of the artificial modification of the global stiffness 

of the material but its implementation is not straight- 

forward. The implementation requires the modification 

of the core features of the FE library, in particular con- 

cerning the mesh module, and it is particularly complex 

within the context of distributed computing (Vocialta 

et al (2017)). Although this extrinsic approach allows 

to circumvent spurious stiffness problems, it still suffers 

from some mesh dependency problems, as discussed in 

the following. 
 

2.3.2 Crack propagation approaches 

 
Mesh dependency Whether an intrinsic or an extrinsic 

approach is used, CZMs within the context of FE meth- 
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Fig. 5 Schematic representation of the cohesive zone: tran- 

sition from sound material to broken material. The green ar- 

rows represent the distribution of tractions over the cohesive 

region. 

 

 

Fig. 6 Schematic representation of the insertion of a cohesive 

element: A. The green dashed line shows the faces that will 

be split. B. The cyan dots correspond to the nodes that have 

been doubled and therefore there are indeed two nodes at the 

same location. The green line corresponds to a initially flat 

cohesive element. C. After loading the new inserted cohesive 

elements open. 
 

 

ods suffer from mesh dependency. In fact since cracks 

appear at the faces separating two bulk elements, there- 

fore the crack path depends on the mesh and this is 

true for simulations involving structured and non struc- 

tured meshes. The issue is illustrated in Figure 7 where 

the predicted crack path and the actual one are shown 

in blue and green, respectively. This means that if the 

mesh changes, the crack pattern slightly changes too. 

Fig. 7 Prescribed crack path (dashed blue line) and the ac- 

tual crack path (solid green line) after cohesive elements in- 

sertion. 
 

 

Debonding It is therefore clear that the CZM is very 

well adapted for problems where the crack path is known 

in advance. This is the case of problems involving debond- 

ing of interface. The literature studying the application 

of CZM to this kind problems is rather broad (Chandra 

et al (2002); Turon et al (2007); Li and Ghosh (2004); 

Turon et al (2010)). In the case of microscopic modeling 

of materials, the CZM are very well suited to model the 

debonding that can take place between the inclusions 

and the matrix of a metallic or composite material. 

 
2.3.3 General remarks 

 
CZM within the context of FEs represent a very in- 

teresting tool regarding fracture modeling. The discon- 

tinuities of displacement fields that appear during the 

fracture process are naturally handled by the method. 

It also allows to introduce interesting physical mecha- 

nisms into the fracture model through the use of dif- 

ferent kind of traction-separation laws and the energy 

dissipation rate can be controlled very accurately. These 

traction-separation laws can include rate effects (Salih 

et al (2016)), account for stress triaxiality ratio (Baner- 

jee and Manivasagam (2009)) and fatigue effects (Nguyen 

et al (2001)), among others. 

Cohesive elements are widely used in the commu- 

nity for applications involving brittle materials and also 

within the context of fragmentation where most materi- 

als fail in a brittle fashion under violent dynamic load- 
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ings. Although some traction-separation laws for ductile 

materials exist (Scheider (2009)), problems arise when 

ductile materials are subjected to complex non propor- 

tional loadings and, in particular, to low stress triaxi- 

ality ratio loading. These problems come from the fact 

that it is still a big challenge to handle contact in prob- 

lems involving non monotonic loading path that can 

eventually lead to crack closure and friction. 

 
There are also some drawbacks that often restrict 

the use of CZM in classical FE codes. The need of han- 

dling mesh operations to dynamically insert cohesive 

elements (extrinsic approach) is extremely important 

and mesh dependency remains an issue regardless of the 

insertion approach. Recent approaches as the one intro- 

duced by Soghrati et al (2017) tackle mesh dependency 

issues. Alternatively, mesh dependency issues related to 

CZMs can be overcome by using advanced crack initi- 

ation and propagation techniques (Subsections 2.2 and 

2.4). 

In spite of the drawbacks discussed previously, CZMs 

present interesting features that can be used within the 

context of heterogeneous materials modeling. A brief 

overview of different works using CZMs to study het- 

erogeneous materials is proposed in the following. 

 

2.3.4 Applications to heterogeneous materials 

 
It is now clear that cohesive elements can be used to 

study the fracture of heterogeneous materials but it is 

necessary to use this technique carefully since its draw- 

backs could lead to non physical results. Taking into ac- 

count the advantages and drawbacks of CZM presented 

previously, CZMs have mainly been used for problems 

involving debonding between inclusions and the matrix 

(Liang and Sofronis (2003); Meng and Wang (2015); 

Giang et al (2017)), inclusions failure (Steglich et al 

(1999); Giang et al (2017)), and problems where the 

crack paths are prescribed (Giang et al (2017)). The 

previous cited works will be briefly discussed. 

Steglich et al (1999) proposed an interesting and pi- 

oneering application of cohesive elements to the mod- 

eling of fracture of metal matrix composite materials 

for which failure is dominated by particle cracking. At 

the macroscopic level, the damage process for this mate- 

rial was modeled using a Gurson-Tvergaard-Needleman 

(GTN) model (Section 3). The parameters of this mi- 

cromechanical CDM model were obtained from unit cell 

computations where the two phases of the material (in- 

clusions and matrix) were meshed. Cohesive elements 

were initially placed over the equatorial plane of the 

inclusion and the failure process was modeled by using 

a classic exponential traction-separation law (Xu and 

Needleman (1994)). Although inclusion/matrix debond- 

ing and matrix failure was neglected in the unit cell 

computations, the multiscale principle of fitting macro- 

scopic failure models from simulations of more advanced 

mesoscopic models was highlighted. A similar unit cell 

approach modeling the debonding of particles instead of 

their fragmentation was proposed by Meng and Wang 

(2015) among others. 

Since debonding can be modeled very  accurately 

by using cohesive element approaches, this technique 

has been widely used within the context of heteroge- 

neous materials. Liang and Sofronis (2003) tackled a 

very challenging problem that remains a hot topic in 

the field of metallic materials modeling: hydrogen em- 

brittlement. It is well know that hydrogen induces em- 

brittlement of ductile materials as hydrogen induces 

debonding at the interface between carbides and the 

matrix. This debonding was modeled by using a traction- 

separation law that accounts for the hydrogen concen- 

tration in the material. Although the use of cohesive ele- 

ments to study debonding is logic and simple, the cou- 

pling of fracture processes with complex multiphysics 

phenomena is not. It is indeed very interesting to see 

how complex multiphysics phenomena, such as hydro- 

gen diffusion, can be coupled to the mechanical re- 

sponse of a material containing cracks. 

An interesting contribution to micromechanical mod- 

eling using CZMs was proposed recently by Giang et al 

(2017). Ductile fracture was modeled at the scale of 

large 3D periodic arrays of inclusions. Cohesive ele- 

ments with a classic exponential traction-separation law 

(Xu and Needleman (1994)) were placed at interfaces 

between particles and matrix, and along a predefined 

crack propagation path. The latter was mainly used to 

model matrix micro-cracking, but it also included the 

equatorial planes of some particles, which enabled to 

model their fragmentation. This is hence a combina- 

tion of previous works by Steglich et al (1999); Meng 

and Wang (2015), with the addition of a matrix micro- 

cracking model. Examples of results using this approach 

are shown in Figure 8. These results reveal a compe- 

tition between particle debonding and fragmentation 

depending on material properties. Although these re- 

sults are promising, Giang et al (2017) used an intrinsic 

method and had to define the crack path a priori both 

for particle fragmentation and matrix micro-cracking. 

 
2.3.5 Conclusion 

 
CZMs are relevant for modeling the initiation and prop- 

agation of brittle and ductile cracks. This is done ei- 

ther by inserting cohesive elements along any potential 

crack initiation and propagation surfaces, or by dynam- 
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Fig. 8 FE simulation of a ferritic steel microstructure using CZMs at particles/matrix interfaces, and along a predefined crack 

propagation path through particles and matrix at the midsection of the specimen. The ratio σcM /σ0 is the ratio between matrix 

cohesive strength and matrix yield stress. Reprinted from Giang et al (2017), with permission from Elsevier. 

 
 

ically inserting cohesive elements during the simulation. 

These elements have a negligible volume initially, and 

will progressively open as the crack grows, with an ac- 

curate modeling of the energy dissipation rate through 

a traction-separation law. 

The implementation of CZMs for particle debonding 

modeling is facilitated, as cohesive elements can be in- 

serted initially or dynamically along particles/matrix 

interfaces. Particle fragmentation and matrix micro- 

cracking modeling is less straightforward, as the crack 

propagation path is generally not known a priori. For 

such arbitrary crack paths, CZMs should be coupled 

to the methods presented in Subsections 2.2 and 2.4. 

For instance, Wolf et al (2017) coupled a CZM to the 

X-FEM in order to model ductile fracture in 2D con- 

figurations. 

 

 
2.4 Mesh modification 

 
2.4.1 Introduction 

 
CZMs can already be seen as a mesh modification, as 

new elements are inserted to model the discontinuity. If 

no CZM is considered, the nodes along the crack path 

can be simply duplicated. As in element erosion ap- 

proaches, this instantaneous fracture modeling can be 

smoothed by releasing node tractions progressively over 

several increments. It must be pointed out that these 

smoothing techniques are usually expressed as functions 

of increments or time, while a CZM is expressed as a 

function of crack opening displacement (Antretter and 

Fischer (1998); McHugh and Connolly (2003); Ortiz 

and Pandolfi (1999)). Cohesive elements also use a sur- 

face discretization, while traction release is expressed 

directly at nodes (Antretter and Fischer (1998)). 

Antretter and Fischer (1998) considered a 2D prob- 

lem of a ductile material with two inclusions explicitly 

meshed. Crack initiation was not modeled as one of the 

two inclusions was considered as initially fragmented. 

The propagation of this fragmentation crack within the 

 

matrix and towards the second inclusion was modeled 

by triggering node release along a predefined crack path 

based on a crack tip opening angle criterion. 

 
For arbitrary crack paths where the crack propaga- 

tion criterion not only determines the propagation on- 

set, but also the propagation direction, the numerical 

implementation becomes quite complex. Robust mesh 

modification operations have to be developed to dy- 

namically discretize new interfaces during the FE sim- 

ulation, as discussed hereafter. 

Note that the terms mesh modification are rarely 

used. Most authors use the word remeshing, which is a 

quite ambiguous term as it may encompass full remesh- 

ing, local remeshing, or adaptive mesh refinement. The 

most widely used remeshing technique for large defor- 

mations simulations involves a human operator whose 

role is to correct the initial FE model if element inver- 

sion occurs during the simulation. There are automatic 

procedures to avoid human intervention, although they 

are often restricted to tetrahedral elements. Automatic 

remeshing can simply mean moving some nodes to avoid 

element inversion. This can be combined or replaced by 

automatic mesh topology changes (e.g., by edge or face 

swapping). Alternatively, remeshing can mean regener- 

ating the whole mesh from some representation of the 

current geometry whenever there is a risk of element 

inversion. 

Adaptive mesh refinement, or local mesh refinement, 

is often presented as a type of remeshing technique, al- 

though it only consists in splitting edges, faces, and 

elements to refine the mesh. Mesh adaption seems to 

be less ambiguous as it usually means that mesh size is 

being varied spatially and sometimes also in time to au- 

tomatically adapt the FE mesh to the solution’s varia- 

tions. This can be done dynamically and automatically 

throughout the FE simulation, which requires proper 

transfer operators to map variables between old mesh 

and new mesh after the FE mesh has been modified. 

It can also be done after the whole FE simulation has 

been conducted, to restart with a new mesh. 
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To summarize, we will use the word remeshing when- 

ever a mesh modification is operated to avoid element 

inversion or modify the model geometry. This modifi- 

cation can be a change to the positions of some or all 

nodes, and/or a change to the topology of some or all 

FEs. Full remeshing will mean that the whole FE mesh 

is being regenerated from some representation of the 

domain geometry, and in particular of its boundaries 

(including the crack geometry). 

Mesh adaption will refer to mesh modifications op- 

erated to adapt the FE mesh to the FE solution’s vari- 

ations and reduce some estimated error. This may be 

done solely using local mesh refinement, or accompa- 

nied by node position and element topology changes. 

In all cases, we only refer in the following to au- 

tomatic mesh modifications that do not require human 

intervention and can be applied dynamically during the 

FE simulation, as the crack path is not known a priori. 

 
2.4.2 Methods and their applications 

 
Mediavilla et al (2006a) used an uncoupled non local 

integral damage indicator as crack initiation and prop- 

agation criterion 2. This criterion was used to intro- 

duce a new crack geometry, which was itself used as in- 

put to a full remeshing algorithm. A similar approach 

was proposed earlier by Bouchard et al (2000), using a 

stress based crack initiation and propagation criterion. 

At each load increment, the crack was advanced by a 

given length, which was considered a purely numerical 

parameter. The numerical approach proposed by Me- 

diavilla et al (2006a) consisted in first introducing the 

new crack segment in the FE mesh, without opening it. 

Then, an appropriate transfer operator was applied for 

history variables, before duplicating the nodes along the 

new crack segment and recomputing strain and stress 

fields for the new geometry. 

While the full remeshing based crack modeling and 

history variables transfer process  used  by  Mediavilla 

et al (2006a) may seem quite complex, each step is 

necessary to ensure consistent mechanical equilibrium 

throughout crack propagation. Transfer operators are 

very strongly related to remeshing algorithms, as all 

mesh modifications, except hierarchical mesh refinement, 

lead to artificial energy diffusion (Mediavilla et al (2006a); 

Shakoor et al (2015)). For ductile fracture problems a 

robust transfer operator to conserve plasticity history 

variables is of high interest, in particular if the crack 

2 The word uncoupled means that in this work the softening 

effect was not modeled, as opposed to coupled damage models 

discussed in Subsection 3.1. A non local regularization was 

propagation criterion depends on plastic strain (Medi- 

avilla et al (2006a); Shakoor et al (2015)). A simple 

solution is to solve mechanical balance equations af- 

ter each crack initiation or modeling step (Mediavilla 

et al (2006a); Shakoor et al (2015, 2017a)). An impor- 

tant remark of Shakoor et al (2017a) is that, although 

a weak (or explicit) coupling between crack modeling 

and mechanical solution was used, crack initiation and 

propagation was modeled before mechanical solution. 

This is a relevant choice for micromechanical analy- 

sis using computational homogenization, as it ensures 

that all quantities of interest are consistent with the 

geometry. To further improve energy conservation dur- 

ing remeshing, higher order interpolation techniques are 

interesting as they reduce the diffusion induced by the 

interpolation step between old mesh and adapted mesh 

(Mediavilla et al (2006a)). 

 
Both artificial energy diffusion and the accuracy of 

the crack propagation criterion can be improved using 

mesh adaption. A first a priori error minimization ap- 

proach is to refine the mesh close to crack faces and 

especially crack tips (Bouchard et al (2000); Mediav- 

illa et al (2006a)). More mathematically sound a priori 

and a posteriori error estimators based on the repre- 

sentation of the geometry 3
 have been proposed in the 

literature. In particular, for a first order FE scheme, the 

geometric error can be expressed as a function of the 

principal curvatures of geometric boundaries, which can 

be estimated using distance functions and their second 

derivatives (Roux et al (2013); Shakoor et al (2015)). 

Since at least one of the principal curvatures is infinite 

at crack tips, a minimum mesh size parameter is usually 

defined to limit mesh refinement in crack tips regions, 

while mesh size varies smoothly depending on the lo- 

cal principal curvatures in the whole FE domain (Roux 

et al (2014)). Because principal curvatures are gener- 

ally different in distinct directions (similarly to princi- 

pal stresses), anisotropic elements can be used to refine 

the mesh only in given directions (Roux et al (2013)). 

These elements are however not recommended for large 

deformation simulations as they raise a higher risk of 

element inversion (Shakoor et al (2017b,a)). 

 
Both remeshing and mesh adaption were used for 

micromechanical ductile fracture modeling by Roux et al 

(2014), although the proposed approach can be seen as 

an element deletion, or region deletion method. It con- 

sisted in using an LS function and error estimator based 

anisotropic mesh adaption method to define the crack 

geometry. Then, instead of introducing a new crack sur- 
nevertheless judged necessary by Mediavilla et al (2006a) to    

”reduce the influence of local damage variations which are a 

result of the discretization”. 

3 Error estimators can also be based on mechanical  vari- 

ables as discussed in Paragraph 4.4.1. 
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face, a region of small thickness was introduced and 

modeled with a very low stiffness to simulate an actual 

void. The proposed method enabled void nucleation, 

growth and coalescence simulations of 2D microstruc- 

tures of complex morphology, which required a robust 

remeshing technique to handle very large deformations 

(Roux et al (2013)). Stress based criteria were used to 

predict particle fragmentation and debonding. 

A limitation of the method proposed by Roux et al 

(2014) was that the interface between the void region 

and the other material components (matrix and inclu- 

sions) was not meshed explicitly. Thus, material inter- 

faces could cross arbitrarily through some mesh ele- 

ments, whose behavior was defined using mixture laws. 

Although these laws can be relevant for multiphase 

fluid flow modeling (see e.g., Hirt and Nichols (1981)), 

they cannot define the mixture of an elastic inclusion 

with an elasto-plastic matrix. An extension to this re- 

gion deletion method was proposed by Shakoor et al 

(2015). To avoid mixture laws4, remeshing operations 

were extended to dynamically construct an explicit in- 

terface discretization. This method was first applied 

to model void coalescence by matrix micro-cracking in 

2D using an uncoupled Lemaitre damage indicator by 

Shakoor et al (2015), and later extended to model par- 

ticle fragmentation and debonding in 3D by Shakoor 

et al (2017b) for academic test cases. 
This region deletion method avoided the mesh shape 

dependence issue of the element deletion method, as LS 

functions were used to define any arbitrary shape for 

the region to be deleted. LS functions are signed dis- 

tance functions to the interface computed at FE mesh 

nodes, with an arbitrary sign convention that distin- 

guishes mesh nodes inside a given component of the 

material from outer nodes (Osher and Sethian (1988)). 

For LS functions to be well-defined, the mesh had to 

be fine enough (or the region thickness large enough) 

so that some nodes would be located within the region 

to be deleted (and thus have a different sign from other 

nodes of the FE mesh). Although in ductile fracture 

cracks grow up to become large interacting voids, this 

requirement on mesh size raised computational cost is- 

sues (Roux et al (2014)), even if interfaces were explic- 

itly meshed (Shakoor et al (2015, 2017b)). This limita- 

tion was removed by Shakoor et al (2017a), where the 

authors proposed to use multiple LS functions to cap- 

ture the crack geometry, as proposed by Sukumar et al 

(2001) in the context of the X-FEM. Two LS functions 

were used to define the two faces of the deleted region 

(the two crack faces), while a third LS function was 

used to delimit its extent (the crack tip). The thickness 
 

4 Element enrichment approaches such as the X-FEM can 

also be used (Subsection 2.2). 

of the deleted region could then be reduced to at least 

one order below mesh size. This framework was applied 

to model crack initiation in 3D using stress based par- 

ticle fragmentation and debonding criteria by Shakoor 

et al (2017a). As shown in Figure 9, this framework is 

promising as the large deformation of nucleated voids 

can be tracked up to the void coalescence phase. Re- 

sults at 50% of applied strain in Figure 9 illustrate well 

these capabilities provided by remeshing methods. 

 
2.4.3 Discussions 

 
Remeshing and mesh adaption based crack modeling 

methods are summarized in Figure 10. An advantage 

of the methods proposed by Roux et al (2014); Shakoor 

et al (2015, 2017a) over those proposed by Bouchard 

et al (2000); Mediavilla et al (2006a), is that they used a 

local mesh modification algorithm (Gruau and Coupez 

(2005); Shakoor et al (2017b)), instead of regenerating 

the whole mesh at each initiation or propagation step 

(i.e., full remeshing). This is relevant for: 

– conservation of history variables, because numerical 

diffusion is only introduced close to the crack tip, 

where the mesh is finer, 

– computational cost, as mesh modification operations 

are restricted to a small region, 

– distributed computing, as independent and spatially 

local operations are easier to distribute among mul- 

tiple processors. 

It can be observed in Figure 10 that the methods devel- 

oped by Shakoor et al (2015, 2017a) place FEs within 

the crack or deleted region. Since crack faces are explic- 

itly meshed in these methods, one could consider re- 

moving these elements. However, the mesh motion and 

adaption method proposed by Shakoor et al (2017b) 

uses these elements within the crack or void to model 

its growth and linkage with neighboring voids. 

 
The main limitation of remeshing and mesh adap- 

tion based crack modeling is the high technicality of 

mesh modification operations and the difficulty to im- 

plement them, especially in 3D, in comparison to ele- 

ment erosion for instance. Additionally, the difficulty is 

severely increased if the mesh comprises elements of dif- 

ferent types and higher order. Mediavilla et al (2006a) 

developed an algorithm for quadrangle elements in the 

2D case, but linear tetrahedra are systematically used in  

3D to avoid the difficulty in adapting meshes with 

hexahedral or higher order elements. Shakoor et al (2017a) 

alleviated the difficulty of updating crack geometry by 

using LS functions, but no 3D crack propagation cri- 

terion was proposed. Crack propagation techniques in- 

troduced earlier by Carter et al (2000) could complete 
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Fig. 9 Micromechanical simulations of a metal matrix composite microstructure showing remeshing based modeling of void 

nucleation by particle debonding and fragmentation followed by void growth and coalescence. Voids are shown in light gray, 

particles in red, and η refers to the stress triaxiality ratio. Reprinted from Shakoor et al (2017a), with permission from Elsevier.  

 
 

the method of Shakoor et al (2017a). The latter only fo- 

cused on void nucleation for a high particle volume frac- 

tion metal matrix composite for which matrix micro- 

cracking was neglected and void coalescence was as- 

sumed to be purely plasticity driven. 

 
As a conclusion, discontinuous approaches to duc- 

tile fracture where crack initiation and propagation are 

modeled using mesh modifications have been developed 

in the two last decades. In particular, these methods 

 

have extensively been applied to model the brittle frac- 

ture micromechanisms of particle fragmentation and 

debonding which play a major role in ductile fracture. 

The use of remeshing in these developments is justi- 

fied by a large deformation of crack faces and a signifi- 

cant void growth before final failure. Remarkable results 

have been obtained regarding crack initiation in 2D and 

3D, but crack propagation modeling is for the moment 

restricted to 2D. This limitation does not seem to be 

linked to the crack modeling methods, as has already 
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Fig. 10 Summary of remeshing and mesh adaption based discontinuous approaches. In the first line, crack meshing and node 

splitting as proposed by Bouchard et al (2000); Mediavilla et al (2006a). In the second line, region deletion with an LS function 

as proposed by Roux et al (2014), possibly with an additional explicit interface meshing step as proposed by Shakoor et al 

(2015, 2017b). In the third line, crack meshing and node splitting using three LS functions as proposed by Shakoor et al 

(2017a). Mesh modifications are systematically followed by the transfer of history variables. 

 
 

been observed in Subsection 2.2, but to the absence of 

3D crack propagation criteria that can handle multiple 

crack initiation sites. 

 

 
2.5 Conclusion 

 
While they cannot account for the influence of a minor 

void population within the matrix, the computational 

methodologies reviewed in this first section already re- 

veal the complexity of ductile fracture modeling at the 

microscale. The features of interest for discontinuous 

approaches are mesh independence, energy dissipation 

rate modeling, compatibility with large deformations, 

and ease of implementation. 

Removing any elements that are too distorted or 

have satisfied some fracture criterion is the most straight- 

forward discontinuous approach. It is easy to imple- 

ment, and solves any element inversion issues in large 

deformations. It can be completed with a progressive 

release of stress and stiffness tensors to control the en- 

ergy dissipation rate. However, it raises mesh size and 

mesh element shape dependence issues as the crack can 

only propagate from element to element. Removing el- 

ements also leads to a loss of mass. 

 

As a consequence, there is a need for methods that 

can model cracks as new interfaces dynamically and 

arbitrarily inserted and modified during the FE simu- 

lation, depending on some crack initiation and prop- 

agation criteria. The first option to reach such end is 

enriched FE methods, and in particular the X-FEM. 

This method enables to define interfaces independently 

of the FE discretization, as cracks can cross mesh ele- 

ments and crack tips can be embedded within elements. 

The implementation of the X-FEM requires some mod- 

ifications to the FE code as additional degrees of free- 

dom are added, and some numerical issues have to be 

handled. Apart from these difficulties, it seems a perfect 

candidate to model the failure of brittle components of 

ductile materials’ microstructures. However, it has been 

applied mostly to brittle materials. This is due mainly 

to the impossibility of modifying enriched FEs and thus 

ensuring these elements keep a good shape throughout 

the deformation process. There is hence a need for im- 

proved versions of these enriched FE methods so that 

large deformations can be handled. 
The second option for initiating and propagating ar- 

bitrary cracks without any mesh dependence is through 

remeshing. The latter can naturally handle large defor- 

mations as distorted FEs can be eliminated by topo- 

logical operations. However, remeshing has some conse- 

Full remeshing nd 

Roux et al (2014) 

Initial FE mesh 

LS function of 
region to delete 

defined directly 

on initial mesh 
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quences that require a special care. First, it can induce 

unbalance and significant diffusion if a proper transfer 

operator is not implemented. Second, its implementa- 

tion is quite complex especially in a distributed com- 

puting context, although this difficulty is alleviated if 

local remeshing is used instead of full remeshing. Re- 

cent FE simulations of ductile fracture at the microscale 

show that remeshing based techniques are a promising 

discontinuous approach. These remarkable simulations 

show void nucleation by failure of brittle components 

or their debonding, and the growth of these voids up to 

large sizes where they start interacting by plastic local- 

ization. There is no example of a similar result obtained 

with enriched FE methods. 

 
Neither the X-FEM nor remeshing based techniques 

have a built-in model for the energy dissipation rate. 

The latter can be modeled using CZMs. Indeed, while 

CZMs alone have limiting mesh dependence issues, de- 

velopments coupling CZMs to the X-FEM have shown 

that this limitation can be overcome. There is how- 

ever no study showing the compatibility of CZMs with 

remeshing, especially in the large deformations case. 

Finally, both enriched FE methods and remeshing 

based techniques require appropriate crack initiation 

and propagation criteria. While 3D particle debond- 

ing and fragmentation criteria have been mentioned in 

this section, there is still much work to be done regard- 

ing 3D crack propagation. The capabilities of existing 

3D crack propagation methods have not been demon- 

strated for problems with multiple crack initiation sites 

and large deformations yet. It is a main limitation of 

discontinuous approaches that can be overcome by us- 

ing continuous approaches to model crack propagation 

within the matrix material. 

 

3 Continuous approaches 

 
As stated in Section 2, robust and stable discontinuous 

approaches have been proposed and applied in the liter- 

ature to model the brittle failure of particles and their 

interfaces. The energy dissipation rate can be modeled 

using CZMs. Mesh independence can be achieved using 

the X-FEM or remeshing based techniques. The latter 

have also been proven interesting capabilities in han- 

dling large deformations and purely plasticity driven 

void coalescence within the matrix. 

In this section, a more complete model account- 

ing for the nucleation, growth and coalescence of sub- 

micron sized voids within the matrix material is thought 

through. While discontinuous approaches could theo- 

retically be used once again, this would lead to an ex- 

tremely high computational cost. For instance, O’Keeffe 

et al (2015) report that for the studied aluminum al- 

loy, a small volume containing on the order of 102
 par- 

ticles would contain on the order of 107
 minor voids. 

To avoid this prohibitive computational cost, continu- 

ous approaches have been considered in the literature. 

These approaches have initially been proposed to model 

the influence of the major void population on material 

behavior at the macroscale. There are herein considered 

to model the influence of the minor void population on 

matrix behavior at the microscale. 

Continuous approaches consist in modeling the in- 

fluence of minor voids as a homogenized effect leading 

to a continuous material degradation process. An ad- 

vantage of continuous approaches is that damaged re- 

gions can naturally grow, branch, coalesce without any 

numerical difficulty. Full material degradation and the 

initiation and propagation of cracks within damaged re- 

gions require a proper CDT model. CDT modeling, in- 

cluding Phase-Field (PF) models, is not discussed in the 

present section but in Section 4, as well as applications 

of continuous approaches beyond the void coalescence 

phase. 

 

 
3.1 Continuum Damage Models 

 
CDMs are certainly the most active and widely used 

modeling approaches to ductile fracture in the recent 

literature. This is in part due to their implementation 

in commercial codes, and the ease of implementing new 

ones as user subroutines. Some of these codes also in- 

clude regularization techniques, which will be discussed 

hereafter. 

 
3.1.1 Models 

 
On the one hand, when it comes to fracture problems 

at room temperature, the Lemaitre model seems to be 

adopted by most researchers (Vaz and Owen (2001); 

Andrade  Pires  et  al  (2004);  César  de  Sá  et  al  (2006); 

Bouchard et al (2011); Seabra et al (2013)), for in- 

stance to model cold metal forming processes. It can be 

coupled to the Johnson-Cook elasto-viscoplastic model 

to address rate dependent problems (Broumand and 

Khoei (2015)). The Lemaitre model is based on a dam- 

age variable D and an effective stress definition σeff = 
σ 

, first proposed by Kachanov (1958), which cor- 
1 D 
rects the conventional stress tensor σ to account for 

the presence of voids. This definition of σeff requires 

D to be comprised between 0 (defect free material) and 

1 (fully degraded material). Many authors use empiri- 

cal evolution laws for D (Borouchaki et al (2005); Me- 

diavilla et al (2006b); Areias et al (2011)). The work 
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of Lemaitre consisted in deriving a phenomenological 

model with a sound theory with respect to the princi- 

ples of thermodynamics (Lemaitre and Chaboche (1978); 

Ibijola (2002)). For instance, D cannot decrease. 

On the other hand, the work of Gurson (1977) mo- 

tivated researchers to look into more micromechani- 

cal approaches to model the softening effect in ductile 

fracture. This led to the development of micromechan- 

ical models such as the GTN model (Tvergaard and 

Needleman (1984)) and the Rousselier model (Rousse- 

lier (1987)). These models introduce a micromechanical 

porosity variable which can be related to the physi- 

cal porosity in ductile materials, as they are originally 

based on the analytic5
 micromechanical analysis of a 

void within a perfectly plastic material (Gurson (1977)). 

Consequently, these models rely on a new yield crite- 

rion depending explicitly on the porosity, where the lat- 

ter does not affect the elastic part, as opposed to most 

CDMs (see Andrade Pires et al (2004) for a modifica- 

tion of the Lemaitre model decoupling the elastic part). 

Micromechanical models share multiple deficiencies 

with the Lemaitre model and other CDMs, in that they 

often require empirical or phenomenological modifica- 

tions in order to yield accurate predictions for real in- 

dustrial problems. For instance, an additive split of 

tension and compression stresses is often applied to 

the Lemaitre model to improve predictions in prob- 

lems featuring both stress states (Andrade Pires et al 

(2004); César de Sá et al (2006); Bouchard et al (2011)). 

The GTN model in its original formulation has well- 

known issues when applied to shear dominant prob- 

lems, for which phenomenological corrections have been 

proposed Nahshon and Hutchinson (2008); Xue (2008). 

Both the GTN model and the Rousselier model rely 

on a phenomenological split between porosity evolu- 

tion due to void growth and that due to void nucle- 

ation (Tvergaard and Needleman (1984); Samal et al 

(2008)). Additionally, anisotropic versions, where the 

damage or porosity variable is a tensor field, can be 

found both for empirical or phenomenological CDMs 

and micromechanical models (Gologanu et al (1993); 

Lemaitre et al (2000); Scheyvaerts et al (2011)). The 

reader is referred to Besson (2010) for a recent review 
on all these models and their variants. 

Therefore, in the following, empirical or phenomeno- 

logical CDMs and micromechanical models are all ad- 

dressed within the same discussion and are all abusively 

referred to as CDM s. The phrasing damage variable in 

the following will thus indifferently refer to an empirical 

or phenomenological damage variable, or a microme- 

chanical or phenomenological void volume fraction or 

5 See Subsection 3.2 for comments on the relations between 

multiscale methods and micromechanical models. 

porosity variable. It will be seen that all CDMs lead to 

the same difficulties regarding the numerical implemen- 

tation, and choice of discretization for the damage vari- 

able. Additionally, any of these CDMs can be used at 

the microscale to model minor void populations leading 

to damage in the ductile components of the microstruc- 

ture, or directly at the macroscale to model the major 

(or unique) void population. 

 
3.1.2 Elasto-plasticity and damage coupling 

 
The first choice for the numerical implementation of a 

CDM is the choice of coupling. A strong coupling con- 

sists in considering the damage variable as an internal 

variable together with the equivalent plastic strain or 

any other variables indicating the plastic strain state. 

All these variables are defined at integration points in- 

side FEs, while displacements are defined at FE mesh 

nodes. Material integration leads to a multidimensional 

problem implicitly relating damage and plasticity inter- 

nal variables which must be solved simultaneously, as 

done for instance by Vaz and Owen (2001). A weak cou- 

pling consists in updating the damage variable using an 

explicit relation only at the end of each load increment, 

which avoids any changes to conventional implicit re- 

turn mapping schemes for plasticity (El khaoulani and 

Bouchard (2013)). This can be quite time saving as em- 

pirical modifications of CDMs for applications to in- 

dustrial problems require a trial-and-error process that 

becomes quite long if a new tangent modulus has to be 

derived at every single step. As shown by El khaoulani 

and Bouchard (2013), the counterpart is that smaller 

time steps must be used with a weak coupling com- 

pared to a strong one. 

 
Independently of the choice of coupling, and even if 

locking issues linked to plasticity are properly handled, 

a pathological damage localization problem can be re- 

vealed. It can be shown that damage will always localize 

in a single layer of elements, which leads to a depen- 

dence of mechanical response on mesh size, with a dis- 

sipated energy converging to zero with mesh refinement 

(Bažant and Jirásek (2002)). For instance, Borouchaki 

et  al  (2005);  Drabek  and  Böhm  (2005)  present  results 

of FE simulations with pathological mesh dependence. 

In the following paragraphs, existing solutions to this 

problem are reviewed. 

 
3.1.3 Non local integral formulations 

 
A first solution to mesh dependence is to average some 

state variable r around each integration point. This 

state variable can be related to plasticity or directly 
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the damage variable (Bažant and Jirásek (2002)). Then, 

damage evolution in each integration point will be dif- 

fused to the surrounding neighborhood, avoiding any 

pathological localization. Mathematically, the non lo- 

cal variable r is defined within the FE domain Ω by 

3.1.4 Non local  implicit gradient formulations 

 
To reduce the computational cost overhead due to neigh- 

bors search and averaging in non local integral formula- 

tions, the latter can be approximated. If the weighting 

function w is chosen as a Gaussian function, it can be 

 r(x) = 
∫

  
B(x) w(x − y)r(y)dy, shown by a first order Taylor series expansion that the 

 
 

∀x ∈ Ω, 

∫
B(x) w(x − y)dy = 1, (1) non local variable r can be approximated by solving a 

partial differential equation instead of integral averag- 
 B(x) = {y ∈ Ω, ||x − y|| < lc} . 

The size of the averaging window B(x) is often re- 

ferred to as characteristic length lc, and this type of reg- 

ularization as non local integral averaging (Jackiewicz 

and  Kuna  (2003);  Drabek  and  Böhm  (2005);  Seabra 

et al (2013)). A generally nonlinear weight function  

w, or kernel function, can be defined to decrease the 

weights of each integration points’ neighbors y depend- 

ing on their distance ||x − y|| from it. The result of the 

averaging operation is called non local variable r, and 

replaces its local equivalent r in all constitutive equa- 

tions (Bažant and Jirásek (2002)). 

Depending on whether a weak or strong coupling is 

used for the damage evolution equation, the averaging 

operation itself is respectively done at the end of each 

load increment or inserted within the FE discretization 

matrix. The latter option has the consequence of in- 

creasing the bandwidth of the FE discretization matrix 

depending on the averaging length, which in turn in- 

creases both computational cost and memory consump- 

tion (Bažant and Jirásek (2002)). A larger matrix band- 

width is also an issue for distributed computing, as well 

as the search of each integration point’s neighbors. 

 
From a numerical point of view, the averaged vari- 

able in non local integral models can be considered as 

an additional degree of freedom carried at integration 

points. Its discretization depends purely on the kernel 

function, the positions of the integration points, and 

the characteristic length lc. In particular, it does not 

depend explicitly on the FE mesh and its topology. This 

conclusion has led some researchers to exploit mesh-free 

discretizations where all variables are carried by points, 

or particles, and interactions between these particles are 

constructed thanks to non local averaging and given 

choices of kernel functions (Liu et al (1999); Simonsen 

and Li (2004)). These methods share the same compu- 

tational cost issues as non local integral models with 

strong coupling. However, the numerical implementa- 

tion becomes more straightforward as non local regu- 

larization is built-in and no FE mesh is needed, which 

is also convenient for large deformation problems where 

FEs might invert. 

 

ing. As first introduced by Peerlings et al (1996), this 

equation is 

 
r − l2

∆r = r, in Ω. (2) 

This type of regularization is referred to as non local 

implicit gradient regularization, as the gradient of r, 

which appears in the Taylor series expansion, is not 

explicitly computed but implicitly appears through the 

Laplacian operator ∆. 

First, boundary conditions are voluntarily omitted 

in Equation 2 as they are still an open research ques- 

tion, in particular if this equation is to be used at the 

microscale for the matrix component of a ductile mate- 

rial. Most authors impose ∇r to be orthogonal to the 

domain boundary ∂Ω (Peerlings et al (1996); Samal  

et al (2008); El khaoulani and Bouchard (2013)), but 

it is unclear whether this should be the case if the FE 

domain is a microstructure with particles or multiple 

ductile components (see Paragraph 3.1.7). 

Second, the non local implicit gradient regulariza- 

tion suffers from a similar computational cost and mem- 

ory consumption increase as its integral origin, although 

the bandwidth does not depend on lc due to the first 

order approximation (Samal et al (2008)). Another ad- 

vantage of the gradient version of the non local integral 

regularization technique is that, as long as a weak cou- 

pling is used, it can rely on the same FE discretization 

techniques as that used for balance equations. 

 

3.1.5 Strain gradient plasticity formulations 

 
Another type of non local formulation that has gained 

interest in recent literature is strain gradient plasticity 

formulations. These formulations are quite similar to 

non local implicit gradient damage, as they rely on the 

gradient of an internal variable, with similar implica- 

tions on the numerical implementation with additional 

degrees of freedoms. The difference is that in strain gra- 

dient plasticity, the gradient terms are explicitly added 

within the principle of virtual work, leading to higher 

order stresses. Any localization of plasticity or dam- 

age leads to an increase of the gradient of these vari- 

ables and, equivalently, of higher order stresses, which 
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are penalized in the principle of virtual work. Thus, lo- 

calization is limited and a non local effect is obtained 

(Lorentz et al (2008)). 

There are also versions of strain gradient plasticity 

where gradient terms are not added directly to the prin- 

ciple of virtual work but into the definition of the yield 

stress (Chen and Yuan (2002)), which avoids the intro- 

duction of higher order stresses. In all cases, boundary 

conditions in strain gradient plasticity models raise the 

same questions as for non local implicit gradient dam- 

age models (Chen and Yuan (2002)). Additionally, due 

to the explicit presence of gradient terms in the princi- 

ple of virtual work or the definition of the yield stress, 

strain gradient plasticity requires a fully coupled dis- 

cretization with additional degrees of freedom (Lorentz 

et al (2008)). This increases the bandwidth of the FE 

discretization matrix, leading to an increase of com- 

putational cost and memory consumption, as well as 

increased complexity for distributed implementations. 

 
 

3.1.6 Thick Level-Set method 

 
A last option for limiting damage localization that has 

been proposed in recent literature is the thick LS method 

(Moës  et  al  (2011)).  This  method  borrows  the  idea  of 

limiting the damage gradient over a given length that 

is at the core of non local models. The main differ- 

ence is that instead of defining a persistent non local 

variable throughout the whole damage process and the 

whole FE domain, the damage gradient is limited only 

in localization regions. In particular, any initiation and 

growth of damage that does not lead to high gradi- 

ents is not affected by the regularization process. The 

numerical implementation of the method consists in a 

distance computation technique where damage values 

are ramped linearly over the characteristic length. This 

operation can be implemented efficiently using e.g., a 

fast marching algorithm (Moës et al (2011)). 

Although we do not know of any application of the 

thick LS method to ductile materials yet, it is included 

in the present review as it includes a promising model- 

ing approach to the CDT. Indeed, a key aspect that was 

voluntarily omitted in this Subsection is what happens 

when the damage variable reaches large and unrealistic 

values. For instance if it comes close to 1. This problem 

is addressed in Section 4. 

 
 

3.1.7 Discussions 

 
To summarize, all regularization techniques introduce 

a characteristic length parameter. Damage localization 

is limited either by averaging a chosen state variable, 

or controlling its gradient. Non local integral formu- 

lations have a significant computational cost overhead 

and increased complexity for distributed computing im- 

plementations. Thus, non local implicit gradient formu- 

lations have been proposed. For a weak coupling strat- 

egy where the damage variable is only updated explic- 

itly at the end of each load increment, these methods 

only require the solution of an additional partial dif- 

ferential equation at each load increment. For a strong 

coupling strategy where damage and elasto-plasticity 

are solved simultaneously, additional degrees of free- 

dom must be added with the consequence of increasing 

the bandwidth of the FE discretization matrix. The for- 

mulation is then quite similar to that of strain gradient 

plasticity. The computational cost overhead is never- 

theless not as significant as with the integral version. 

The non local integral formulation in Equation (1) 

can be implemented efficiently within a mesh-free dis- 

cretization, with the added advantage of avoiding el- 

ement inversion issues in large deformations. For FE 

implementations, the non local implicit gradient formu- 

lation with weak coupling is computationally effective 

as it avoids neighbors search, and can rely on existing 

distributed FE solvers to approximate Equation (2). 

 
In all non local formulations, an important require- 

ment is that mesh size should be smaller than the char- 

acteristic length lc. Although mesh adaption techniques 

can be used to locally refine the mesh only in damage 

localization regions (Paragraph 4.4.1), this requirement 

increases the computational cost significantly. It also 

raises the question of the definition of the characteris- 

tic length lc. 

Drabek  and  Böhm  (2005);  Hu  and  Ghosh  (2008); 

Areias et al (2011) have applied non local regulariza- 

tion techniques to micromechanical problems involving 

2D arrangements of inclusions or fibers. Although lc 

was defined as a material parameter, the authors did 

not explain how to determine it. For macroscale appli- 

cations, lc is usually related to microstructural aspects 

such as the average distance between particles (Bažant 

and  Jirásek  (2002)).  As  a  consequence,  for  microscale 

applications, it would be related to the average distance 

between voids of the minor void population. 

 
Added to the definition of the characteristic length, 

which may require very refined meshes, non local im- 

plicit gradient and strain gradient theories raise the is- 

sue of boundary conditions. This is of high importance 

if the method is used at the microscale where a duc- 

tile component might share boundaries with particles, 

voids, and possibly other ductile components. Peerlings 

et al (1996) recognized that imposing ∇r to be orthog- 
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onal to domain boundaries was an arbitrary choice. For 

microscale applications, Equation (1) should consider 

only integration points within the matrix material. Sim- 

ilarly, Equation (2) should be solved only within the 

matrix, as plasticity and damage are not defined in brit- 

tle components where linear elasticity and discontinu- 

ous approaches are employed. Boundary conditions for 

r should hence be defined at the boundaries of the ma- 

trix phase. Forest (2009) proved this result using math- 

ematical arguments. 

Physical aspects of these boundary conditions re- 

main to be discussed, in particular if the microstruc- 

ture features multiple ductile components of different 

composition. In the context of strain gradient plastic- 

ity, Hutchinson (2012) described different conditions to 

be imposed for each boundary depending on whether 

it separates two plastic components or an elastic and 

a plastic component. To the authors knowledge, there 

is no study conducting the same analysis for non local 

implicit gradient damage in a heterogeneous structure 

featuring both brittle and ductile components. 

 
Last but not least, physical aspects of the models 

themselves are being discussed in the literature. Fol- 

lowing the work of Gurson (1977), a number of mi- 

cromechanical approaches to ductile fracture modeling 

have been considered, including the well-known GTN 

model. Ductile components of the microstructure could 

hence be modeled with advanced material laws account- 

ing for the shape and distribution of minor voids and 

inclusions. For an even more accurate description, com- 

putational multiscale theories are being developed. 

 

3.2 Multiscale methods 

 
The aim of the present review is to provide insights on 

computational methods that could handle the full com- 

plexity of ductile fracture at the microscale and the 

associated micromechanisms. The application of these 

methods at the scale of industrial parts could theoreti- 

cally be done by modeling the whole microstructure of 

these parts. This so-called Direct Numerical Simulation 

(DNS) approach is practically unfeasible. For instance, 

a centimeter-scale part of a material with a particle vol- 

ume fraction of 0.5% and particles of average diameter 

10 µm would contain millions of particles. Recent 3D 

DNS results using distributed computing can only ac- 

count  for  hundreds  of  particles  (Matouš  et  al  (2017); 

Shakoor et al (2017c)). 

To reduce computational costs, an option is to model 

the microstructure only in a limited region of interest, 

and to assume a homogeneous material for the rest of 

the macroscale model. This technique has been used by 

Tian et al (2010); Hosokawa et al (2013). In particu- 

lar, Tian et al (2010) compared their FE simulation re- 

sults to experimental data obtained using a destructive 

3D imaging technique. The material outside the region 

of interest was assumed to be linear elastic. Shakoor 

et al (2017c) recently showed that this technique un- 

derestimates damage, even if more advanced constitu- 

tive models are considered outside the region of interest. 

Shakoor et al (2017c) considered an alternative avoiding 

the challenge of finding a suitable constitutive model for 

the outer material. This alternative consisted in relying 

on in situ tests with 3D X-ray imaging and digital vol- 

ume correlation to measure boundary conditions for the 

same region of interest throughout deformation. These 

measured boundary conditions were applied directly as 

applied displacements to the boundaries of the meshed 

microstructure within the region of interest. The anal- 

ysis was thus limited to the region of interest and the 

problem of finding an appropriate homogenized behav- 

ior for the surrounding material was circumvented. 

 

 
For larger specimens and industrial parts where there 

could be multiple regions of interests, and for which 

3D imaging is not possible, more general methods are 

necessary. In order to model microstructural effects at 

the industrial scale, and also to model the influence   

of minor voids on matrix behavior at the microscale, 

alternatives to DNS are investigated in the following. 

As opposed to phenomenological CDMs, Gurson (1977) 

proposed a micromechanical approach where the be- 

havior of a simple idealization of the microstructure 

was computed analytically with a suitable choice of 

boundary conditions, and used as yield criterion at the 

macroscale. For less idealist and more realist microstruc- 

tures, this micromechanical problem cannot be solved 

analytically. 

 

 
Boundary conditions and numerical approaches to 

transfer information between two scales are discussed in 

the following. For the sake of generality, the two scales 

are named coarse scale, and fine scale. If the coarse scale 

problem is an industrial part or specimen, it is solved 

using conventional FE technology for homogeneous ma- 

terials, while the fine scale problems are solved using 

the computational methods discussed in this review for 

heterogeneous materials. Multiscale methods can also 

be used at the microscale to model minor voids in the 

matrix material. In this case, the coarse scale problem 

is the heterogeneous microstructure but assuming a ho- 

mogeneous matrix, while the fine scale problems feature 

the minor voids in the matrix. 
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3.2.1 Principles 

 
The appeal of multiscale methods relies on the fact that 

DNS are prohibitively time consuming. Put simply, the 

objective of multiscale methods is to obtain a coarse 

scale response from fine scale calculations. This grants 

the possibility of decreasing considerably the problem 

size and thus tackling more complex problems. In this 

way, materials engineering and design applications be- 

come more feasible (Panchal et al (2013)). This is a very 

active field of research and the scope of the following 

paragraphs is merely to highlight aspects relevant to 

ductile failure. The reader is referred to recent reviews 

by Geers et al (2010); Nguyen et al (2011); Matouš et al 

(2017) for a more complete discussion on the topic. 

Two categories of homogenization may be distin- 

guished: analytic homogenization, and computational 

homogenization. Analytic homogenization is restricted 

in terms of the geometrical and material behavior com- 

plexity that it can handle (Gurson (1977)). Phenomeno- 

logical parameters are usually added to analytic homog- 

enization results in order to correct predictions (Tver- 

gaard and Needleman (1984)). These parameters can 

be identified using experimental results or numerical 

simulations of more representative fine scale structures 

and loading conditions, called Representative Volume 

Elements (RVEs). Analytic homogenization and these 

identification techniques have been instrumental in the 

development of more advanced and physical CDMs (see, 

for example, Allen and Searcy (2001) or Jain and Ghosh 

(2009)). One advantage of this methodology is that, af- 

ter proper calibration, the model may be readily used 

in complex simulations. However, the validity of the 

model is limited to the conditions it was calibrated for 

and cannot account for complex fine scale changes that 

its a priori assumed analytic form does not describe. 

The second and more versatile homogenization cate- 

gory is computational homogenization. In this approach, 

coarse and fine scales are solved simultaneously. The 

coarse scale provides the boundary conditions for the 

fine scale problems, and the results of these fine scale 

problems, solved in RVEs, are upscaled to provide the 

homogenized response to be used in the coarse scale 

problem. Fine scale problems can be solved using fast 

Fourier transform methods (Lebensohn et al (2013)), 

mean field methods (Ö stlund et al (2016)), Voronöı cell 

FE methods (Moorthy and Ghosh (1998)), or reduced 

order modeling (Liu et al (2017b)). In the present re- 

view, a focus is made on FE methods, in which case 

computational homogenization is often referred to as 

FE2
 method. Although costlier than its analytic ver- 

sion, computational homogenization allows the user to 

obtain a coarse scale behavior under any given load- 

ing present in the simulation that adapts to complex 

fine scale changes. To achieve this, two important in- 

gredients are necessary: an appropriate homogenization 

scheme and a robust and pertinent fine scale model. 

 

3.2.2 Ductile fracture modeling 

 
In the use of multiscale approaches to model ductile 

failure, two important difficulties arise. The first one 

is successfully transitioning scales under coarse scale 

strain localization and the second one is choosing ap- 

propriate boundary conditions for the fine scale prob- 

lems. These difficulties are added to the challenge of 

adequately modelling the fine scale changes inherent to 

ductile damage, that are the object of this review. An- 

other aspect of fine scale problems is RVE size. It has 

to be large enough so that the fine scale model accounts 

for the variability and distribution of fine scale features. 

Mathematically, the RVE should contain enough fea- 

tures (particles if the fine scale is the microscale) so 

that different realizations of the same statistical fea- 

tures distribution do not affect the homogenized mate- 

rial response significantly. 

 
Once RVE size has been determined, different op- 

tions are possible for boundary conditions. In the con- 

text of first order homogenization, which is the most 

popular approximation (Geers et al (2010)), strains can 

be assumed to be homogeneous at RVE boundaries, or 

periodic. Homogeneous stress boundary conditions can 

also be applied, or mixed boundary conditions where 

parts of RVE boundaries are subjected to homogeneous 

strains and other parts to homogeneous stresses (Böhm 

(2004)). 

The large gradients associated to coarse scale strain 

localization represent a very important limitation of 

first order computational homogenization schemes (Mat- 

sui et al (2004); Yuan and Fish (2008)). In first order 

schemes with homogeneous or periodic strain boundary 

conditions, the information received by the fine scale 

model is limited to the first gradient of the coarse scale 

displacement field. First order approaches cannot ac- 

count for size effects, as the homogenized response does 

not depend on any length scale parameter (RVE or par- 

ticles size). They do not account for the non local effects 

discussed in Subsection 3.1. 

Second order homogenization schemes with periodic 

strain boundary conditions (Geers et al (2001)) intro- 

duce size effects by defining RVE size as a length scale 

parameter (Kouznetsova et al (2004)). Although this 

size must still be large enough for the RVE to be statis- 

tically representative, it has to be small enough not to 

exceed the length scale that characterizes linear varia- 
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tions of the coarse scale strain field (or quadratic varia- 

tions of the coarse scale displacement field). This allows 

for a better treatment of strain localization than first 

order schemes if strain gradients are moderate. 

 
Ductile fracture often produces intense strain local- 

ization and second order homogenization schemes prove 

insufficient. Applying periodic boundary conditions is 

also limiting as cracks may not necessarily be orthogo- 

nal to RVE boundaries. Svenning et al (2017) proposed 

to use different boundary conditions for parts of RVE 

boundaries intersected by cracks, while weakly peri- 

odic boundary conditions were used in other parts. The 

latter are relevant for remeshing, which can be over- 

constrained when periodic meshes have to be main- 

tained. 

For general configurations where the crack propa- 

gation path at the coarse scale is unknown, advanced 

computational methods have to be designed. Localiza- 

tion in fine scale problems must be automatically de- 

tected and a propagation criterion has to be deducted 

for coarse scale cracks from RVE solutions. This prob- 

lem is quite similar to that of handling large dam-   

age values in CDMs. Indeed, there is a critical onset 

where high damage values in CDMs and significant lo- 

calization and damage in RVEs in computational ho- 

mogenization require the introduction of discontinuities 

in the coarse scale discretization. Different options for 

modeling this CDT are discussed in Subsection 4.3. The 

added difficulty regarding computational homogeniza- 

tion methods is that a consistent relation must be main- 

tained between coarse and fine scale problems. 

 

3.3 Conclusion 

 
As summarized in Figure 11, different options are avail- 

able for modeling the continuous material degradation 

process at the macroscale in ductile materials or at the 

microscale in ductile components of the microstructure. 

In the later case, the aim is to model the influence of 

minor voids and their growth on the behavior of the 

matrix in ductile materials’ microstructures. The most 

widely used approaches are CDMs, but recent efforts to- 

wards more predictive material modeling tools for ma- 

terials engineering and design have led to the develop- 

ment of more advanced multiscale methods. 

 
The first class of CDMs is based on Kachanov the- 

ory and empirical or phenomenological damage evolu- 

tion laws. A damage variable is introduced and its lo- 

cal evolution is written as a function of stress state and 

loading history. This damage variable explicitly appears 

in the definition of stresses. 

The second class of CDMs is based on Gurson the- 

ory and micromechanical or phenomenological yield cri- 

teria and porosity evolution laws. A porosity variable 

is introduced and its local evolution is computed by 

solving a micromechanical problem involving idealized 

microstructures and loading conditions. The solution 

of the micromechanical model includes a yield crite- 

rion explicitly accounting for the non linear effect of 

porosity. For improving predictions in general loading 

conditions, phenomenological parameters are generally 

added to both the porosity evolution law and the yield 

criterion. 

 
CDMs (Figure 11a) systematically require special 

care regarding numerical implementation. Regulariza- 

tion techniques must be used to avoid pathological mesh 

dependence issues. These techniques can rely on averag- 

ing, which can naturally be implemented using mesh- 

free methods, or on gradient terms, which can natu- 

rally be implemented using the FE method. For ease of 

implementation and model modification, a weak cou- 

pling seems preferable as long as the time step is small 

enough. 

Regularization techniques involving gradient terms 

require the definition of boundary conditions that are 

not well understood. This is particularly problematic 

for boundaries between brittle and ductile components 

or between two different ductile components of a same 

microstructure. 

Both averaging and gradient based regularization 

techniques involve a length scale parameter which is 

often related the distance between particles when it is 

used at the macroscale. If these techniques are applied 

to ductile components of the microstructure, then it 

may be related to the distance between minor voids. 

Physical arguments have not yet been discussed in the 

literature to defend such assumption. 

 
Last but not least, computational homogenization 

techniques are worth considering (Figure 11e). Instead 

of correcting the limitations of analytic Gurson-like mod- 

els by adding phenomenological parameters, compu- 

tational methods can be used to solve the microme- 

chanical problems numerically. In the context of ductile 

fracture, the computational methods discussed in the 

present review should be used. These methods would be 

used to solve sub-micron scale problems featuring the 

minor voids in the matrix, while at the microscale the 

microstructure would feature a homogeneous matrix. 

Material laws for this homogeneous matrix would be 

computed using computational homogenization of the 

response of sub-micron scale RVEs. Solving coarse scale 

and fine scale problems concurrently avoids the huge ex- 
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perimental or computational cost that DNS schemes in 

Figures 11b-d would require. 

Computational homogenization can be implemented 

using various choices of boundary conditions, which de- 

fine how information is transferred from the microscale 

to the sub-micron scale. The main issues appear in the 

presence of strain localization within sub-micron scale 

RVEs or at the microscale. In such conditions, second 

order homogenization schemes have been considered. 

The latter do not enable ductile fracture modeling af- 

ter the onset of void coalescence, close to the CDT. 

 
The CDT is a key problem both for CDMs and 

computational homogenization approaches. In the case 

of CDMs, cracks must be initiated and propagated in 

damage localization regions to prevent the damage or 

porosity variable from reaching unrealistic values (Fig- 

ure 11a). In the case of computational homogenization, 

cracks must be initiated and propagated in the matrix 

at the microscale to regularize RVE problems at the 

sub-micron scale (Figure 11f). 

 
 

4 Continuous-Discontinuous transition 

 
As mentioned in Paragraph 3.1.1, the most widely used 

CDMs assume that the damage or porosity variable 

remains small. For instance, Lemaitre and Chaboche 

(1978) pointed out that values of D higher than 0.5 

are not realistic. A common correction to the Lemaitre 

model is to introduce a cutoff value for D, usually be- 

tween 0.2 and 0.5, at which the element is considered 

as fully damaged with a complete loss of load carry- 

ing capacity. This value of 0.2 is similar to the value at 

which void coalescence was assumed to be the dominat- 

ing damage mechanism by Tvergaard and Needleman 

(1984), although damage and porosity are two different 

concepts. Therefore, the GTN model includes a correc- 

tion of Gurson’s porosity evolution law to accelerate the 

load carrying capacity drop for high porosity values, up 

to final failure. The same correction was used for the 

Rousselier model by Samal et al (2008). 

CDMs can hence model softening only up to a cer- 

tain point, at which element erosion is necessary. Nu- 

merical issues arise if elements with very low stiffness 

and in particular nodes surrounded by such elements 

are kept in the FE mesh, which is another reason for 

using element erosion. An alternative is to initiate and 

propagate a crack within the damage localization re- 

gion, with the consequence of relaxing stresses and pre- 

venting the damage variable from reaching unrealistic 

values. These different options to model the CDT are 

reviewed in the following. These techniques can also 

involve alternative paradigms to CDMs, such as multi- 

scale methods or PF methods. 

 
 

4.1 Element erosion 

 
Element erosion is usually the default method for han- 

dling the CDT using CDMs. It is for instance the method 

used by Tvergaard and Needleman (1984) in their ini- 

tial version of the GTN model, as well in their later 

studies (Mathur et al (1994)). It consists in deleting 

from the FE mesh any element that reaches a given 

critical (or cutoff) porosity threshold, and any node 

that is surrounded only by deleted elements. This GTN 

model  with  element  erosion  has  been  used  by  Nègre 

et al (2003), while Jackiewicz and Kuna (2003) added 

regularization by non local integral averaging. Simi- 

larly, Samal et al (2008) used element erosion with a 

non local implicit gradient formulation of the Rousselier 

model.  Drabek  and  Böhm  (2005)  also  used  the  Rous- 

selier model with element erosion, but using non local 

integral averaging. Drabek and Böhm (2005) proposed 

applications to random 2D fibers arrangements. 

An important remark is that here erosion is not  

an arbitrary progressive linear degradation of material 

stiffness over several load increments to avoid numeri- 

cal issues as in Subsection 2.1. Instead, it is built within 

the CDM. 

For phenomenological CDMs, elements are generally 

deleted whenever the damage variable reaches a given 

critical  damage  threshold  (César  de  Sá  et  al  (2006)). 

Vaz and Owen (2001) discussed alternatives. They con- 

ducted an analysis of the damage field close to the crack 

tip. Although the damage variable is relevant for defin- 

ing the point at which material degradation can be con- 

sidered as excessive, Vaz and Owen (2001) pointed out 

that the total damage work shows higher variations and 

localized distribution close to the crack tip. Thus, they 

considered that an element erosion criterion based on 

a total damage work threshold is more relevant. This 

approach has also been used by Andrade Pires et al 

(2004), with the argument that one must ensure that 

elements with high total damage work must be removed 

from the FE mesh to avoid non physical fracture pat- 

terns close to the crack tip. 

Vaz and Owen (2001); Andrade Pires et al (2004); 

Borouchaki et al (2005); Areias et al (2015); El khaoulani 

and Bouchard (2012, 2013) proposed to couple element 

erosion to mesh adaption in order to reduce mass loss 

issues raised by the deletion of elements. These adaptive 

element erosion methods are reviewed in Subsection 4.4. 

Although the use of element erosion with regularized 

CDMs may seem attractive as regularization ensures a 
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mesh independent damage localization, deficiencies of 

the element erosion method are still present. For in- 

stance, the removal of a triangular element from the FE 

mesh induces spurious damage localization due to the 
Π

Br
 (u, φ) = 
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GcH(φ)dV 
 

 
 

  

 

 

(3) 

shape of the removed element. This could be avoided 

if the removed region was of smooth contour, as in PF 

methods. 

 

 
4.2 Phase-Field methods 

 
So far it has been shown that ductile failure model- 

ing is of high complexity. It is expected that numer- 

ical frameworks should be able to properly reproduce 

fore, the numerical framework should account for non 

proportional stress states, possibly topologically com- 

plex damage patterns, crack initiation, propagation and 

branching. On top of that the mechanical response of 

the material should, of course, also be in agreement with 

the force-displacement experimental measurements. 

Discontinuous approaches have been proven to be 

relevant for modeling void nucleation micromechanisms 

in Section 2, but they have not yet been proven capable 

of propagating 3D cracks initiated at multiple initia- 

tion sites. CDMs, as such presented in Paragraph 3.1.1, 

are appropriate to model damage initiation and growth, 

up to fracture. These approaches suffer from spurious 

numerical effects induced by  the decrease of the  load 
carrying capacity of the material that leads to strain 
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where Ψe (ε(u)) is the elastic energy density function, 

function g(φ) couples the PF variable to the elastic 

energy, Gc is the critical fracture energy and H(φ) is 

called the crack density functional. Typically, the lat- 

ter is given by: 

 

H(φ) = 
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 + 4l
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where lc is the material length scale. Furthermore, it has 

been noticed in Paragraph 3.1.1 that damaged materi- 

als lose their load carrying capacity but only when they 

are submitted to tension. Which means that a damaged 

material should still be able to withstand compressive 

loads. To this end, the elastic potential energy in Equa- 

tion 3 is often modified so that tension and compres- 

sion are dissociated. This is achieved by decomposing 

the energy into two terms as follows: 
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and damage localization. To tackle this issue, non local 

and gradient based models have been developed (see 

Paragraph 3.1.3). These models introduce a material 
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length scale that allows to capture material size effects 

(Ambati et al (2015)). 
A derivation of these CDMs is the PF method, which 
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+
 (ε(u)) and Ψ 

− (ε(u)) are the portions of the 
e e 

can be seen as an optimization problem where the po- 

tential energy is minimized (Borden et al (2016); Franc- 

fort and Marigo (1998)). Similar to CDMs, in PF ap- 

proaches damage is described by a bulk variable φ rang- 

ing in the interval [0, 1]. In this way, sharp interfaces 

that are created by cracks are weakly described through 

the continuous PF variable φ. This powerful idea allows 

to drop the requirement of remeshing or front tracking 

methods needed to follow the evolution of discontinu- 

ities since the evolution of the the PF variable φ itself 

completely describes the crack and the damaged regions 

of the material. 

 

4.2.1 Brittle failure modeling 

 
In the case of brittle materials, the most basic mini- 

mization functional (Π
Br) is given by: 

elastic energy density that correspond to tension and 

compression, respectively. These elastic energy densi- 

ties are often computed by using deviatoric/volumetric 

decomposition or by using a spectral decomposition of 

the strain tensor (see Ambati et al (2015); Borden et al 

(2016); Miehe et al (2010b); McAuliffe and Waisman 

(2016) for more details). In this way, the load carrying 

capacity of the material is not affected by damage when 

the material is submitted only to compression. 

The PF potential is then used to deduce the con- 

stitutive equations of the problem using the second law 

of thermodynamics (Clausius-Duhem inequality). This 

leads to two equations that allow to compute the stress 

and the evolution of the PF variable. An important 

point here is that the irreversibility of the damage pro- 

cess should be enforced. In fact, using the potential pre- 

sented in Equation 5, the PF variable could decrease 

Ω 

Ω 

and predict the main features of ductile fracture. There- 
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(and therefore induce healing) if the elastic energy de- 

creases. This unphysical behavior is corrected by intro- 

ducing a history functional into the PF variable evolu- 

tion equation, see Miehe et al (2010a) for further de- 

tails. 

Finally, the expression of the function that couples 

the PF variable to the elastic energy g(φ) can be dif- 

ferent depending on the choice of PF model. Its most 

simple expression is given by: 
 

g(φ) = φ2
 + η (6) 

where η is an artificial residual stiffness (0 < η  1)  

that plays a role over the regions that have been com- 

pletely damaged (φ = 0) so that the numerical scheme 

remains stable. This artificial stiffness is not used in all 

models (Borden et al (2016)). 

 
4.2.2 Ductile failure modeling 

 
It is important to mention that even though PF mod- 

els have mainly been used within the context of brittle 

fracture (Francfort and Marigo (1998); Bourdin et al 

(2000); Amor et al (2009); Miehe et al (2010b) among 

many others), some extensions to ductile materials have 

also been proposed. This extension is not straightfor- 

ward, as difficulties arise due to the complexity of the 

damage process in ductile materials. In fact, as pointed 

out by Ambati et al (2015), there is no variational the- 

ory describing ductile damage in its full complexity. To 

overcome this problem, all existing PF ductile failure 

models mimic the regularized behavior of the poten- 

tial used for brittle fracture (Equation 5). Although it 

is possible to find small differences on how the ductile 

plastic behavior is introduced and how it is coupled to 

the existing elastic and fracture terms, all existing PF 

ductile models enhance the brittle potential (Equation 
5) by adding a plastic term. In general the ductile PF 
potential functional (Π

Duc) takes the form: 
 

Π
Duc

 (u, φ) = 

∫ 
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− (ε(u))
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dV 
 

 

the plastic behaviour of the material is not modified 

by the failure process. The consequence of this choice 

is that the yielding surface of the material remains un- 

changed, and at some point plastic deformation satu- 

rates leading to a process dominated by elastic strains 

(Borden et al (2016)). Borden et al (2016) tested dif- 

ferent expressions for gp(φ) so that the yielding surface 

evolves as damage takes place. 

 
An important feature of PF methods is that they 

allow to naturally drive the evolution of damage. This 

could be seen as an advantage since no ad hoc criteria 

are needed to model complex ductile damage processes. 

Nevertheless, it comes at a cost, and it is precisely re- 

lated to the difficulty of controling the onset of damage. 

This was very well illustrated by Borden et al (2016) by 

studying the impact of using Equation 6 for a ductile 

material. In fact, it was shown that no matter the ma- 

terial parameters used, the PF variable will reach high 

values before the critical stress is achieved, which is a 

non physical consequence of the choice of the coupling 

function g(φ). 

It is clear then that the choice of the coupling func- 

tion g(φ) is extremely important since it will directly 

impact the kinetics of damage. Furthermore, it can also 

affect the stress evolution up to the critical stress. There- 

fore, quantitative evaluations of force-displacement curves 

could become complicated and model dependent. Dif- 

ferent choices of coupling function taking this into ac- 

count can be found in the literature. 

Ambati et al (2015, 2016); Ambati and De Lorenzis 

(2016) introduced a dependency to the plastic internal 

variables into the coupling function g(φ). The function 

g(φ, αi) then accounts for the plastic internal variables. 

This is done in such a way that the nucleation of dam- 

age is delayed by the plastic deformation. A simple ex- 

pression for g(φ, αi) is given by: 

 

 
g(φ, αi) = φ2p(αi)  + η (8) 

e e 
 

 

+ gp(φ)Ψp(αi)dV 
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where p(αi) is a function of the cumulative plastic strain 

which, for a simple isotropic plastic hardening material, 

is an internal variable of the plastic model. The conse- 
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where Ψp(αi) corresponds to the plastic potential den- 

sity function, αi is a set of internal variables related to 

plasticity (e.g., isotropic and kinematic hardening). The 

function gp(α) couples the PF variable to the plastic en- 

ergy. In most PF models gp(φ) ≡ 1, which means that 

quence of this choice is that the damage onset is de- 

layed and, more importantly, the evolution of damage 

(the PF variable φ) will mainly be driven by the plastic 

energy term Ψp(αi). 

Another approach is to replace the quadratic form 

of the coupling function (Equation 6) by a higher order 

function with no coupling to the plastic variables. The 

main goal is to trigger the damage process at a later 

stage of the deformation. However this leads to higher 

Ω 

Ω 

+ 
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critical stress and therefore the corresponding material 

length scale has to be corrected (Borden et al (2016)). 

It is nevertheless possible to model complex ductile 

failure phenomena by using PF approaches. Some of 

these approaches will be discussed in the next section 

in particular regarding heterogeneous materials. 
 
 

4.2.3 Applications to heterogeneous materials 

 
PF methods became very popular in the last few years 

and not only in the field of fracture mechanics. The 

mathematical beauty of the method combined with the 

ease of implementation, make of PF a very appeal-  

ing numerical technique. Regarding fracture mechanics, 

applications to brittle materials are extensive. On the 

other hand, applications and PF methods themselves 

for ductile materials are not that widespread. A very 

challenging problem that has successfully been tack- 

led by using a PF approach is related to brittle-ductile 

transition of materials submitted to dynamic loading. 

The latter type of loading condition has not been dis- 

cussed in this section, but PF methods can be used for 

dynamic and quasi-static problems in the same way. 

Brittle-ductile transition is observed in materials whose 

failure mechanisms evolve during loading. Thermal soft- 

ening comes into play and competes with plastic hard- 

ening. This thermal softening mechanism leads to the 

formation of shear bands that localize deformation and 

induce a fast loss of load-carrying capacity for the ma- 

terial (Arriaga et al (2015)). The interesting feature of 

this brittle-ductile transition phenomenon is that the 

amount of energy dissipated by ductile failure is much 

higher than the one dissipated by brittle fracture, and 

the transition can take place due to slight variations of 

the loading velocity (McAuliffe and Waisman (2016)). 

McAuliffe and Waisman (2016) used a PF method 

to study the brittle-ductile transition on a notched plate 

impacted on one side of the notch on a direction paral- 

lel to the notch. Under low velocity impacts, loading in- 

duces brittle failure of the material and the crack prop- 

agates at an oblique angle with respect to the initial 

notch orientation. As the impact velocity is increased, 

plasticity takes place at a faster rate and therefore a 

fraction of the plastic energy is transformed into heat. 

This heat locally increases the temperature of the mate- 

rial and leads to thermal softening. This complex failure 

mechanism can be recovered by the PF approach pro- 

posed by the authors. To this end, a thermal term was 

included into the ductile PF functional (Π
Duc). The 

proposed approach, which also included a finite strain 

formulation, allowed to successfully reproduce experi- 

mental observations. Fracture patterns of materials un- 

der dynamic loading are extremely difficult to predict 

even in a qualitative way. 

It would be very interesting to check if the set of nu- 

merical parameters identified by McAuliffe and Wais- 

man (2016), is able to be predictive when loading con- 

ditions or sample geometry are changed. In fact, there 

are studies, on brittle fracture though, that show that 

a single set of numerical parameters within the context 

of a non local CDM does not allow to simultaneously 

predict the crack propagation speed and a qualitatively 

realistic crack pattern. This issue has been reported by 

Wolff et al (2015). 

 
The unified numerical framework proposed by PF 

models allows to account for different physics that might 

take place during ductile failure. However, it is mainly 

well suited for homogeneous materials. This means that 

it is complex to propose a PF potential functional that 

simultaneously takes into account failure mechanisms 

that are of different nature such as brittle particle frac- 

ture, matrix/inclusion debonding and ductile damage of 

the matrix. Unfortunately, this is necessary for ductile 

fracture modeling at the microscale since microstruc- 

tures are very heterogeneous and each of their compo- 

nents might fail according to completely different mech- 

anisms. 

A way  to try to account for these heterogeneities   

at the microscale is to use a regular ductile PF poten- 

tial functional enhanced with a very accurate plastic- 

ity model. Shanthraj et al (2016) proposed a numeri- 

cal model where crystal plasticity was used at the mi- 

croscale. This crystal plasticity model allowed to repro- 

duce the highly anisotropic behavior observed in poly- 

crystalline metallic materials. Material texture evolu- 

tions could be reproduced, as well as a progressive de- 

velopment of material anisotropy. For this application, 

even though the material was heterogeneous (e.g., crys- 

tallographic orientations varied between grains), the fail- 

ure mechanism was homogeneous. Failure was defined 

as a consequence of plasticity and its coupling on the 

PF potential functional. 

Figure 12 shows the simulated microstructure at dif- 

ferent time steps. It can be seen (Figure 12a) how dam- 

age nucleates at a triple junction as a consequence of 

the stress (and therefore plastic strain) induced by the 

change of crystallographic orientations between grains. 

Furthermore, the anisotropic behavior of the material 

might lead to the nucleation of secondary cracks, result- 

ing from strain localization on some other grain bound- 

aries. Nevertheless, it can be observed that damage is a 

consequence of plasticity, and other than stress concen- 

tration sites, grain boundaries do not represent regions 
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along which cracks would propagate, at least not in a 

direct way. 

 
 

Fig. 12 Evolution of the damage PF variable (φ) and stress 

in a polycrystalline patch loaded in the horizontal direction 

at an applied tensile strain of: (a, c) 1.16%, (b, d) 1.21%. Re- 

produced from Shanthraj et al (2016), with permission from 

Elsevier. 
 

 
 

 

4.2.4 Conclusion 

 
PF methods are very well established to model fracture 

of brittle materials. The mathematical foundations of 

the approach make of PF a very robust and reliable 

numerical framework to account for the discontinuities 

inherent to damage and fracture both in 2D and 3D. 

In general, PF methods are very well suited to study 

materials at the macroscale where their mechanical be- 

havior can be considered as homogeneous. Nevertheless, 

the mathematical rigor of the approach makes it diffi- 

cult to enhance in order to account for more complex 

physical mechanisms that might be pertinent at the on- 

set of fracture. 

For instance, the extension of the well established 

brittle PF approaches to ductile failure modeling is 

not straightforward. In fact, the coupling between the 

different terms of the PF potential functional is done 

through the introduction of multiple coupling functions. 

The results as well as the kinetics of the evolution of 

damage processes is very sensitive to the choice of cou- 

pling function. As for CDMs, different options have 

been proposed in the literature for this coupling func- 

tion. In particular, it is complicated to design a cou- 

pling function to obtain a specific feature of the failure 

when it is related to the physics or the kinematics of 

the damage process. 

Regarding failure modeling of heterogeneous mate- 

rials at the microscale, it seems rather complicated to 

include failure mechanisms of different nature into a 

single PF potential functional. Therefore, PF meth- 

ods are not very well suited for this kind of appli- 

cations. For instance, PF methods have been used to 

model crack initiation and propagation in a polycrys- 

tal, proving that they could be applicable to modeling 

particles fragmentation and matrix micro-cracking. In a 

more general sense, everything indicates that PF meth- 

ods could be used to model the damage and fracture 

of brittle and ductile components of ductile materials’ 

microstructures, given that appropriate PF potential 

functionals are defined for each of these components. 

However, PF methods do not seem to be capable of 

modeling debonding mechanisms. 

 

4.3 Enriched Finite Element methods 

 
There has been a lot of interest in the literature for 

CDT modeling using enriched FE methods, and in par- 

ticular the X-FEM. Three different approaches can be 

distinguished. First, as mentioned in Paragraph 3.1.6, 

the TLS method includes both damage regularization 

and CDT modeling. Second, conventional non local in- 

tegral or gradient regularization techniques can be cou- 

pled to crack initiation and propagation criteria to pre- 

vent the damage variable from reaching high values. 

Third, these criteria can also be used with multiscale 

methods, given that information is properly exchanged 

between coarse scale cracks and fine scale damage. 

 
4.3.1 Thick Level-Set method 

 
A way of handling the CDT was proposed by Moës et al 

(2011) with the thick LS approach. As in the PF ap- 

proach, a transition zone of a given length lc exists be- 

tween the fully damaged material and the undamaged 

material. This transition zone is imposed by defining 

an LS function to capture the contour of the damaged 

material, and smoothing the damage variable D lin- 

early from 0 at the contour, to 1 at a distance lc to the 

contour. As discussed in Paragraph 3.1.6, this has the 

consequence of regularizing the damage variable. 

It also has the consequence of modeling the CDT. 

Indeed, the LS function captures the D = 1 contour, 
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which delimits the region of fully damaged material. In 

other words, as the damaged material front evolves, it is 

followed, at a distance lc, by the fully damaged material 

front. Since the fully damaged region geometry is de- 

fined by the LS function, its shape is arbitrary and does 

not depend on the FE mesh. The discontinuity within 

elements crossed by the D = 1 contour is modeled us- 

ing the X-FEM. Branching and coalescence of damaged 

material regions are handled naturally in this approach 

thanks to the use of a CDM and an LS function. 

Apart from its original regularization technique, the 

TLS method is very similar to PF approaches. Inter- 

esting features of PF approaches regarding regularity 

and CDT modeling are preserved by the TLS method, 

but these features are coupled to a CDM, which avoids 

the definition of PF potential functionals. In particu- 

lar, micromechanical damage models can be used. The 

CDT modeling approach in the TLS method can be 

seen as a region deletion method, where a region with a 

smooth contour represents the fully damaged material, 

thus avoiding element shape dependence issues inherent 

to the element erosion method. This can be compared 

to the remeshing based discontinuous approach devel- 

oped by Roux et al (2014) and discussed in Subsection 
2.4. It will be interesting to follow future developments 

regarding the TLS method, as it has not been applied 

to ductile fracture modeling at the microscale yet. 

 

4.3.2 Continuum Damage Models 

 
The combination of CDM or micromechanical models 

and enriched FE methods provides another way of deal- 

ing with the CDT. Pourmodheji and Mashayekhi (2012) 

combined the Lemaitre damage model and the X-FEM 

to study ductile damage evolution in a steel alloy. A 

critical damage crack initiation criterion was proposed. 

The crack initiation direction was determined as the 

direction of the first principal stress. Once a crack was 

inserted in an element, it propagated to neighboring el- 

ements whose damage was beyond the critical damage 

threshold. In this way, the CDM provided the X-FEM 

with a natural crack initiation criterion. The critical 

damage value was determined based on the local plastic 

strain at the moment of macroscopic crack initiation. In 

the same study, the Lemaitre model was calibrated and 

a comparison between experimental and numerical re- 

sults for compact tension and three-point bending tests 

was carried out with promising results. 

Seabra et al (2013) proposed a similar approach 

with a non local integral Lemaitre model. Crack initia- 

tion was also determined with a critical damage crite- 

rion. Although the crack initiation criterion was similar 

to the one proposed by Pourmodheji and Mashayekhi 

(2012), a more elaborate geometrical crack propagation 

criterion was used. A radial search for the direction of 

maximum damage determined the propagation direc- 

tion, and the propagation length was determined by 

the maximum length in the chosen direction in which 

damage was beyond the critical threshold. Figure 13 

shows the damage and crack evolution in a plane strain 

specimen all the way from crack initiation up to final 

failure. Mesh independence was observed after a certain 

level of mesh refinement. 

Mesh independence is also confirmed by Broumand 

and Khoei (2015), who used a similar technique with 

a non local gradient damage model. Broumand and 

Khoei (2015) tested their method on 2D configurations 

with holes, which are close to the void growth and 

coalescence problems that are targeted in the present 

review. Their results are promising for future devel- 

opments regarding matrix micro-cracking, given that 

these crack initiation and propagation criteria can be 

extended to 3D. The results presented by Pourmodheji 

and Mashayekhi (2012) and Seabra et al (2012) are also 

restricted to 2D. 

 

Fig. 13 Damage and crack evolution in a plane strain speci- 

men from crack initiation up to final failure. Reprinted from 

Seabra et al (2013), with permission of Springer. 
 

 

These techniques coupling a CDM to the X-FEM 

are compatible with micromechanical models, as shown 
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by  Crété  et  al  (2014),  who  used  a  modified  Gurson- 

based model. An averaging procedure in front of the 

crack tip was carried out to avoid mesh dependence  

of crack propagation, which was considered to be the 

consequence of void coalescence induced strain localiza- 

tion. The propagation direction was thus determined by 

finding the strain localization plane ahead of the crack 

tip. After determining the crack propagation direction, 

a stored energy based criterion was evaluated in a half 

circle shaped patch. If the criterion was satisfied, the 

crack was propagated in one element, and the procedure 

restarted until the criterion was no longer satisfied. A 

mesh sensitivity analysis in different 2D configurations 

was carried out for the proposed method, and also for 

an element erosion technique based on the porosity frac- 

tion. The proposed methodology exhibited convergence 

in terms of mesh dependence as opposed to the element 

erosion technique. 

 
 
 
 
 
 

4.3.3 Multiscale methods 
 

In PF and TLS methods, the PF or damage field de- 

termine the fully damaged material region where a dis- 

continuity is inserted. In techniques coupling a CDM to 

the X-FEM, a crack initiation and propagation criterion 

must be defined to initiate cracks at damage localiza- 

tion sites, and propagate them along the directions of 

highest damage. In multiscale methods, the added diffi- 

culty is that a coarse scale discontinuity must be related 

to the fine scale. 

 

Embedded localization band approaches (Massart 

et al (2007)) provide an interesting solution to prob- 

lems induced by strain localization at both the coarse 

and fine scales. This solution is schematized in Figure 

14. When a coarse scale strain localization band is de- 

tected, two boundary value problems at the fine scale 

are solved, one inside the localization band and one   

in the unloading material. Two sets of homogenized 

properties are hence provided for use in their corre- 

sponding coarse scale zones. A usual simplifying hy- 

pothesis in this continuous-discontinuous homogeniza- 

tion scheme is that the width of the localization bands 

remains constant (Geers et al (2010)). Although Mas- 

sart et al (2007) did not use an enriched FE method 

for the coarse scale problem, the authors acknowledged 

that it would be necessary to guarantee consistent coarse 

scale results. 

 

 
 

Fig. 14 Continuous-discontinuous homogenization scheme. 

A deformation gradient for the unloading material (F 
s
 ) and 

one for the localization band (F 
b
 ) is transferred from the 

macroscopic model to two different microscopic models. The 

microscopic models produce the homogenized responses rep- 

resented here by two tangent moduli and two first Piola- 

Kirchhoff stress tensors for the respective zones. Reprinted 

from Geers et al (2010), with permission from Elsevier. 
 
 
 

An alternative methodology for introducing discon- 

tinuities in a multiscale approach is the so-called mul- 

tiscale aggregating discontinuities method (Belytschko 

et al (2008)). In this methodology, when a material in- 

stability is detected within a fine scale RVE problem, 

the zone containing the instability is excluded from the 

averaging procedure. For this reason, these RVEs are 

called perforated RVEs. An analysis to separate the 

bulk deformation from the deformation associated to 

material failure, follows. The result of this analysis is an 

equivalent discontinuity that represents the potentially 

multiple discontinuities in the RVE. This equivalent dis- 

continuity is then inserted in the coarse scale analy- 

sis using the X-FEM. One limitation of this method   

is that it requires the fine scale domain to correspond 

to the size of the coarse scale element. An advantage 

is that this method includes a criterion to determinate 

the coarse scale crack propagation direction from fine 

scale problems. 

It must be pointed out that Massart et al (2007) 

did not propose applications to ductile materials or 3D 

examples, and neither did most studies on this topic 

(Loehnert and Belytschko (2007); Toro et al (2016)). 

Belytschko et al (2008) proposed an application to a 

ductile material where particle debonding and matrix 

micro-cracking were modeled in fine scale 2D RVE prob- 

lems and related to a coarse scale 2D crack propagat- 

ing in a zig-zag pattern due to the microstructure’s 

influence. An application of a similar method to void 

growth and coalescence has been proposed by Bosco 

et al (2015). These results are promising as the pres- 

ence of the coarse scale crack induces localization at 
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the fine scale, where void growth and coalescence in 

the localization band determine crack opening at the 

coarse scale. 

 
To summarize, all these extensions of multiscale meth- 

ods to localization problems are based on a decomposi- 

tion of fine scale problems responses into continuous 

and discontinuous parts that are homogenized sepa- 

rately. The continuous parts follow conventional ho- 

mogenization schemes, while the discontinuous parts 

are related to discontinuities embedded into the coarse 

scale problem using an enriched FE method. This re- 

lationship between coarse scale discontinuities and fine 

scale localization bands is very close to the concept of 

traction-separation laws described in Subsection 2.3, al- 

though it is not phenomenological but based on a mul- 

tiscale theory. 

 
4.3.4 Conclusion 

 
While the TLS method has not been applied to ductile 

materials yet, methods coupling a CDM to an X-FEM 

based discontinuous approach to model the CDT have 

been successfully applied to ductile materials. These 

methods enable the modeling of crack initiation at mul- 

tiple sites based on the damage field, while crack prop- 

agation occurs along directions of maximum damage. 

This has only been demonstrated for 2D configurations. 

This restriction to 2D is also true for multiscale 

methods. The latter add an additional difficulty, since 

the coarse scale crack has to be related to fine scale 

problems. This is done by splitting the homogeniza- 

tion process into two parts, a continuous one and a 

discontinuous one. The latter accounts for the local- 

ization band at the RVE level, and homogenizes it as a 

traction-separation law for the coarse scale crack, which 

is modeled using element enrichment. 

For future work, it will be interesting to see if these 

techniques can be extended and demonstrated for 3D 

configurations. The large deformation of complex 3D 

microstructures might lead to issues that have not been 

considered yet. 

 

 
4.4 Mesh modification 

 
There are multiple differences and particularities in CDT 

modeling using mesh modifications, as opposed to purely 

discontinuous approaches discussed in Subsection 2.4. 

Even before the CDT, mesh adaption6
 can be used to 

6 We refer the reader back to Subsection 2.4 for the def- 

inition of mesh adaption, as opposed to remeshing or full  

remeshing. 

improve the quality of the discretization. The use of a 

regularization technique is mandatory (Subsection 3.1), 

as the behavior of a mesh dependent model used with 

a spatially and temporally varying mesh size is unpre- 

dictable. In spite of this undefined behavior, some stud- 

ies of mesh adaption with a CDM but no regularization 

can be found in the literature (Vaz and Owen (2001); 

Andrade Pires et al (2004); Borouchaki et al (2005)). 

With mesh adaption, the CDT can be modeled sim- 

ply with the element erosion method. The main advan- 

tage is that a finer mesh size in the localization region 

will reduce mass loss. Another option is to use similar 

remeshing based crack initiation and propagation tech- 

niques as presented in Subsection 2.4. 

These different options are discussed in the follow- 

ing. 

 

 
4.4.1 Mesh adaption in the continuous regime 

 
The most widely used approach to estimating the ap- 

proximation error in computational solid mechanics was 

introduced by Zienkiewicz and Zhu (1987). This well- 

known ZZ estimator relies on estimating the error on 

any variable based on the difference between this vari- 

able’s FE approximation and a reconstructed higher 

order approximation of this variable. The higher or- 

der approximation is usually reconstructed using the 

first order Superconvergent Patch Recovery technique 

initially proposed by Zienkiewicz and Zhu (1987) and 

later on improved to the second order by Zhang and 

Naga (2005). 

 
The ZZ estimator requires an initial FE approxima- 

tion of the variable. The most common choice is to use 

the solution for the current load increment and the as- 

sociated error estimate to adapt the mesh for the next 

increment (Vaz and Owen (2001); Andrade Pires et al 

(2004)). For this prediction to be accurate and account 

for the future evolution of the damage field, a common 

choice of variables for error estimation are the damage 

rate, the energy release rate, or combinations of these 

(Vaz and Owen (2001); Andrade Pires et al (2004)). 

The mesh size field for the current FE mesh is cor- 

rected so that the estimated error matches a user-prescribed 

tolerance equally on the whole FE domain. For a linear 

FE method, this means scaling mesh size by a local fac- 

tor depending on the local error estimate. Then, a mesh 

adaption algorithm is used to conduct node position 

and element topology changes and bring edge lengths 

as close as possible to the prescribed mesh size field, 

while at the same time guaranteeing optimal element 

shapes to avoid element inversion (Gruau and Coupez 
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(2005); Shakoor et al (2017b)). 

 
The definition of optimal element shape can be mod- 

ified to consider anisotropic elements. Although stretched 

elements may not seem appropriate for large deforma- 

tion problems with element inversion issues, they are 

interesting in terms of computational cost compared  

to isotropic elements. This was shown by El khaoulani 

and Bouchard (2012) using a non local implicit gradi- 

ent Lemaitre damage model. This study was not based 

on the ZZ theory but on a relation between the ap- 

proximation error and the interpolation error known as 

Cea’s lemma (El khaoulani and Bouchard (2012)). For  

a first order FE interpolation, the interpolation error   

is given by the Hessian matrix. Therefore, El khaoulani 

and Bouchard (2012) reconstructed Hessian matrices of 

both the damage variable and its rate and used them  

to build an anisotropic mesh size field, also known as 

metric tensor. This tensor was given as input to an 

anisotropic mesh adaption algorithm developed by Gruau 

and Coupez (2005). An example of an adapted FE mesh 

produced by this technique is shown in Figure 15a. 

In spite of its interesting properties in terms of com- 

putational cost, anisotropic mesh adaption is rarely used 

for ductile fracture problems. This is most probably 

due to the risk of element inversion, as reported by 

Shakoor et al (2017b). Isotropic mesh adaption is hence 

the most popular solution, especially for use with non 

local CDMs where the mesh can be refined in localiza- 

tion bands. 

 
Alternatively to the ZZ error estimator or the Hes- 

sian matrix based estimator, some authors have simply 

chosen to refine the mesh in regions with high dam- 

age (Borouchaki et al (2005); Areias et al (2015)). In- 

dependently of the chosen method, local mesh refine- 

ment is particularly interesting to satisfy the constraint 

on mesh size imposed by non local models, as mesh 

size cannot be higher than the characteristic length in 

the  localization  region  (Peerlings  et  al  (1996);  Bažant 

and Jirásek (2002)). It is also relevant for modeling the 

CDT, as discussed in the following paragraph. 

 

4.4.2 Remeshing based continuous-discontinuous 

transition modeling 

 
Mesh adaption reduces the artificial loss of mass due to 

element erosion because elements within damage local- 

ization regions are automatically refined prior to dele- 

tion (El khaoulani and Bouchard (2012)). Element ero- 

sion is hence the most straightforward method to use in 

combination with both isotropic and anisotropic mesh 

adaption based on the damage variable, its rate, or the 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 15 Cross sections of a 3D tension test simulation using 

ductile fracture modeling by element erosion and anisotropic 

mesh adaption at an engineering tensile strain of: (a) 21.80%, 

(b) 22.05%, (c) 22.10%. Damage distribution is shown on the 

left, and the adapted FE mesh on the right. Reprinted from 

El khaoulani and Bouchard (2013), with permission from El- 

sevier. 
 

 

energy release rate. This option was chosen by Vaz and 

Owen (2001); Andrade Pires et al (2004); Borouchaki 

et al (2005); Areias et al (2015) with no regularization 

and by El khaoulani and Bouchard (2012, 2013) us- 

ing non local implicit gradient theory. An example of 

simulation result with anisotropic mesh adaption and 

element erosion is shown in Figure 15. Damage local- 

ization within a single shear band occurs once the first 

elements get eroded. Due to mesh anisotropy, eroded 

elements are elongated along the shear band. 

 
A more technically complex option to model the 

CDT is to initiate and propagate an explicitly meshed 

crack through remeshing operations. One of the first 

results using such method was obtained by Mediavilla 

et al (2006b). This study is similar to a previous work 

(Mediavilla et al (2006a)), where the same authors used 

an uncoupled non local integral damage model as crack 

initiation and propagation criterion. For details on the 

method, the reader is referred back to (Subsection 2.4), 
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with the novelty of Mediavilla et al (2006b) being that 

the damage model was coupled to constitutive equa- 

tions using non local implicit gradient regularization 

and Kachanov theory. Both works were restricted to 

2D crack modeling. 

An interesting remark by Mediavilla et al (2006b) 

was that when the damage variable is coupled to consti- 

tutive equations, some convergence issues due to large 

energy dissipation in the discontinuous case are avoided. 

This is due to softening of the mechanical response and 

progressive energy dissipation within mesh elements be- 

fore they are reached by the crack. Feld-Payet et al 

(2015) made the same remark and added that the crack 

must remain within the damage localization region to 

avoid convergence issues. 

The remeshing based CDT modeling approach pro- 

posed by Feld-Payet et al (2015) is quite similar to that 

of Mediavilla et al (2006b). The authors show the abil- 

ity of their method to model crack initiation and prop- 

agation in 3D for flat specimens. The novelty of the 

method is a 3D discretization of the crack, which can 

be used to localize the crack within the FE domain, 

and compute the propagation criterion. At each load- 

ing step, the 3D discretization can be updated and full 

remeshing used to adapt the mesh to the new geometry. 

 
An important point is that the approaches proposed 

by Mediavilla et al (2006b) and Feld-Payet et al (2015) 

both rely on full remeshing. Discontinuous crack model- 

ing methods based on mesh adaption and local remesh- 

ing have been mentioned in Subsection 2.4, with inter- 

esting features regarding computational cost, distributed 

computing and conservation of history variables. A lo- 

cal mesh modification procedure has been proposed for 

2D triangular meshes by Areias et al (2009). The au- 

thors developed a method to split mesh elements arbi- 

trarily in order to allow for the crack to propagate along 

any direction depending on some chosen criterion. This 

edge and node splitting method is followed by a node 

re-positioning algorithm to restore the quality of the 

modified elements. 

The method proposed by Areias et al (2009) was 

coupled to an empirical CDM with non local integral 

regularization by Areias et al (2011). It was later on 

used by Areias et al (2013) with a Rousselier model and 

no regularization. Areias et al (2013) based their crack 

propagation criterion on a critical damage value for the 

propagation threshold and linear elastic fracture me- 

chanics for the direction. A similar approach was used 

by Areias et al (2011), with an additional crack initia- 

tion criterion based on the maximum principal strain. 

The last option for mesh modification based CDT 

modeling is the mesh-free paradigm. As mentioned in 

Paragraph 3.1.4, mesh-free approaches have been pro- 

posed in the literature as a discretization method with 

built-in non local integral regularization. As reaching 

the CDT requires a robust large deformation model- 

ing method, mesh-free methods are particularly inter- 

esting since the element inversion issue is avoided. As 

discussed by Andrade Pires et al (2004); Simonsen and 

Li (2004), these methods can be seen as an alternative 

to automatic remeshing algorithms. 

The damage variable in mesh-free approaches is not 

discretized at integration points but at particles. A CDT 

modeling technique for the 2D case has been proposed 

by Simonsen and Li (2004) using the GTN model, and 

by Simkins and Li (2006) using the Johnson-Cook dam- 

age model. The proposed crack propagation algorithm 

can be seen as an element erosion method, only there 

are no elements but only particles in a mesh-free dis- 

cretization. Thus, there is no loss of mass. However, 

Simkins and Li (2006) acknowledged that, due to the 

propagation of the crack only from particle to parti- 

cle, the method is particle distribution sensitive. This 

is quite similar to FE methods where the crack propa- 

gates along edges by node splitting. 

An interesting feature proposed by Ren et al (2011) 

using the same 2D particle splitting method with mesh- 

free discretization is the modeling of crack or void co- 

alescence. Areias et al (2009) obtained similar results 

also in 2D but using an FE discretization. These de- 

velopments are particularly relevant for ductile fracture 

modeling at the microscale, where multiple crack initia- 

tion sites lead to multiple cracks and coalescence events. 

The mesh-free method proposed by Ren et al (2011) to 

model void coalescence is nevertheless particle distribu- 

tion sensitive. 

 
To summarize this presentation of mesh modifica- 

tion based CDT modeling methods, the studies have 

focused mostly on 2D. While mesh-free methods do 

not allow for arbitrary crack propagation paths, this  

is possible in the frame of the FE method. Full remesh- 

ing based methods consist in modifying the geometry 

when the damage variable reaches a given threshold, 

and generating a new mesh adapted to the new geome- 

try. Local remeshing methods have also been proposed 

to modify the mesh only in the crack tip region. Al- 

though the propagation threshold is always damage- 

based, different models have been proposed for predict- 

ing the propagation direction, including searching for 

the direction of maximum damage, or using techniques 

borrowed from linear elastic fracture mechanics. In the 

following, applications of these models are discussed. 
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4.4.3 Applications and discussions 

 
A commonly used test case in the studies reviewed in 

the previous paragraphs is the double notched specimen 

model where two cracks initiate (one at each notch) and 

then propagate towards each other. This 2D model fea- 

tures a plastic localization band with high shear compo- 

nents, which drives damage localization and then cracks 

propagation. It has been used by Mediavilla et al (2006b) 

and Feld-Payet et al (2015) for both crack initiation and 

propagation modeling, with two crack tips. 

 

Fig. 16 Double notched 3D specimen test case result at four 

load increments. Arrows point out the loading direction. Red 

faces are fixed. Green face is sliding along the loading direc- 

tion. (a) View of the continuous damage field D. (b) View of 

the two cracks. Reprinted from Feld-Payet (2010). 
 

 

The 3D version of the double notched specimen test 

that was studied by Feld-Payet (2010) is shown in Fig- 

ure 16. Crack propagation was modeled using a 3D dis- 

cretization of the crack surface where the propagation 

direction could theoretically be chosen independently 

for each segment discretizing the crack tip. In practice, 

technical difficulties required Feld-Payet (2010) to force 

the crack to remain flat. The FE mesh used in the model 

was also quite coarse in the thickness direction (only 5 

elements). 

Areias et al (2011) proposed a 2D micromechani- 

cal application of their remeshing based CDT modeling 

method. The model accounted for interactions between 

matrix cracking and particle debonding. However, as 

shown in Figure 17, matrix cracks and debonding cracks 

did not coalesce. Cracks coalescence was also not ac- 

counted for by Feld-Payet (2010), as shown in Figure 

16. 

 
Limitations in the remeshing techniques will hence 

have to be overcome before 3D cracks can be initiated 

and propagated using remeshing based CDT model- 

 

 
 

Fig. 17 FE simulation of a 2D inclusions array using remesh- 

ing based cracks initiation and propagation. Results are 

shown at various applied displacement v. Reprinted from 

Areias et al (2011), with permission of Springer. 
 

 

ing. The work of Feld-Payet et al (2015) is however 

promising, as it theoretically overcomes the limitations 

regarding 3D crack propagation criteria mentioned in 

Subsection 2.4. This is done by using a shape analy- 

sis technique that defines the crack as the topological 

skeleton of the damage field (Feld-Payet et al (2015)). 

This definition is close to that used to model the CDT 

in Moës et al (2011) within the thick LS framework. 

For application to the microstructure of ductile ma- 

terials, one could use the 3D crack initiation and propa- 

gation algorithm introduced by Feld-Payet et al (2015) 

to model matrix cracking and couple it to the approach 

proposed by Shakoor et al (2017a) to model particle 

fragmentation and debonding (Subsection 2.4). The method 

proposed by Shakoor et al (2017a) could also be used 

to model cracks coalescence, as illustrated in Figure 
18. There is hence a lot of interest for these remeshing 

methods, as they can be applied both to the brittle and 

ductile components of the microstructure. An added ad- 

vantage is that remeshing can also be used to avoid ele- 

ment inversion and model large deformations. It is cer- 

tain that micromechanical simulations with remeshing 

based modeling of cracks initiation, propagation, and 

coalescence in both brittle and ductile components will 

soon be possible in full 3D and for large deformations. 

 
 

4.5 Conclusion 

 
CDT modeling is certainly one of the most active re- 

search topic discussed in the present review. Compu- 

tational methods proposed in the literature to handle 

the CDT can be classified into two categories. The first 

category of methods embed a damage model, a regular- 

ization technique, and a CDT model within the same 

theory. This is the case for PF methods and the thick LS 

method. The second category of methods allow differ- 

ent combinations of CDMs or multiscale methods and 
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Fig.  18  Micromechanical simulation of a metal matrix composite microstructure showing void nucleation by  particles debond-  

ing and fragmentation, growth and coalescence modeled using remeshing at an applied tensile strain of: (a) 25 % and (b)           

50%. Particles are shown in red and the color code in the matrix is associated to the equivalent plastic strain. Reprinted from 

Shakoor et al (2017a), with permission from Elsevier. 

 
 

regularization techniques, coupled to a discontinuous 

approach for modeling the CDT. 

 

 
In all these methods, the crack, or fully damaged 

material region, is defined as the topological skeleton 

of the damaged material region. The goal is to relieve 

damaged material regions from any load. This is done 

by defining a discontinuity at a given contour of the 

damage field (e.g., D = 1) in PF methods and the thick 

LS method. In discontinuous approaches based on the 

X-FEM or remeshing, a crack must be initiated and 

propagated along the topological skeleton of the dam- 

aged material region. This is done by initiating cracks 

at local damage localization points, and incrementally 

propagating these cracks along the directions of highest 

damage. This becomes technically more difficult in 3D 

or with multiples branching or coalescing cracks. 

 

 
An additional difficulty is also raised by multiscale 

methods, as they require the discontinuity at the coarse 

scale to be related to the fine scale problems. This has 

been done by multiple authors using an enriched FE 

method at the coarse scale, and multiscale methods ex- 

tended to localization problems at the fine scale. These 

methods have not been applied to complex 3D ductile 

fracture problems yet. 

 

5 Conclusion 

 
Modeling ductile fracture at the microscale requires 

computational methods that can handle heterogeneous 

three-dimensional (3D) structures, large plastic defor- 

mations, and the initiation and propagation of multiple 

cracks along arbitrary paths. Microstructures of duc- 

tile materials are heterogeneous as they feature multiple 

ductile and brittle components of complex morphology. 

Without loss of generality, this microstructure can be 

assumed to be composed of brittle particles and a duc- 

tile matrix. Once this heterogeneity is modeled, crack 

initiation and propagation must be considered. Cracks 

initiate mainly by debonding and fragmentation of par- 

ticles, although they can also nucleate directly within 

the matrix. These cracks then propagate along parti- 

cles/matrix interfaces and within the matrix, and may 

coalesce. Simultaneously to their propagation, cracks 

open and grow to become large microscopic voids. This 

process is joined by large plastic strains that may lo- 

calize and lead to interaction micromechanisms between 

cracks/voids, favoring their coalescence. The latter may 

itself be favored by matrix softening due to potential 

sub-micron sized voids. The accumulation of coales- 

cence events leads to final macroscopic failure. 

 
All these micromechanisms can easily be modeled 

using the Finite Element (FE) method with element 

 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
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erosion, but at the price of mass loss and mesh de- 

pendence issues. In order to avoid these issues, more 

advanced computational methods must be considered. 

Both the eXtended Finite Element Method (X-FEM) 

and remeshing based discontinuous approaches have been 

proven to enable the modeling of the initiation, propa- 

gation and coalescence of multiple 3D cracks (see e.g., 

Figure 4 for the X-FEM, and Figures 9 and 18 for 

remeshing). Large deformations, however, seem to be 

accessible only through remeshing, although mesh-free 

techniques could also be employed. Independently of 

whether the X-FEM or remeshing are used, CZMs (Co- 

hesive Zone Models) should be considered to model the 

energy dissipation rate (see e.g., Figure 8 for a use of 

CZMs at predefined locations). Although methods cou- 

pling the X-FEM and CZMs can be found, there is no 

result showing the compatibility of CZMs with remesh- 

ing and large deformations. 

Discontinuous approaches such as the X-FEM or 

remeshing based techniques cannot model matrix soft- 

ening. Physically, matrix softening is related to the pres- 

ence of sub-micron sized voids that must be modeled in 

a homogenized sense either using Continuum Damage 

Models (CDMs), which can be empirical, phenomeno- 

logical, or micromechanical, or using multiscale meth- 

ods. Multiscale methods can also be employed to con- 

sider the influence of ductile fracture micromechanisms 

on the macroscale. Independently of the scale at which 

they are used, CDMs and multiscale methods require 

regularization through averaging or the introduction of 

gradient terms, and a Continuous-Discontinuous Tran- 

sition (CDT) model. At the microscale, the CDT is the 

transition from a continuous damage process to the ini- 

tiation and propagation of micro-cracks within the ma- 

trix. 

 

On the one hand, methods embedding altogether a 

damage model, a regularization technique, and a CDT 

model have been proposed. Phase-Field (PF) methods 

and the thick Level-Set (LS) method are examples of 

those. The applicability of these methods to ductile 

fracture modeling at the microscale, with severe plastic 

deformation, has not been demonstrated yet. 

On the other hand, CDMs with non local integral or 

gradient based regularization have been coupled to the 

element erosion method. Although this approach inher- 

its the deficiencies of the element erosion method, mass 

loss can be alleviated using adaptive mesh refinement 

in the localized damage regions (see e.g., Figure 15). 

Adaptive mesh refinement also enables to satisfy mesh 

size constraints raised by regularization techniques with 

a reduced computational cost. 

To completely avoid the issues raised by the element 

erosion method, discontinuous approaches based on the 

enriched FE methods or remeshing can be considered 

to model the CDT. Enriched FE methods, in particu- 

lar, have been proven to be compatible with multiscale 

methods. These CDT models based on discontinuous 

approaches all consist in detecting damage localization 

regions from the considered CDM or multiscale method, 

and then model the initiation and propagation of cracks 

along the directions of higher damage. While this has 

been demonstrated to be possible in 2D by multiple 

authors (see e.g., Figure 13 for a CDM with X-FEM 

based CDT modeling, and Figure 17 for a CDM with 

remeshing based CDT modeling), 3D results are not so 

common (see e.g., Figure 16). 

 
As a conclusion, no simulation modeling ductile frac- 

ture at the microscale with all its complexity has been 

conducted yet, but there is a wide extent of litera-  

ture on the topic. There are hence opportunities for 

future research in computational damage and fracture 

mechanics. Furthermore, due to the prolific literature 

on this research problem and the large number of re- 

search groups working on it, solutions should soon be 

available for integrated computational materials engi- 

neering. These solutions would also be applicable to 

heterogeneous structures in general. 

In the near future, the most promising solution would 

consist in combining existing approaches, as shown in 

Figure 19. Both enriched FE methods and remeshing 

based techniques can definitely be applied to model 

void nucleation by particle debonding and fragmenta- 

tion, while the energy dissipation rate can be modeled 

using CZMs. Enriched FE methods can be coupled to 

CZMs, but they should be improved in order to handle 

large deformations. Remeshing techniques can handle 

large deformations, but have not been coupled to CZMs 

yet. CDMs and multiscale methods can both model the 

continuous damage process leading to matrix soften- 

ing. The regularization of these methods can be done 

efficiently by relying on adaptive mesh refinement in 

localization regions. These regions should be detected 

accurately in order to model the CDT, which should be 

possible in 3D with multiple crack fronts soon. 
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