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Abstract

In this paper, the coupling of a float with a tuned liquid multi-column damper
(TLMCD), a novel structural damping device inspired by the classical tuned
liquid column damper (TLCD), is modelled using Lagrangian mechanics. We
detail the tuning of the design parameters for each considered variant of the
TLMCD, and compare each of them against a layout of multiple TLCDs. The
results show that the proposed TLMCD is superior to multiple TLCDs for this
application as it is more robust against wave incidence and it creates significantly
less parasitic oscillations.

1. Introduction

Wind power is the second fastest growing source of renewable electricity
[19] in terms of installed power. The construction of offshore wind farms is
growing worldwide. In Europe, offshore wind energy is expected to grow to 23.5
GW by 2020, tripling the installed capacity in 2015 [5]. The major causes of
this recent trend are the strength and regularity of wind far from the shore,
which should allow for the easy mass production of electricity. To generate
offshore wind energy, two types of technologies have been considered: fixed-
bottom wind turbines (foundations fixed into the seabed) and floating wind
turbines (FWTs). The fixed-bottom offshore wind turbine technology is too
costly for use in water deeper than 60 m [16]. This disqualifies them from use
in most seas. FWTs are a tempting alternative. One advantage is that FWTs
are not as dependent on seabed conditions for installation and can be moved to
a harbour for maintenance. The main drawback of FWTs is their sensitivity to
surrounding water waves that increase the mechanical load on the wind turbine
[10], hence reducing the lifespan of its mechanical parts. This sensitivity can be
mitigated by increasing the mass and size of the mechanical structure. However,
this leads to a prohibitive rise in the cost per kWh.

Previous studies have proposed compensating for tower fore-aft oscillations
using collective and individual blade pitch control to modify the wind thrust
forces [10, 17, 2]. This solution has the advantage of requiring no structural
modification, but delivers limited performance. The tower movements are still
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many times superior to those observed on onshore wind turbines. Instead of
using aerodynamic forces, it is tempting to consider using hydrodynamic forces.
In naval engineering, considerable attention has been paid to ship roll damping
(since the advent of steamboats). However, most solutions involve the use of
the speed of the ship relative to the water to generate lift to control the roll [20]
and, for this reason, are not easily transferable to our problem.

In addition to naval engineering, civil engineering has been a great contrib-
utor to such approaches, as skyscrapers are highly sensitive to wind gusts and
earthquakes. This general field (structural control) is beyond the scope of this
paper, and the reader can refer to [21] for an overview. To improve the response
of massive structures to external disturbances, attached moving masses, such
as tuned mass dampers (TMD), can be employed. Among the most economical
and efficient solutions is the tuned liquid column damper (TLCD), also known
as the anti-roll tank or the U-tank. As originally proposed by Frahm [6, 15] to
limit ship roll, it is a U-shaped tube on a plane orthogonal to the ship’s roll
axis, and is generally filled with water. The liquid inside the TLCD oscillates
due to the movement of the structure and liquid’s energy is dissipated through
a restriction located in the horizontal section. The TLCD is usually chosen to
damp the natural frequency of the structure. While TLCD systems have been
modelled in the past by, for instance, [1, 7], it remains an active field of research
[4]. A considerable amount of relevant research has been conducted over the
last two decades on civil engineering applications, where most of the work has
focused on determining the optimal design of passive TLCDs, such as [7, 25, 26].

Several studies have shown that the structural control of floating wind tur-
bines using active [11, 18] or passive [24, 23] TMDs can substantially reduce the
load on the wind turbine. Other studies [3, 14, 22] have shown that the passive
and semi-active TLCDs are an interesting alternative.

In this paper, we consider the damping of an offshore platform subject to
waves of various angles of incidence. Such a system behaves as a six-DOF peri-
odically oscillating rigid body. We try to minimize the roll and pitch oscillations
by means of a TLCD, and neglect aerodynamic forces. Due to the mooring sys-
tem, we cannot easily change the orientation of the float to adapt to the wave
incidence. In the past, we studied the disturbance rejection capabilities of a
TLCD aligned with the wave incidence [3]. As shown in Fig. 1, the damping
provided by the TLCD is not robust against a change in the wave incidence.

This work is partly based on [8]. However, unlike the ships considered there,
the float we consider has isotropic properties, meaning that its roll and pitch
motions have the same characteristics. Here we go a step further introducing
three multidirectional damping devices based on the concept of the TLCD. Their
dynamics and their robustness against wave incidence are investigated.

2. Description of the system

The floater considered was the MIT/NREL Shallow Drafted Barge and the
wind turbine was an NREL 5 MW; both are described in Tables 2 and 3.
The barge and the wind turbine are modelled as a single rigid body, referred
to as “the float” in this paper. Deformations in the wind turbine are neglected
as its resonant period is inferior to the period of the monochromatic waves we
consider here – ranging from 3 s to 30 s. The float is studied with all six degrees
of freedom. To avoid any bias in the study, we do not consider the interaction
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Rn Earth-fixed frame

Rb Barge-fixed frame

R (Θ) ∈ R
3×3

Rotation matrix from Rb to Rn

so that ∀r ∈ R
3, rn = Rrb

xn = [x, y, z]
⊤
∈ R

3 Position of the centre of gravity of barge in Rn

Θ = [ϕ, θ, ψ]⊤ ∈ R
3 Euler triple associated with R

vb ∈ R
3 Speed of CoG, the centre of gravity of the float

ωb ∈ R
3 Rotational speed of Rb with respect to Rn

nc
Number of variables needed to describe

the liquid speed in the TLCD/TLMCD

w ∈ R
nc

Vector describing the position of

the liquid in the TLMCD

wi ∈ R position of the liquid in the ith element

q =
[

xn ⊤,Θ⊤, w⊤
]⊤

∈ R
6+nc System’s generalized positions

v =
[

vb ⊤, ωb ⊤, ẇ⊤
]⊤

∈ R
6+nc System’s speeds

G (Θ) ∈ R
3×3 Matrix relating Θ̇ and ωb so that ωb = GΘ̇

P (Θ) ∈ R
6+nc×6+nc Matrix relating q̇ and v so that v = P q̇

S (· ) ∈ R
3×3 Skew symmetric matrix representing the

S2 (· ) = S (· )
⊤
S (· ) cross-product in R

3, with S (x) y = x× y.

Av and Ah ∈ R
Cross-sections of the vertical and

horizontal tubes of the tank

ν ∈ R Cross-section ratio defined as ν , Av/Ah

σi ∈ R Curvilinear abscissa describing the geometry of the ith element

ςi, ςpi, ςsi ∈ R Abscissa of the free surfaces in the ith element

αi ∈ R orientation angle of the ith element

rb (σ) =
[

xbt , y
b
t (σ) , z

b
t (σ)

]⊤
∈ R

3 Function describing the centreline of the damper

A (σ) > 0 ∈ R Cross-section of the tank at abscissa σ

Lv and Lh ∈ R Length of the vertical and horizontal tubes of the TLCD

e ∈ R Distance between CoG and the horizontal tubes

ρ ∈ R Liquid density

η ∈ R
nc Vector of the head-loss coefficients of the restrictions

Ms =M⊤
s ∈ R

6×6 Mass matrix of the float

mt ∈ R Total mass of the liquid in the damping system

Qhydro ∈ R
6 Generalized force due to the barge/waves interactions

Qres ∈ R
nc Generalized force due to the restrictions in the TLMCD

Fh ∈ R
N Force generated by the fluid flow through the restrictions

β ∈ R Wave incidence angle

Table 1: Nomenclature
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Figure 1: RAO of the float damped by a single TLCD for different incident angles

Diameter, Height 36 m, 9.5 m
Draft, Freeboard 5 m, 4.5 m

Water Displacement 5,089 m3

Mass, Including Ballast 4,519,150 kg
CM Location below SWL 3.88238 m
Roll Inertia about CM 390,147,000 kg.m2

Pitch Inertia about CM 390,147,000 kg.m2

Yaw Inertia about CM 750,866,000 kg.m2

Anchor (Water) Depth 200 m
Separation between Opposing Anchors 436 m

Unstretched Line Length 279.3 m
Neutral Line Length Resting on Seabed 0 m

Line Diameter 0.127 m
Line Mass Density 116 kg/m

Line Extensional Stiffness 1,500,000,000 N

Table 2: Summary of MIT / NREL Barge Properties, from [10]
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Rating 5 MW
Rotor Orientation, Configuration Upwind, 3 Blades

Control Variable Speed Collective Pitch
Drivetrain High Speed Multiple-Stage Gearbox
Rotor, Hub Diameter 126 m, 3 m

Hub Height 90 m
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm
Rated Tip Speed 80 m/s

Overhang, Shaft Tilt, Precone 5 m, 5°, 2.5°
Rotor Mass 110,000 kg
Nacelle Mass 240,000 kg
Tower Mass 347,460 kg

Coordinate Location of Overall CM (-0.2 m, 0.0 m, 64.0 m)

Table 3: Gross Properties Chosen for the NREL 5-MW Baseline Wind Turbine, from [10]

between the rotor and the wind because the damping induced is dependent on
the controller chosen for the wind turbine (its impact can be negative or positive
[13]). An illustration of the float with a 3S TLMCD is given in Figure 2.

2.1. Assumptions

To model the dynamics of the tank, we make the following assumptions:

1. the float is rigid. Therefore,

2. its centre of gravity, CoG, is immobile in the frame fixed to the barge,

3. the liquid in the TLCD is incompressible,

4. the column width is small with respect to length,

5. the flow of liquid in the tank is uniform in each column,

6. the position of the free surface of liquid in the tank is within the vertical
column (i.e. vertical columns are never empty).

2.2. Kinematics of the tank

A TLCD is composed of two vertical tanks of cross-section Av connected by a
horizontal duct of cross-section Ah. Liquid flows from one vertical column to the
other through the horizontal tube. The restriction causing the damping (head
loss) is located in the middle of the horizontal part. Fig. 3 is an illustration of
the TLCD with the parameters presented in this subsection.

As we neglect the width of the columns, the TLCD geometry is defined by
a line whose coordinates are expressed in the frame fixed to the barge

rb (σ) ,
[

xbt , y
b
t (σ) , z

b
t (σ)

]⊤

with

ybt (σ) ,











Lh

2 σ ≤ −Lh

2

−σ −Lh

2 < σ ≤ Lh

2

−Lh

2
Lh

2 < σ

zbt (σ) ,











e+ Lh

2 + σ σ ≤ −Lh

2

e −Lh

2 < σ ≤ Lh

2

e+ Lh

2 − σ Lh

2 < σ

5
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6

Figure 2: Illustration of the float with a 3S TLMCD

ω>0

ΧδΓ

ω

Λη

Λϖε

ρ 

Αϖ

Αη

ρβ(σ)
σ=ζ0

σ=−ζσ

σ=ζπ

ζβ

ψβ

ζε

ϕ

Figure 3: Scheme of a single TLCD illustrating the main variables
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where xbt is defined for each damping system to generate a symmetric problem,
and where σ is the curvilinear abscissa along the geometry of the tank (σ = 0 is
at the centre of the horizontal tube, and for σ > 0 ybt (σ) is negative). We write
drb

dσ (σ) as the unit vector tangent to the tank.
We define the cross-sectional area of the tank as

A (σ) ,











Av σ ≤ −Lh

2

Ah −Lh

2 < σ ≤ Lh

2

Av
Lh

2 < σ

In this paper, the damping systems we consider consist of N identical ele-
mentary subsystems (referred to as elements), which are regularly rotated around
(CoG, zb). The geometry of each element is given by Rz (αi) r

b (σi) where

Rz (αi) =





cos (αi) −sin (αi) 0
sin (αi) cos (αi) 0

0 0 1





is the rotation matrix around z and where αi is the orientation angle of the ith

element. Let vi (σi) be the algebraic speed in in the ith element of the damping
system. By convention, vi (σi) is positive if the liquid flows towards positive σ.
The vector v

b
i (σi) is the speed of the liquid in the ith element expressed in Rb

as

v
b
i (σi) = vi (σi)Rz (αi)

drb

dσ
(σi) (1)

We also introduce Vh, the vector of algebraic speeds in the horizontal tubes,
as

Vh ,







v1 (0)
...

vN (0)







Vh = Phẇ (2)

with Ph given for each damping system in the Appendices.

3. Linearised dynamics

We define X ,
[

x
n Θ w ẋ

n Θ̇ ẇ
]⊤

the state vector of our system,

with xn = [x, y, z]
⊤

∈ R
3 the position of the systems centre of gravity, Θ =

[ϕ, θ, ψ]⊤ ∈ R
3 the orientation of the float, w ∈ R

nc and nc the number of
variables describing the speed of the liquid inside the TLCD (nc will be detailed
in §4 for each variant). The linearised model writes

Ẋ = A (ω)X + B (ω)

[

Fhydro (ω,H)
Qres (η)

]

with

A (ω) =

[

06+nc×6+nc I6+nc×6+nc

(M (0) +A (ω))
−1
K (M (0) +A (ω))

−1
(C (0, 0) +B (ω))

]

7
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ξ2
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Figure 4: Orientation of Rb with respect to Re

B (ω) =

[

06+nc×6+nc

(M (0) +A (ω))
−1

]

where M (0) and C (0, 0) the mass matrices given in §4 where (q, q̇) = 0. The
matrices A (ω) and B (ω) are respectively the radiation added mass and damp-
ing matrices, with ω the angular frequency of the monochromatic wave. The
stiffness matrix K accounts for buoyancy and gravity. The forces applied on
the float and the liquid inside the TLCD are Fhydro (ω,H), depending on the
angular frequency ω and H the wave height, and Qres (η) as given in §4.2.

This linear model is based on the non-linear model presented in §4, which
can be skipped by the reader, the system is tuned in §5, and the results of the
numerical simulations are given in §6.

4. Dynamic model of the damping systems

4.1. Description and properties of the frames

In this paper, two frames are used: Rb , (CoG,xb,yb, zb) is the frame fixed
to the barge, and Rn , (O,xn,yn, zn) is the Earth-fixed frame. Every vector
r ∈ R

3 is denoted by rb when expressed in the b frame and rn in Rn. The
frames are oriented such as z points downwards.

The orientation of Rb with respect to Rn is defined by the “roll-pitch-yaw”
Euler triple denoted by Θ = [ϕ, θ, ψ]

⊤
∈ R

3. The rotation matrix associated
with Θ is

R (Θ) ,





cψcθ −sψcϕ + cψsθsϕ sψsϕ + cψsθcϕ
sψcθ cψcϕ + sψsθsϕ −cψsϕ + sψsθcϕ
−sθ cθsϕ cθcϕ





with cx = cos (x) and sx = sin (x). Therefore, ẋ
n = Rvb, where x

n is the
position of CoG in Rn expressed in the n frame, and v

b the velocity of Rb

relatively to Rn and expressed in Rb. For all u = [u1, u2, u3]
⊤
∈ R

3, we define
the cross-product matrix as

S (u) ,





0 −u3 u2
u3 0 −u1
−u2 u1 0



 = −S (u)
⊤

8
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such that ∀x, y ∈ R
3, S (x) y = x × y. We denote by ωb the rotation speed of

the b frame relative to the n frame, expressed in Rb. The time derivative of R
can then be given by [12]

Ṙ = RS(ωb)

We define

G (Θ) ,

[

x, R
(

[ϕ, 0, 0]
⊤
)⊤

y, R (Θ)
⊤
z

]

=





1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ



 (3)

such that ωb = GΘ̇, with x, y, z as the unit vector along each axis.

We define q ,





x
n

Θ
w



 and v ,





v
b

ωb

ẇ



, with w ∈ R
nc and nc the number of

variables describing the speed of the liquid inside the TLCD (nc will be detailed
in §4 for each variant). These variables are linked via v = P q̇ with

P (Θ) =





R (Θ)
⊤

03×3 03×nc
03×3 G (Θ) 03×nc
0nc×3 0nc×3 Inc





We have described the geometry and kinematics of the system, and now establish
the dynamics of our systems using the Lagrangian approach. The dynamics of
the system are classically given as

d

dt

∂ (T − V )

∂q̇
−
∂ (T − V )

∂q
= Q

with T the kinetic energy, V the potential energy and Q the generalized forces.

4.2. Generalized forces

To obtain Q (the generalized forces), we express the power generated by
external forces on our system as q̇⊤Q. We write Q , Qhydro + Qres, with
Qhydro the generalized force due to the interactions between the waves and the
barge, and Qres the generalized force due to the restrictions in the TLMCD.
For our simulations, the interactions between the platform and the water were
modelled using a diffraction-radiation software. Following classical writing of
the force generated by the fluid flow through the restriction, we write the forces
Fh ∈ R

N in a damping system as

Fh = −
1

2
ρAhη ◦ Vh (ẇ) ◦ |Vh (ẇ)|

with η ∈ R
N the vector of head-loss coefficients, ρ the fluid density, and ◦

the Hadamard product (entrywise product). To establish the expression for
Qres, we express the power dissipated by the restrictions as Pres = V⊤

h Fh, with
V⊤
h = ẇ⊤P⊤

h according to (2). Therefore, Qres is given by

Qres (t, ẇ) =

[

06×1

P⊤
h Fh (ẇ)

]

(4)

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 5: Geometry of the 2U damping system (the tubes do not intersect)

4.3. System with N TLCDs (NU)

We consider N TLCDs regularly rotated around (CoG, zb), and denote this
system NU. As an example, the 2U system is illustrated in Fig. 5. We set
xbt = 0 for our system to be axisymmetric. The orientation angle of each element
writes αi = π i−1

N
. To describe the position of the liquid, we need N variables,

i.e. nc = N . For the NU system, each element is a TLCD, therefore, the
curvilinear abscissa of each element, σi, ranges from −ςsi to ςpi defined as

ςpi =
Lh
2

+ Lv + wi

ςsi =
Lh
2

+ Lv − wi

4.3.1. Mechanical energy of the system

The potential energy of the NU system is written as

VNU = z
⊤.

(

gρ

N
∑

i=1

∫ ςpi

−ςsi

At (σ) (R (Θ) Rz (αi) r
b (σ) + x

n)dσ

)

= −gmtz − gρz⊤R (Θ)

[

ρ

N
∑

i=1

∫ ςpi

−ςsi

At (σ)Rz (αi) r
b (σ) dσ

]

(5)

where g is the acceleration due to gravity, mt is the total mass of the liquid in
the damping system.

The kinetic energy of the system is written as

TNU =
1

2
q̇⊤MNU (q) q̇ (6)

with
MNU (q) , P (Θ)

⊤
MNU (w) P (Θ) = M⊤

NU ∈ R
6+nc×6+nc (7)

with MNU (w) as defined in (A.2). The calculation of the kinetic energy is
detailed in Appendix A.1.

10
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Figure 6: The 3S TLMCD

4.3.2. System dynamics

We write the dynamics of the system as

MNU (q) q̈ + CNU (q, q̇) q̇ + kNU (q) = Qhydro +QresNU
(ẇ) (8)

with MNU (q) as defined in (7), and CNU , kNU and QresNU
as defined in Ap-

pendix B.3.

4.4. Model of a star-shaped TLMCD with N elements (NS)

This damping system is composed of N halves of the TLCD interconnected
at the coordinate r

b (σ = 0) and regularly rotated around (CoG, zb). We denote
this system NS. For illustration purpose, the 3S system is shown in Fig. 6. For
this system, each element is a half-TLCD, therefore the curvilinear abscissa of
each element, σi, ranges from 0 to ςi. We still consider xbt = 0. The orientation

angle writes, αi =
2π(i−1)

N
.

We note σ = ςi, the coordinate of the free surface of the ith element. The
total mass of the liquid is constant, and can be given by

mt , ρ

N
∑

i=1

∫ ςi

0

At (σi) dσi

If we know ςi for i = 1, ..., N−1, we can easily deduce ςN ; therefore, nc = N−1.
We define, for i = 1..nc,

ςi =
Lh
2

+ Lv + wi, (9)

and

ςN =
Lh
2

+ Lv −

N−1
∑

i=1

wi. (10)

As shown in Appendix B.4, we write the dynamics of the system as

MNS (q) q̈ + CNS (q, q̇) q̇ + kNS (q) = Qhydro +QresNS
(ẇ) (11)

where MNS , CNS , kNS and QresNS
are defined in Appendix B.4.

11
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Figure 7: The 3P TLMCD

4.5. Model of polygonal TLMCD with N elements (NP)

This damping system is composed of N horizontal columns laid out to form
a convex regular N -gon with N vertical columns positioned at each intersection.
We denote his system NP. The 3P case is shown in Fig. 7. The elements of this
system are composed of one horizontal tube and one vertical column, therefore,
the curvilinear abscissa of each element, σi, ranges from −Lh

2 to ςi, as defined in

(9). The geometry of our system implies xbt = − Lh

2 tan π
N

. The orientation angle

αi writes αi =
2π(i−1)

N
, as in the NS problem.

There are 2N values of the speed of the liquid (one for each horizontal tube
and each vertical column). We can write N local relations of flow conservation
(at the base of each vertical column). We need nc = 2N −N = N independent
variables to know the speed of the liquid in each column. As the total mass of
the liquid is constant, there are N − 1 independent positions of free surfaces;
therefore, we need to introduce an additional variable to completely describe
the system. We arbitrarily choose wnc to be the “position” of the liquid in the
N th horizontal column.

The system’s equations of motion are written as

MNP (q) q̈ + CNP (q, q̇) q̇ + kNP (q) = Qhydro +QresNP
(ẇ) (12)

where MNP , CNP , kNP and QresNP
are defined in Appendix B.5.

4.6. Results frame

As we change the incidence of the waves, we need to change the results
variables: we introduce ϕr the inline angular response and θr the transverse
angular response to describe the oscillations of the FWT along the direction of
the waves and perpendicular to the waves, respectively. We need to express ϕr
and θr in terms of ϕ, θ and ψ. For this purpose, we introduced Rer and Rbr as
the “results frames”. They are related via R (Θr) such that ∀r ∈ R

3,

r
er = R (Θr) r

br (13)

12
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where Θr , [ϕr, θr, ψr]
⊤. These frames are linked to Re and Rb by a rotation

around z at angle β, such that ∀r ∈ R
3,

r
e = Rz (β) r

er

and
r
b = Rz (β) r

br.

In §4.1 we defined R (Θ) so that

r
e = R (Θ) rb

thus, we write

r
er = R⊤

z (β) re = R⊤
z (β)R (Θ) rb = R⊤

z (β)R (Θ)Rz (β) r
br,

and by identification with (13), we get

R (Θr) = R⊤
z (β)R (Θ)Rz (β) . (14)

Solving this equation yields Θr in terms of Θ and β.

5. Tuning the proposed configurations

Prior to assessing the robustness of each solution against wave incidence, we
need to determine their design parameters. First, we must determine the mass
of the liquid in the damper. We arbitrarily assume that each TLCD of the 2U
variant weighs 2% of the total mass of the float, and that each TLMCD weighs
4% of the total mass, i.e. 2U, 3S and 3P have the same mass. According to [27],
the price of the system depends on three factors: the loss of space (occupied by
the TLCD), additional construction costs, and the amount of steel needed for
the tank. Since the space inside the barge has no commercial value, the cost of
the loss of space is zero (if the system to damp was a building, the cost due to
loss of space would have been the price of the floors occupied by the device). In
our case, if the vertical columns were outside the float, additional construction
costs would have incurred to ensure the structural integrity of the TLCD. To
reduce this cost to zero, we designed the dampers to fit inside the barge.To
determine the best design of each damper, we use the MATLAB fminsearch

optimisation function, with the following performance index to be minimized:

P.I. = max
T∈[3;30]

(|ϕ|)

where |ϕ| is the steady state roll magnitude obtained via a simulation for each
period of monochromatic wave (excitation). It is a min-max problem where the
decision variables are Lh, Lv, ν and η. This problem is solved under constraints
Lh ≤ Lhmaxi

and Lv ≤ Lvmaxi
to fit the damper inside the barge so that the

construction cost remains zero. To avoid a violation of assumption 6, we set
Lv = Lvmaxi

.
In a previous paper [3], we considered damping with a single TLCD using the

same float subject to waves in the vertical plan xt = 0. The results showed that
the optimal value of Lh was Lhmaxi

. Therefore, we chose to set Lh = Lhmaxi

to reduce the number of variables in the optimization problem. As we have

13
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ν η Lh Av µ P.I.
2U 4.06 5.90 32.31 m 5.68 m² 4% 3.50
3S 4.12 3.43 31.88 m 7.67 m² 4% 3.57
3P 7.11 10.72 27.61 m 7.65 m² 4% 3.54

Table 4: Optimal TLMCD parameters for a wave height H = 3 m

Lh = Lhmaxi
and Lv = Lvmaxi

, the position of the TLMCD inside the barge is
imposed.

We define µ , mt

MS11

as the ratio of the mass of the liquid in the TLMCD to

the total mass of the float. We summarize the design of each damper in Table 4
for a given wave height H = 3 m and an incidence of β=0°. As the natural
period of the float is close to the predominant period of extreme sea states
(15 s–20 s), we chose the performance index to damp this resonance. Note that
for a given site, we could have used an adapted performance index to obtain the
design best suited to the conditions of the local sea.

We also note that ν (the cross-section ratio) of the 3P system is much larger,
which means that the 3P system has a lower resonant period for the same ν.

6. Simulation results

In the previous section we detailed the design of each damping system.
In this section we perform numerical simulations to compare their robustness
against wave incidence. As the dampers are tuned to the roll/pitch natural
frequency, they have almost no effect on the other motions of the wind turbine.
This is why in this section we only deal with the roll and pitch motions.

6.1. Preliminary considerations

Before we perform numerical simulations, let’s consider the following points.

Evaluation criterion: The RAO. We introduce the response amplitude operator
(RAO). It is defined as the ratio of the system’s motion to the wave amplitude
causing it, and is represented over a range of (monochromatic) wave periods [9].
It is employed as a quantitative evaluation tool for the rest of the study.

Results frames We remind the reader that we introduced the results
frame in §4.6. As we use the linear model, the states of the results frame are
linked to the original states via x

nr = R⊤
z (β)xn and Θr = R⊤

z (β)Θ.

6.2. Numerical simulations

We simulated the system’s response to a 3 m wave excitation until a steady
state was attained. We plotted the RAOs for monochromatic waves of periods
ranging from 3 s to 30 s as well as for different incident angles. It has been
verified that the vertical columns were never empty during the simulations.

We plotted the results in Fig. 8. Due to the symmetries of the damping
systems, we plotted curves between 0° and 45° for the 2U case, and between 0°
and 30° for the 3S and 3P cases.

In Fig. 8, we can see that the 3S and 3P systems are more robust against
wave incidence than the 2U damper. All dampers create a parasitic transverse
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(b) RAO of the 3S system
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Figure 8: RAO of an arrangement of multiple TLCDs (a) and variants of TLMCDs ((b) and
(c)) for different wave incidences of a 3 m monochromatic wave
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angular response, but it is worth noting that the 2U system creates significantly
greater parasitic transverse angular motion than the 3P and 3S dampers.

7. Conclusions

In this paper, we introduced the concept of a tuned liquid multi-column
damper to damp systems with similar pitch and roll behaviours, e.g. an off-
shore platform. This damper was inspired by the tuned liquid column damper
(TLCD). We developed dynamic models of an offshore platform coupled with
different variants of TLMCDs and compared them against a reference system
consisting of an arrangement of multiple TLCDs. The results of simulations
showed that the two proposed systems (3S and 3P) are more robust against
variations in wave incidence than a crosswise layout of two TLCDs.

In this study, all considered devices are passive. However further work will
focus on the semi-active control of these devices, i.e. changing the head loss
coefficients η continually to achieve better performance.
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Appendix A. Kinetic and potential energy of the proposed dampers

Appendix A.1. Kinetic energy of the NU damper

Following the method used in [8, Appendix B], we compute the kinetic energy
of the NU system.

For the NU system and for i = 1, . . . , N

vi (σi) =
Av

At (σi)
ẇi,

we write v
b
i (σi) according to (1)

v
b
i (σi) =

Av
At (σi)

ẇiRz (αi)
drb

dσ
(σi) .

Therefore, matrix PhNU
appearing in (2) can be given by

PhNU
= νInc

We write the kinetic energy of the system as

TNU = Ts + TDNU ,

where

Ts =
1

2
v⊤
[

Ms 06×nc
0nc×6 0nc×nc

]

v

with Ms the float mass matrix, and

TDNU =
1

2
ρ

N
∑

i=1

∫ ςpi

−ςsi

At (σi)
∥

∥v
b + ωb ×Rz (αi) r

b (σi) + v
b
i (σi)

∥

∥

2
dσi

=
1

2

N
∑

i=1

(

ρ

∫ ςpi

−ςsi

At (σi) dσi

)

∥

∥v
b
∥

∥

2
−

1

2
ωb⊤

(

ρ

N
∑

i=1

∫ ςpi

−ςsi

At (σi)S
2
(

Rz (αi) r
b (σi)

)

dσi

)

ωb

+ωb⊤

(

ρ

N
∑

i=1

∫ ςpi

−ςsi

At (σi)S
(

Rz (αi) r
b (σi)

)

dσi

)

v
b + v

b⊤

(

ρAv

N
∑

i=1

∫ ςpi

−ςsi

Rz (αi)
drb

dσ
(σi) ẇidσi

)

+ωb⊤

(

ρAv

N
∑

i=1

∫ ςpi

−ςsi

S
(

Rz (αi) r
b (σi)

)

Rz (αi)
drb

dσ
(σi) ẇidσi

)

+
1

2

N
∑

i=1

(

ρA2
v

∫ ςpi

−ςsi

ẇ2
i

At (σi)
dσi

)

.

Therefore, we can write

TNU =
1

2
v⊤MNU (w) v =

1

2
q̇⊤MNU (q) q̇, (A.1)

with MNU , P⊤MNU P and

MNU (w) ,

[

Ms 06×nc
0nc×6 0nc×nc

]

+





mtI3 Mvω (w) Mvq (w)
M⊤
vω (w) Mω (w) Mωq (w)

M⊤
vq (w) M⊤

ωq (w) Mq (w)



 . (A.2)
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For i = 1, ..., nc,

mt , ρ

N
∑

i=1

∫ ςpi

−ςsi

At (σi) dσi ∈ R

Mvω , −ρ

N
∑

i=1

∫ ςpi

−ςsi

At (σi)S
(

Rz (αi) r
b (σi)

)

dσi = −M⊤
vω (w) ∈ R

3×3

Mω , −ρ

N
∑

i=1

∫ ςpi

−ςsi

At (σi)S
2
(

Rz (αi) r
b (σi)

)

dσi =M⊤
ω (w) ∈ R

3×3

Mvq[:, i] , ρAv

∫ ςpi

−ςsi

Rz (αi)
drb

dσ
(σi) dσi ∈ R

3×1

Mωq[:, i] , ρAv

∫ ςpi

−ςsi

S
(

Rz (αi) r
b (σi)

)

Rz (αi)
drb

dσ
(σi) dσ ∈ R

3×1

Mq , IncρAv (Lh ν + 2Lv) ∈ R
nc

with Mvq ∈ R
3×nc, Mωq ∈ R

3×nc.

Appendix A.2. Kinetic and potential energy of the NS damper

Following the method used in Appendix A.1 for the NS variant, we write

MNS (w) ,

[

Ms 06×nc
0nc×6 0nc×nc

]

+





mtI3 Mvω (w) Mvq (w)
M⊤
vω (w) Mω (w) Mωq (w)

M⊤
vq (w) M⊤

ωq (w) Mq (w)





with, for j = 1, ..., nc,

mt , ρ

N
∑

i=1

∫ ςi

0

At (σi) dσi ∈ R

Mvω , −ρ
N
∑

i=1

∫ ςi

0

At (σi)S
(

Rz (αi) r
b (σi)

)

dσi = −M⊤
vω (w) ∈ R

3×3

Mω , −ρ

N
∑

i=1

∫ ςi

0

At (σi)S
2
(

Rz (αi) r
b (σi)

)

dσi =M⊤
ω (w) ∈ R

3×3

Mvq[:, j] , ρAvPhNS
[:, j]

N
∑

i=1

∫ ςi

0

Rz (αi)
drb

dσ
(σi) dσi ∈ R

3×1

Mωq[:, j] , ρAvPhNS
[:, j]

N
∑

i=1

∫ ςi

0

S
(

Rz (αi) r
b (σi)

)

Rz (αi)
drb

dσ
(σi) dσ ∈ R

3×1

Mq , ρAv



















P⊤
hNS

Lh
2ν

(ν − 1) + ν−2P⊤
hNS



















ς1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 ςN



















PhNS



















∈ R
nc
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with Mvq ∈ R
3×nc, Mωq ∈ R

3×nc, and

PhNS
, ν

[

Inc

−11×nc

]

.

The potential energy of the NS system is written as

VNS = z
⊤.

(

gρ

N
∑

i=1

∫ ςi

0

At (σ) (R (Θ) Rz (αi) r
b (σ) + x

n)dσ

)

= −gmtz − gρz⊤R (Θ)

[

ρ

N
∑

i=1

∫ ςi

0

At (σ)Rz (αi) r
b (σ) dσ

]

(A.3)

Appendix A.3. Kinetic and potential energy of the NP damper

Following the method used in Appendix A.1 for the NP variant, we write

MNP (w) ,

[

Ms 06×nc
0nc×6 0nc×nc

]

+





mtI3 Mvω (w) Mvq (w)
M⊤
vω (w) Mω (w) Mωq (w)

M⊤
vq (w) M⊤

ωq (w) Mq (w)





with, for j = 1, ..., nc,

mt , ρ

N
∑

i=1

∫ ςi

−
Lh
2

At (σi) dσi ∈ R

Mvω , −ρ

N
∑

i=1

∫ ςi

−
Lh
2

At (σi)S
(

Rz (αi) r
b (σi)

)

dσi = −M⊤
vω (w) ∈ R

3×3

Mω , −ρ

N
∑

i=1

∫ ςi

−
Lh
2

At (σi)S
2
(

Rz (αi) r
b (σi)

)

dσi =M⊤
ω (w) ∈ R

3×3

Mvq[:, j] , ρAvPhNP
[:, j]

N
∑

i=1

∫

Lh
2

−
Lh
2

Rz (αi)
drb

dσ
(σi) dσi

+ ρAvPh2NP
[:, j]

N
∑

i=1

∫ ςi

Lh
2

Rz (αi)
drb

dσ
(σi) dσi ∈ R

3×1

Mωq[:, j] , ρAvPhNP
[:, j]

N
∑

i=1

∫

Lh
2

−
Lh
2

S
(

Rz (αi) r
b (σi)

)

Rz (αi)
drb

dσ
(σi) dσ

+ ρAvPh2NP
[:, j]

N
∑

i=1

∫ ςi

Lh
2

S
(

Rz (αi) r
b (σi)

)

Rz (αi)
drb

dσ
(σi) dσ ∈ R

3×1

Mq , ρAv



















Lh
ν
P⊤
hNP

PhNP
+ ν−2P⊤

h2NP



















ς1 −
Lh

2 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 ςN − Lh

2



















Ph2NP



















∈ R
nc
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with Mvq ∈ R
3×nc, Mωq ∈ R

3×nc, and

Ph2NP
,

[

IN−1 0N−1×1

−11×N−1 0

]

PhNP
,

















ν 0 · · · 0 1

ν
. . .

. . .
...

...
...

. . .
. . . 0 1

ν · · · ν ν 1
0 · · · 0 0 1

















.

The potential energy of the NP system is written as

VNP = z
⊤.

(

gρ

N
∑

i=1

∫ ςi

−
Lh
2

At (σ) (R (Θ) Rz (αi) r
b (σ) + x

n)dσ

)

= −gmtz − gρz⊤R (Θ)

[

ρ

N
∑

i=1

∫ ςi

−
Lh
2

At (σ)Rz (αi) r
b (σ) dσ

]

(A.4)

Appendix B. Derivation of system dynamics

Appendix B.1. Preliminary results

For our calculation, we need the following results:
We define the derivative of row vector x⊤ ,

[

x1 . . . xn
]

by column

vector y ,







y1
...
ym






as

∂x⊤

∂y
,







∂x1

∂y1
· · · ∂xn

∂y1
...

. . .
...

∂x1

∂ym
· · · ∂xn

∂ym






. (B.1)

Proposition 1. ∀r ∈ R
3, the derivative of r⊤R by Θ is given as

∂r⊤R

∂Θ
= −G⊤S

(

R⊤
r
)

(B.2)

with G as defined in (??), and S (·) is the matrix associated with the cross-
product.

Proof. We detail the calculus for each of the tree base vectors (x,y, z). We have

R⊤
z =





−sθ
sϕcθ
cϕcθ





so

−G⊤S
(

R⊤
z
)

=





0 cθcϕ −cθsϕ
−cθ −sθsϕ −sθcϕ
0 0 0




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and

∂z⊤R

∂Θ
=





0 cθcϕ −cθsϕ
−cθ −sθsϕ −sθcϕ
0 0 0



 .

Therefore,
∂z⊤R

∂Θ
= −G⊤S

(

R⊤
z
)

.

We also have

R⊤
y =





cθsψ
cϕcψ + sϕsθsψ
−sϕcψ + cϕsθsψ





so,

−G⊤S
(

R⊤
y
)

=





0 −sϕcψ + cϕsθsψ −cϕcψ − sϕsθsψ
−sθsψ sϕcθsψ cϕcθsψ
cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕsθcψ





and

∂y⊤R

∂Θ
=





0 −sϕcψ + cϕsθsψ −cϕcψ − sϕsθsψ
−sθsψ sϕcθsψ cϕcθsψ
cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕsθcψ



 .

Therefore,
∂y⊤R

∂Θ
= −G⊤S

(

R⊤
y
)

.

Finally,

R⊤
x =





cθcψ
−cϕsψ + sϕsθcψ
sϕsψ + cϕsθcψ





so,

−G⊤S
(

R⊤
x
)

=





0 sϕsψ + cϕsθcψ cϕsψ − sϕsθcψ
−sθcψ sϕcθcψ cϕcθcψ
−cθsψ −cϕcψ − sϕsθsψ sϕcψ − cϕsθsψ





and

∂x⊤R

∂Θ
=





0 sϕsψ + cϕsθcψ cϕsψ − sϕsθcψ
−sθcψ sϕcθcψ cϕcθcψ
−cθsψ −cϕcψ − sϕsθsψ sϕcψ − cϕsθsψ



 .

Therefore,
∂x⊤R

∂Θ
= −G⊤S

(

R⊤
x
)

.

With r = r1x+ r2y + r3z, by linearity,

∂r⊤R

∂Θ
= −G⊤S

(

R⊤
r
)

.
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Proposition 2. The derivatives of vb⊤ and ωb⊤ by Θ are

∂vb⊤

∂Θ
= −G⊤S

(

v
b
)

(B.3)

∂ωb⊤

∂Θ
= Ġ⊤ −G⊤S

(

ωb
)

. (B.4)

Proof. Hence,

ωb = G (Θ) Θ̇ =





ϕ̇+ sθψ̇

cθsϕψ̇ + cϕθ̇

cθcϕψ̇ − sϕθ̇





so,

∂ωb⊤

∂Θ
=





0 cθcϕψ̇ − sϕθ̇ −cθsϕψ̇ − cϕθ̇

−cθψ̇ −sθsϕψ̇ −sθcϕψ̇
0 0 0





With G as defined in (??),

Ġ⊤ =





0 0 0
0 −sϕϕ̇ −cϕϕ̇

−cθ θ̇ cθcϕϕ̇− sθsϕθ̇ −cθsϕϕ̇− sθcϕθ̇



 .

We also write

G⊤S
(

G (Θ) Θ̇
)

=







0 −cθcϕψ̇ + sϕθ̇ cθsϕψ̇ + cϕθ̇

cθψ̇ sϕ

(

−ϕ̇+ sθψ̇
)

cϕ

(

−ϕ̇+ sθψ̇
)

−cθ θ̇ cθcϕϕ̇− sθsϕθ̇ −cθsϕϕ̇− sθcϕθ̇






.

Therefore,
∂ωb⊤

∂Θ
= Ġ⊤ −G⊤S

(

ωb
)

.

As v
b is R⊤

ẋ
e, according to Proposition 1,

∂vb⊤

∂Θ
= −G⊤S

(

v
b
)

.

Appendix B.2. Derivation of the dynamics for the NU system

Using a Lagrangian approach, the dynamics of the system are given by

d

dt

∂ (TNU − VNU )

∂q̇
−
∂ (TNU − VNU )

∂q
= Q

We first derive ∂TNU

∂q
. According to (A.1), T is independent of xn; therefore,

∂TNU
∂xn

= 03×1.

As M is symmetrical and is not a function of Θ,

∂TNU
∂Θ

=
1

2

∂
(

q̇⊤P⊤MNUP q̇
)

∂Θ
=
∂ (P q̇)

⊤

∂Θ
MNU (P q̇) .
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Using (B.3) and (B.4),

∂ (P q̇)
⊤

∂Θ
=
∂v⊤

∂Θ
=

[

∂vb⊤

∂Θ
,
∂ωb⊤

∂Θ
, 03×1

]

=
[

−G⊤S
(

v
b
)

Ġ⊤ −G⊤S
(

ωb
)

03×1

]

.

The term ∂T
∂wi

can be expressed as

∂TNU
∂wi

=
1

2
q̇⊤P⊤ ∂MNU

∂wi
P q̇

with

∂

∂wi
Mvω = −ρAvS

(

Rz (αi) r
b (ςpi)−Rz (αi) r

b (−ςsi)
)

∂

∂wi
Mω = −ρAv

(

S
(

Rz (αi) r
b (ςpi)

)2
− S

(

Rz (αi) r
b (−ςsi)

)2
)

∂

∂wi
Mvq[:, i] = ρAv

(

Rz (αi)
drb

dσ
(ςpi)−Rz (αi)

drb

dσ
(−ςsi)

)

∂

∂wi
Mvq[:, j 6= i] = 03×1

∂

∂wi
Mωq[:, i] = ρAv

(

S
(

Rz (αi) r
b (ςpi)

)

Rz (αi)
drb

dσ
(ςpi)− S

(

Rz (αi) r
b (−ςsi)

)

Rz (αi)
drb

dσ
(−ςsi)

)

∂

∂wi
Mωq[:, j 6= i] = 03×1

∂

∂wi
Mq = 0nc×nc.

According to (5), and (B.2), ∂VNU

∂q
is given by

∂VNU
∂xn

=





0
0

−gmt



 = −gmtz

∂VNU
∂Θ

=− gρ
∂z⊤R

∂Θ

(

nc
∑

i=1

∫ ςpi

−ςsi

At (σ)Rz (αi) r
b (σ) dσ

)

=gρG⊤S
(

R⊤
z
)

(
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(

r
b (ςpi)− r
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)

.

According to (5), VNU is not a function of q̇; thus,

d

dt

∂VNU
∂q̇

= 06+nc×1.

We also have

d

dt

(

∂TNU
∂q̇

)⊤

= MNU q̈ +

(

Ṗ⊤MNUP + P⊤
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∑
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ẇi
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∂wi
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q̇.

25



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Appendix B.3. Summary of NU system dynamics

We write the dynamics of the system as

MNU (q) q̈ + CNU (q, q̇) q̇ + kNU (q) = Qhydro (t, β) +QresNU
(ẇ)

with MNU (q) defined in (A.1), and

CNU , Ṗ⊤MNUP + P⊤

nc
∑
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ẇi
∂MNU

∂wi
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]
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Appendix B.4. Summary of NS system dynamics

Using the expressions of the energies obtained in Appendix A.2, and follow-
ing the method used in Appendix B for the NU system, we write the dynamics
of the NS system as

MNS (q) q̈ + CNS (q, q̇) q̇ + kNS (q) = Qhydro (t, β) +QresNS
(ẇ)

with
MNS (q) , P (Θ)

⊤
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CNS , Ṗ⊤MNSP + P⊤

nc
∑

i=1

ẇi
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Appendix B.5. Summary of NP system dynamics

Using the expressions of the energies obtained in Appendix A.3, and follow-
ing the method used in Appendix B for the NU system, we write the dynamics
of the NP system as

MNP (q) q̈ + CNP (q, q̇) q̇ + kNP (q) = Qhydro +QresNP
(ẇ)

with
MNP (q) , P (Θ)

⊤
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