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Robust Optimization for Day-ahead Market Participation of Smart-Home
Aggregators

Carlos Adrian Correa-Floreza,∗, Andrea Michiorria, Georges Kariniotakisa

aMINES ParisTech, PSL-Research University, PERSEE - Center for Processes, Renewable Energies and Energy
Systems-, 06904 Sophia Antipolis, France

Abstract

This paper proposes an optimization model to participate in day-ahead energy markets when
PV generation, thermal and electro-chemical storage devices are aggregated at the residential level.
The model includes uncertainty in energy prices, PV and load; and adjustable robust optimization
is used to determine a tractable counterpart of the problem. By means of robust control parameters,
solutions with different levels of conservatism can be found and analyzed. In addition, the presented
model includes explicit representation of battery degradation by means of special ordered sets. This
equivalent cycling aging calculation takes into account the non-linear relation between depth of
discharge and total life cycles of the battery by piecewise linearization. Performance analysis shows
the advantage of the proposed approach when compared to the deterministic solution in terms of
average cost and risk. For the analyzed real-life test system, the robust formulation achieves cost
reduction of up to 5.7% and standard deviation decreases as much as 36.4%.

Keywords: Energy storage, robust optimization, uncertainty, battery cycling, residential
aggregator.

Nomenclature

Abbreviations

ARO Adjustable Robust Optimization

BESS Battery Energy Storage System

BESS Battery Energy Storage Systems

DoD Depth of Discharge

DR Demand Response

DSO Distribution System Operator

EV Electric Vehicle

EWH Electric Water Heater

HEMS Home Energy Management System
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LV Low Voltage

MG Microgrid

MPC Model Predictive Control

MV Medium Voltage

PCC Point of Common Coupling

PDF Probability Density Function

PV Photovoltaic

RES Renewable Energy Sources

RO Robust Optimization

SO Stochastic Optimization

SOC State of Charge

SRB Smart Residential Building

TES Thermal Energy Storage

Indices

∧ Marker to identify central forecasts

h index for household, h = 1, 2, ..., N

s index for segment, s = 1, 2, ..., S

t index for time step, t = 1, 2, ..., T

Parameters

H̄h TES device maximum power [kW]

P̄ ch
h Battery’s maximum charging power [kW]

P̄ dch
h Battery’s maximum discharging power [kW]

X̄h Battery’s maximum SOC [kWh]

Ȳh TES device maximum SOC [kWh]

ηc Battery’s charging efficiency

ηd Battery’s discharging efficiency

Γ Robustness parameter

πt Spot price [EUR/kWh]

Xh Battery’s minimum SOC [kWh]
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Y h TES device minimum SOC [kWh]

ah,s, bh,s Parameters of piecewise cost functions

Ch Thermal capacitance of TES device

Dt,h Electrical load

Dq%
t,h q-th quantile Electrical load

Qt,h,s EWH load [kW]

Rh Thermal resistance of TES device

Variables

Ht,h EWH input [kW]

lt,h,s Binary variable to detect active segment

P c
t,h Battery charging power [kW]

P d
t,h Battery discharging power [kW]

P pcc
t,h Maximum allowed power at the PCC [kW]

PE
t Day-ahead energy commitment in the wholesale market [kWh]

ut,h Binary variable. Equals “1” if battery is charging, “0” otherwise

XDs
t,h,s Battery DoD at the beginning of a charging cycle in segment s [p.u.]

Xt,h Battery SOC [kWh]

xt,h Binary variable to detect beginning of a charging cycle

XD
t,h Battery DoD at the beginning of a charging cycle [p.u.]

Yt,h SOC of TES device

z, q, y Dual and auxiliary variables of the robust counterpart

1. Introduction

Increasing penetration of decentralized renewable generation into medium- and low-voltage
grids is motivating the development of new tools to overcome the challenges imposed by this new
paradigm. These trends have extended even further to reach the building and home level, lead-
ing to the development of concepts such as Home Energy Management Systems (HEMS) [1]. In
the smartgrid context, the flexibility features of renewables, storage technologies, demand response
(DR) and interaction with the grid [2] can be exploited by different market agents to minimize
operation costs. In the concrete case of the present work, the aim is to analyze the interaction
between thermal and electric storage for an aggregation of smart homes including uncertainties in
energy prices, load and PV production, and also considering battery aging.
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1.1. Current research

Regarding management models for joint thermal and electric storage technologies at the res-
idential level, approaches include that presented in [3], which proposes a residential microgrid in
which thermal and electric storage make it possible to shave the demand peak and enhance the
system’s self-sufficiency. The approach in [4] presents a methodology for intraday management of
PV and Electric Water Heaters (EWH) in an LV network, with the EWH acting as a flexible load
rather than a storage device.

Reference [5] presents an optimization problem for the day-ahead market that minimizes retailer
costs represented by imports/exports, and gas costs, along with expected balancing costs in real-time
operation. The model does not include Battery Energy Storage Systems (BESS), but does include
thermal load and electro-thermal storage. Sizing and operation of storage devices in smart buildings
is presented in [6], including electrical and thermal storage, but disregarding cycling effects.

Reference [7] presents a cooperative scheme of Smart Residential Buildings (SRB), consider-
ing batteries, thermal storage and electric vehicles. Although cycling is not taken into account,
this study constitutes an interesting benchmark given that different network configurations and
interactions are presented.

A multi-energy microgrid was recently proposed in [8], in which thermal and electrical storage
and heat sources are used to reduce operation costs and alleviate network capacity issues at the Point
of Common Coupling (PCC). Although this paper does not account for either battery cycling or
uncertainties, it does present a thorough modeling of different energy sources and their interactions,
and is tested on a system comprising 300 households.

In this smart grid context, uncertainty plays an important role in the decision-making process.
One common practice to facilitate these optimization processes is Stochastic Optimization (SO),
which typically aims to determine the optimal solution among a number of expected predefined
scenarios [9]. However, drawbacks of SO include factors such as the requirements for probabilistic
information of uncertain variables, the implementation of specialized scenario generation/reduction
techniques, and the computational burden related to large number of scenarios.

An alternative approach which has gained substantial attention in recent years is Robust Opti-
mization (RO) [10], which is an interval-based optimization method. RO does not require knowledge
of the Probability Density Function (PDF) of uncertain variables, but rather requires moderate in-
formation, i.e. an uncertainty set for each uncertain variable. RO provides a robust optimal solution
that is feasible (immunized) within the confidence interval.

RO has been successfully used to tackle uncertainty, mainly in large-scale power systems prob-
lems with a variety of objectives. For instance, it has been used to capture load and wind uncertainty
in Unit Commitment (UC) [11]. In the case of large-size battery participation in energy and an-
cillary markets, RO was used in [12] to capture uncertainty in prices. In transmission expansion
planning, this methodology has been used to cope with demand and renewable generation uncer-
tainty [13]. In [14], strategic bidding for a wind farm and battery was achieved by including price
and wind power uncertainty. Stand-alone wind systems for market participation have also included
RO analysis [15].

Although most RO applications are related to large power systems, the growing interest in
decentralized and distributed energy has pushed the research community to explore this approach.

Although little research has been done on exploiting RO capabilities in residential storage-based
energy systems, some work has been published in recent years, specifically related to medium-size
DG/microgrid management. For instance, [16] presents a model for strategic bidding in energy and
ancillary markets for a microgrid consisting of RES, a microturbine (MT) and a battery, in which
RO is used to include RES uncertainty and SO is used to tackle price uncertainty. For bidding
purposes in day-ahead and real-time markets, reference [17] proposes a hybrid stochastic/robust
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approach, in which RO captures uncertainty in real-time prices, while stochastic optimization is
used to include wind and PV scenarios. Both approaches ([16, 17]) assume deterministic demand.

Robust resource scheduling of MG components is analyzed in [18, 19] with uncertainty in load
and RES, but neglecting uncertainty in price information. In [20], a DR program for industrial
customers is presented. Uncertainties with RO are considered in load and PV, and a multi-objective
algorithm is used for minimizing cost and emissions. In [21], robust energy management is achieved
for an MG consisting of a train station and a district. The model features complete uncertainty
inclusion for PV, wind, load and energy prices. Although this model includes robustness for all
uncertain parameters, it does not analyze different levels of uncertainty budget, immunizing the
solution against any realization of uncertainty, but leading to over-conservative solutions.

Reference [22] proposes energy and reserve market participation using RO for wind uncertainty
and considers PV and dispatchable units at MV level. Also at MV level, reference [23] includes
uncertainty in net and heat demand with chance-constrained optimization and price uncertainty
with RO.

Some of the previous references, consider a full uncertainty budget, i.e. worst case realization
of uncertain variables to protect against realization [21, 18]. However, these solutions could lead
to over-conservatism, given that it is very unlikely that all uncertainties take extreme values at the
same time. Hence, robust parameter analysis can be introduced to achieve less expensive solutions
[24]. This logic is used in [22, 23, 17] to present a sensitivity analysis for different values of the
robust parameters, given that only one source of uncertainty is considered. When several sources of
uncertainty are included, the interaction of different robust parameters can lead to promising solu-
tions. However, in [16, 20, 19], these interactions are neglected, and instead, all robust parameters
are forced to assume the same arbitrary values.

Although some previous MG management referenced papers include at least one battery in
their respective test systems, none includes the non-linear relation of DoD to account for impacts
on degradation and cycling aging. At most, a simplified linear cost (function of power charge and
discharge) is included in [17, 18, 19], and references [21, 16, 20] neglect cycling aging impacts. In
this work, we propose an explicit modeling of degradation by means of piecewise linearization of
the curve that describes the non-linear relation of DoD and equivalent life cycles.

Very little work has been published regarding home-level storage management using RO. Robust
management for home appliances is presented in [25] to minimize electricity bills in a single house
and including uncertainty in comfort variables. Regarding robust aggregation of storage at the
residential level, reference [26] proposes a scheme for real-time decision-making considering batteries
and price uncertainty. Reference [27] does not include battery aggregation, but instead considers
exploitation of thermal storage at the residential level in a 20-household testbed, using RO to account
only for thermal demand uncertainty. Although this research does not include price or electrical
load uncertainty, or RES integration, is does give an interesting insight into the scalability of the
proposed model. Reference [28] presents a community energy management system disregarding
batteries, but including PV and wind power. RO is used to include uncertainty in RES and prices.

Despite its valuable contribution on participation in multiple markets, reference [28] lacks anal-
ysis of the budget of uncertainty regarding the three considered robust parameters. The authors
predefine parameters for both outdoor temperature and hot water use, and then presents a sensibil-
ity analysis by adjusting a parameter that influences both uncertain variables to the same degree.
In addition, reference [27] does not consider adjustable parameters and only presents the worst case
solution.

A more common practice in the specialized literature to account for aggregation of residen-
tial/building storage under uncertainty, is by using Model Predictive Control (MPC) and/or stochas-
tic optimization. For instance, stochstic optimization and chance constrained methods are used in
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[29] for energy and reserve market participation by aggregating residential batteries and heating.
This work presents inclusion of uncertainty in prices, weather and realized frequency. MPC based
models for aggregation of distributed storage devices (at DSO level) is presented in [30] to provide
local and frequency services; in [31] an aggregation of appartment buildings with multiple EWHs,
EVs and a single battery is presented; and MPC is also used in [32] for the case of regulation services
by aggregation of industrial thermal loads.

In contrast with [29, 26, 27], the models presented in [30, 31, 32, 25] do not consider aggre-
gation/coordination of storage at the residential level. In addition, when storage is considered in
[25, 26, 27, 29, 30, 31], a single technology is explored (either thermal or electrochemical storage).
Compared to the above references, we present a model that treats exploitation of both electrochem-
ical and thermal storage installed at the residential level. It is important to point out that over the
past few years, some research has addressed the joint operation of batteries and thermal storage
for different purposes: peak shaving and system self sufficiency [3], device sizing and operation [6],
smart building cooperation [7], deterministic cost minimization and network capacity alleviation
[8]. Note, however, that the model we propose pursues a different objective, which is to provide a
robust framework to participate in day-ahead energy markets while capturing battery-cycling costs
from a residential aggregator standpoint.

Advanced models for dealing with battery aging have been presented mainly for EVs [33] and
ancillary service provision with BESS [34, 35]. These approaches capture state transitions and the
respective DoD at which each cycle occurs, in order to obtain an equivalent aging cost. Given that
this relation is highly non-linear, it is explicitly modeled within the optimization process by piecewise
linearization of the Cycles vs. DoD curve. Explicit modeling of this process can be challenging
and computationally intensive, therefore most published research disregards the degradation effects
([25, 31, 26]) or assumes simplified behavior as a function of charge/discharge power ([29, 30]).

1.2. About the present work

The objective of the present paper is to contribute with a framework to optimally manage
HEMS resources by integrating several aspects, such as: Electric/Thermal load and storage, battery
degradation costs, home/building level management, uncertainties regarding PV generation, load
and energy prices. These aspects are analyzed from the standpoint of an aggregator participating
in the energy market and the mathematical model corresponds to the robust tractable counterpart
obtained by strong duality theory. In particular, to the best of the authors’ knowledge, robust home
level management of combined electric and thermal storage with load, RES and prices uncertainties
has not been addressed by means of Adjustable Robust Optimization (ARO). In addition to this
existing gap in the literature, we reinforce our contribution by taking into account explicit modeling
of battery degradation.

For the present work, an HEMS comprising data for the 25 real-life households in the city of
Evora, Portugal, is employed as a testbed. PVs, batteries and EWHs are considered to minimize an
aggregator’s operational costs and determine the set points for the appropriate devices. The work
presented here was performed within the EU Horizon 2020 project SENSIBLE (Storage Enabled
Sustainable Energy for Buildings and Communities), as part of the use case ”Flexibility and demand
side management in market participation”. This case assumes that a retailer, or other energy service
company, aggregates a number of customers, and participates in a market in order to optimize its
electricity costs and add value to the flexibilities that customers can offer.

The key contributions of this paper are the following:
1) The following sources of uncertainty are considered: electrical and thermal demand, PV

production and energy prices. These uncertainties are included in the model by means of Adjustable
Robust Optimization theory.
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2) A new methodology is proposed to detect the best robust solutions, based on Pareto-
optimality theory. This approach allows us to analyze the performance of multiple robust day-ahead
decisions and select the Pareto front offering solutions with the best trade-off between cost and risk.

3) Explicit modeling of battery cycling cost is presented by means of special ordered sets. To
our knowledge, no previous work has proposed a similar model for residential storage aggregation
applications. This degradation modeling allows us to capture the non-linear relation between DoD
and total life cycling to bid adequate quantities in the day-ahead markets.

The present work is organized as follows: section 2 presents the mathematical formulation of the
optimization model. Next, section 3 sets out the robust counterpart and the evaluation methodology
for the robust solutions. The results obtained are given in section 4 and finally, conclusions are drawn
in section 5.

2. Framework and mathematical formulation

The proposed physical system is n fact a residential microgrid composed households. Some of
which have solar panels, li-ion batteries, heat storage devices. The considered system is connected
to the main grid. Each household comprises a total electrical base load to be supplied and a thermal
load that has to be met by an EWH, which also stores energy in the form of heat.

The idea is to aggregate the group of houses to participate in day-ahead energy and miminize
operational costs by adjusting the setting of the devices in order to optimally manage resources.

In addition, the following assumptions were made to carry out the optimization process: 1) The
power exchange at the points of common coupling does not jeopardize the distribution network; 2)
We presume no market barriers regarding minimum bid volumes; 3) The aggregator has communica-
tion and control capabilities with devices at the home level. An appropriate IT and communication
platform exists, so that the aggregator controls devices at the home level and determines their
set-points, 4) The proposed residential aggregator does not have market power, hence it acts as a
price taker; and 5) Distribution network operation is part of the DSO’s responsibilities and does
not enter into the aggregators capabilities.

The diagram of the proposed aggregation of resources is shown in figure 1.
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Figure 1: Schematic diagram of the proposed HEMS

One feature of the proposed HEMS is the possibility to independently control the BESS and
TES. This means that the LV grid does not directly feed the thermostatic load. In other words,
this load is fed by the available stored energy in the TES, and the input for the EWH is seen as a
load from the secondary network.
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2.1. Electrical load and PV forecasts

The SENSIBLE project [36] explores the integration of available technologies into the local power
grid through three European demonstrators. The Evora demonstrator develops energy management
applications and has therefore deployed smart-meters in a localized neighborhood in the city of
Evora, Portugal. This smart meter roll-out provides data for forecasting models developed to
predict the electrical load demand and PV production of individual households.

To predict the electrical demand of one household for the next day, the model uses the demand
during the previous week and the outside temperature forecast for the next day. By means of
quantile smoothing spline fitting [37], it is possible to predict day-ahead demand D̂t at instant t, as
the sum of three functions:

D̂t = f1(Dt−24) + f2(D̄t) + f3(T̂t), (1)

where Dt−24 is the demand 24 hours before the instant to be predicted, D̄t the median demand
of the previous week and T̂t the predicted temperature. After quantile regression, a set of forecast
quantiles is obtained. Instead of a single-point value, 10%, 20%, . . . , 90% values can be obtained
and respectively associated with a 10%, 20%, . . . , 90% chance of measuring a lower actual demand
at the instant predicted. This probabilistic forecasting of electrical demand is a point of interest in
the literature [38]. For further details readers are advised to review reference [37].

The PV production forecasting model takes into account solar irradiance forecasts. Parameters
such as the orientation of the PV panels, shadowing effects and other meteorological factors are
estimated depending on the time frame.

Probabilistic forecasts are generated for each time of day covering the entire distribution of PV
production. These quantile forecasts are given in steps of the nominal probability, hence obtaining
PV forecasts associated with quantiles 10%, 20%, . . . , 90% in a similar fashion to the load forecast.
For more details on the PV forecast method, reference [39] is suggested as complementary reading.
The forecasts are generated using the quantile spline fitting and the Kernel’s density estimator, for
load and PV respectively, and they are based on data collected from smart meters and Numerical
Weather Predictions from ECMWF (European Centre for Medium-Range Weather Forecasts).

Quantiles 10% and 90% of the PV and load probabilistic forecasts are used to create the confi-
dence interval that defines the budget of uncertainty in the robust optimization model (Eqs (33)-
(34)).

An example for a typical day of the normalized aggregated values for PV and load, containing
the upper and lower values is shown in figure 2.
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Figure 2: Normalized load and PV forecasts for defining confidence interval
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2.2. Deterministic mathematical model

2.2.1. Objective function

Eq. (2) shows the objective function to be minimized. The first term is associated with the
participation in the day-ahead market (PE

t is the total energy purchase bid by the aggregator at
time t) and the second term is related to the equivalent battery cycling cost. This term includes
the corresponding non-linearities associated with the chemical reactions occurring in the batteries
due to cycling patterns. Details and interpretation of variables XDs

t,h,s and lt,h,s are provided in
subsection 2.2.4.

min
T∑
t=1

{
∧
πtP

E
t +

N∑
h=1

S∑
s=1

(ah,sX
Ds
t,h,s + bh,slt,h,s)

}
(2)

Quantities ah,s and bh,s in (2), correspond to the piece-wise approximation parameters of the
cycling aging cost. The methodology used to obtain these values is detailed in section 2.3.

2.2.2. Load balance constraints

Constraint (3) represents the power balance, in which the aggregation exchange with the whole-
sale market should meet the net required power by each customer of the portfolio, as also shown in
figure 1.

PE
t + ∆t

N∑
h=1

(
∧
P

pv

t,h − P c
t,h + P d

t,h −
∧
Dt,h −Ht,h) = 0, ∀t (3)

|PE
t | ≤ ∆tP pcc,∀t (4)

It is important to note that the net power in each house h considers battery flows, the PV
injection, electrical load and the power required by the EWH. As indicated in equation (4), this net
power constraint is limited by the maximum power allowed at the PCC, which can be given by the
DSO or simply by the capacity of the transformer (4). In addition, if a household does not have an
EWH that allows heat storage, the variable H equals thermal load.

2.2.3. Battery constraints

Constraints (5) - (9) describe the energy state for the BESS. Binary variable ut,h,s is introduced
to avoid charging and discharging batteries at the same time. Hence, constraints (7)-(8) introduce a
mixed integer characteristic into the model. Constraint (6) ensures continuity of the storage devices
from one day to another.

Xt,h = Xt−1,h + ηc∆tP c
t−1,h −∆tP d

t−1,h/η
d,∀t, t 6= 1,∀h (5)

X1,h = XT,h,∀h (6)

0 ≤ P c
t,h ≤ P̄ c

h · ut,h, ut,h ∈ {0, 1} , ∀t, t 6= 1, ∀h (7)

0 ≤ P d
t,h ≤ P̄ d

h · (1− ut,h) (8)

Xh ≤ Xt,h ≤ X̄h (9)
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2.2.4. Cycling constraints

To capture the non-linear relation of life cycles vs. DoD, a piecewise linearization is proposed.
The proposed approach consists in identifying the beginning of each charging cycle by means of
constraint (10). This constraint allows us to detect the transitions between an idle or charging state
in t − 1 to a charging state in t. In this situation, variable xt−1,h takes the value of 1, capturing
the immediate time step before charging occurs. yt−1,h is a binary auxiliary variable that takes the
value of 0 when no change in state occurs, or -1 when the battery stops charging. Constraint (12)
ensures mutually exclusive unitary value of the special ordered sets.

xt−1,h − yt−1,h = ut,h − ut−1,h, ∀t, t 6= 1, ∀h (10)

xT,h − yT,h = u0,h − uT,h, ∀h (11)

xt,h + yt,h ≤ 1, xt,h, yt,h ∈ {0, 1} ,∀t,∀h (12)

With the identification of the beginning of a charging cycle, the DoD at which this cycle occurs
can be extracted. Constraint (14) allows a value different from zero to be stored in XD, right before
the beginning of a charging cycle. To assign the correct value of depth of discharge, constraint
(13) is used. The right-hand side of this constraint calculates the DoD in per unit (p.u.) of rated
battery energy. XDf is a dummy variable to balance the equation each time a charging cycle is not
identified (xt,h = 0) and activated through constraint (15).

XD
t,h +XDf

t,h = 1−Xt,h/E
rated
h , ∀t,∀h (13)

XD
t,h ≤ xt,h,∀t,∀h (14)

XDf
t,h ≤ 1− xt,h, ∀t,∀h (15)

Note that the definition of DoD is not subject to consensus in the literature. In this paper, we
base our aging model on the assumption that each full charging cycle is accompanied by another full
discharging event. Even when the discharging event occurs separately or partially, this assumption
holds true with equation (6). This constraint ensures that all charging events must equal the
discharging level in order to reach the same initial and final SOCs each day.

With constraints (10)-(15), the DoD at which each charging cycle occurs is identified as (XD).
To extract the appropriate piecewise cost function, the corresponding segment of the cost curve must
be active. This is achieved by means of constraint (16)-(18). Constraint (17) forces the identified
DoD to fall within the corresponding linearization segment and also triggers the activation of a
binary variable lt,h,s for the related active segment s.

S∑
s=1

XDs
t,h,s = XD

t,h, ∀t,∀h (16)

lmin
s lt,h,s ≤ XDs

t,h,s ≤ lmax
s lt,h,s, lt,h,s ∈ {0, 1} ∀t,∀h (17)

S∑
s=1

lt,h,s = xt,h,∀t,∀h (18)

Note that lt,h,s is efficiently used in the objective function (2) to include the parameter bh,s when
needed. In a similar manner, XDs

t,h,s is used as the independent variable of the aging cost function.
The piece-wise model is also presented in subsection 2.3.
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2.2.5. EWH constraints

The energy state of the TES is given by (19) and (20). It is important to mention that the term
including R and C (thermal resistance and capacitance, respectively) in equation (19), represents
the energy dissipation in the EWH as a measure of energy loss, as proposed in [5].

Yt,s,h = Yt−1,s,h + ∆tHt−1,s,h − Yt−1,s,h/RhCh −∆t
∧
Qt−1,s,h,∀t, t 6= 1,∀s, ∀h (19)

Y1,s,h = YT,s,h, ∀s, ∀h (20)

Y t,h,s ≤ Yt,h,s ≤ Ȳt,h,s (21)

0 ≤ Ht,h,s ≤ H̄t,h,s (22)

The previous Mixed-Integer Linear Programming (MILP) mathematical model has four sources

of uncertainty; i.e. energy prices (
∧
πt in (2)), PV production (

∧
P

pv

t,h in (3)), electrical demand (
∧
Dt,h in

(3)) and thermal demand (
∧
Qt,h in (19)). The alternative to find a tractable optimization problem

under uncertainty is explained in section 3.

2.3. Linearization of the battery degradation costs function

To include the aging cost of the batteries in the optimization model described in the previous
subsection, a piecewise linearization of the degradation behavior should be carried out.

Battery life in general can be expressed in terms of the actual lifespan of the device (calendar
life) or the number of achievable charge and discharge cycles (cycle life) [40]. As already mentioned,
the aging process is complex; it depends on the cycling patterns, rates of charging/discharging,
and consequent chemical reactions resulting in an accumulated history of voltages, currents and
temperatures[41], and detailed analysis of this set of interactions is beyond the scope of this paper.
This paper considers battery degradation costs as a function of the cycle life’s intrinsic behavior
and as a function of the DoD.

From the perspective of short term electrical markets, such as energy day-ahead, cycle life allows
to calculate an equivalent operation cost of using the batteries to trade energy and then add it to
the total cost of the aggregator. This alternative permits more accurate daily calculation based on
the cycling pattern and embed this information into the optimization model as also proposed in
previous research [34, 42, 43].

When battery manufacturers provide the curve of cycles Vs DoD, these data indirectly contain
calendar life information, given that the curve is built based on capacity loss at End Of Life (EOL).
This available information allows explicitly modelling cycling into the optimization by means of
special ordered sets, as described in subsection 2.2.4. Cycle life is also useful when not only par-
ticipation in energy market is proposed, but also frequency support services in order to properly
capture and value charging/discharging cycles.

In general, the maximum number of charge/discharge cycles for a battery at a certain value d
of DoD, is given by the following expression [34]:

nd = n100d
−kp (23)

where kp is a constant that depends on the life cycle - DOD curve given by the manufacturer, and
can be extracted from curve fitting. The quantity n100 is the equivalent number of cycles before
failure for d = 100%.
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For a certain DoD at the beginning of a charging cycle (as explained in subsection 2.2.4), an
equivalent aging cost can be calculated by means of:

Ccyc(dj) =
Cini

n100
d
kp
j (24)

The obtained Ccyc is the equivalent cost due to the battery’s aging process for that specific value
of DoD, and should be added to the total dispatch cost. The accumulated cycling cost of aging for
the identified DoDs is shown in the second term of equation (2), and the parameters ah,s, bh,s are
obtained by linearizing equation (24) in segments. An example for a 3 kW / 3.3 kWh li-ion battery
is shown in figure 3. In this case, a 5-segment linearization is performed for the referred BESS with
the mentioned parameters. First, six equally spaced points are evaluated with equation (24). Next,
curve fitting is performed within each segment and parameters ah,s and bh,s are obtained. Finally,
these parameters are fed into the optimization model.

𝑎ℎ,𝑠𝑋𝑡,ℎ,𝑠
𝐷𝑠 +𝑏ℎ,𝑠𝑙𝑡,ℎ,𝑠

𝑠 = 1 𝑠 = 2 𝑠 = 3 𝑠 = 4 𝑠 = 5

𝑛100 = 5136

𝑘𝑝 = 1,759

𝐶𝑖𝑛𝑖 = 1650

Figure 3: Example of piecewise linearization. Cycling Cost vs. DoD for a selected li-ion battery

3. Solution methodology with adjustable robust optimization

3.1. Robust counterpart

The robust counterpart of the deterministic optimization problem described in the previous sec-
tion can be found by maximizing the deviation of the uncertain parameters within each constraint.
A tractable resulting problem is obtained employing strong duality theorem. Interested readers can
find detailed formulation in [24].

When applying strong duality due to price uncertainty in the objective function, the following
equations are obtained:

T∑
t=1

N∑
h=1

S∑
s=1

(ah,sX
Ds
t,h,s + bh,slt,h,s) +

T∑
t=1

∧
πtP

E
t +

T∑
t=1

qct + Γczc (25)

zc + qct ≥
1

2
(π̄t − πt)yct ,∀t (26)

−yct ≤ PE
t ≤ yct , ∀t (27)

zc, qct , y
c
t ≥ 0,∀t,∀h (28)

To deal with price uncertainty, a robust parameter allows to control conservatism of the solution
(Γc). This value can be adjusted in the range [0,T ], given that T is the maximum number of uncertain
parameters in the objective function (energy price).
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Uncertainty in constraint (3) is introduced by PV and electrical load. Hence, a single uncertain
right-hand parameter can be obtained by finding the net load at each time step (load minus PV).
The robust counterpart of this constraint is given by equations (29)-(31).

PE
t + ∆t

N∑
h=1

P d
t,h − P c

t,h −Ht,h = Dnet
t + qDt + ΓD

t z
D
t , ∀t (29)

zDt + qDt ≥
1

2
(D̄net

t −Dnet
h )yDt ,∀t (30)

zDt , q
D
t ≥ 0, yDt ≥ 1, ∀t (31)

where,

Dnet
t =

1

2
(D̄net

t +Dnet
h ) (32)

D̄net
t =

N∑
h=1

(D90%
t,h − P

pv10%
t,h ) (33)

Dnet
t =

N∑
h=1

(Dq10%
t,h − P pv90%

t,h ) (34)

In this case, net load uncertainty indirectly captures electrical load and PV uncertainty. Robust
parameter ΓD

t controls the robustness in each constraint t. For simplicity, in the remainder of this
paper we eliminate the subindex t from this parameter and instead we use ΓD to control net load
robustness. Cardinality of ΓD is [0,1], provided that there is one maximum uncertain parameter in
each constraint.

Constraint (19), contains another uncertain parameter, i.e. thermal load. Application of strong
duality results in the following constraints:

Yt,s,h = Yt−1,s,h + ∆tHt−1,s,h − Yt−1,s,h/RhCh −∆t(
∧
Qt−1,s,h + qtht−1,h + Γth

t−1,hz
th
t−1,h), ∀t,∀h (35)

ztht,h + qtht,h ≥
1

2
(Q90%

t,h −Q
10%
t,h )ytht,h, ∀t (36)

ztht,h, q
th
t,h ≥ 0, ytht,h ≥ 1, ∀t,∀h (37)

For simplicity, we eliminate the subindex t, h from Γt,h and instead we assume a general param-
eter to control robustness in thermal load: Γth. Note that Γth ∈ [0, 1].

The complete adjustable robust MILP counterpart (ARO) is represented by the following equa-
tions:

minimize (25) (38)

s.t.

Constraints : (4)− (18), (39)

(20)− (22), (26)− (31), (35)− (37) (40)

This is a tractable MILP problem that can be solved with off-the-shelf commercial solvers. Three
robust control parameters can be tuned to obtain different robust day-ahead bids: ΓDA, ΓD and
Γth. Each one controls conservatism against uncertainty in energy prices, net load and thermal load,
respectively. A methodology to determine the impacts of each parameter and their interactions is
presented in subsection 3.2.
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3.2. Performance assessment of robust solutions

In order to analyze different levels of conservatism when bidding in the day-ahead energy market,
different combinations of ΓDA, ΓD and Γth must be analyzed. When a solution is obtained for any
combination, the energy purchase commitment (PE

t ) and device settings are determined. The
performance of this day-ahead plan is evaluated by calculating the imbalances I−t /I

+
t in each time

step due to energy mismatch. Negative/positive imbalance implies energy shortage/excess that has
to be purchased/sold at higher/lower prices which leads to additional costs in the operation. Each
plan is subject to performance analysis for several realizations of energy price, PV, and electrical
and thermal load by means of Monte Carlo (MC) simulation.

START

Read system parameters
Read forecast data

Calculate condifence intervals
Perform Piecewise linearization

END

Generate MC scenario

Γ𝐷𝐴 = 0

Run ROMILP
Eq. (36)-(38)

Calculate imbalances

Γ𝑡ℎ=1? 

YES

NO

Γ𝐷 = 0

Γ𝑡ℎ = 0

Stop criteria met?

Calculate performance
of solution:

- Average cost
- Standard Deviation

Γ𝑡ℎ ← Γ𝑡ℎ+k

Γ𝐷=1? 

Γ𝐷 ← Γ𝐷+j

Γ𝐷𝐴=24? 

Γ𝐷𝐴 ← Γ𝐷𝐴+i

Find Pareto 
Front

YES

YES
YES

NO

NO

NO

Figure 4: Flowchart of the algorithm to find best trade-off solutions

After several MC scenarios are generated and analyzed, the performance of the robust solution
is assigned two attributes: average cost and standard deviation (SD). A decision maker is interested
in minimizing both, to achieve low expectation of cost and minimize risk at the same time. Since
a single day-ahead dispatch has as many average costs and SDs as combinations of Γs, Pareto
optimality theory is used to select the set of control parameters that performs better for both
average cost and SD [44]. A complete outline of the methodology to determine the Pareto front for
a specific day-ahead optimization, is shown in figure 4.

In this work, to generate MC scenarios we consider uniform distribution around a central forecast

for energy price [0.9
∧
π,1.1

∧
π], and for the case of PV and load, we consider the inverse cumulative

distribution function (ICDF) resulting from the real forecast described in subsection 2.1. Since
quantile information is discrete, we interpolate to obtain adequate values in between quantiles. The
stop criterion for MC simulation is set at 1000 scenarios. We verified confidence levels of minimum
95% and margins of error less than 1%, even below 1000 trials.
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3.3. Characterization of uncertainty for numerical simulations

An index is defined to measure the amplitude of the net load in each day. This index is obtained
by calculating the mean net load interval (MI) for a 24-h period. First, the maximum/minimum
net load is calculated using (33)/(34). Then, the MI for each day m is calculated by:

MIm =
1

T

T∑
t=1

D̄net
t,m −Dnet

t,m

D̄net
t,m

× 100% (41)

the MI index gives an idea of how wide the uncertainty set is, from the net load stand point,
and it is used to classify each day according to the MI level. For example, figure 5 depicts the MI
for each day in November 2015. In our case, we use this information to run simulations on three
representative days of high (Nov. 5th), medium (Nov. 15th) and low (Nov. 27th) MI and avoid
arbitrary selection of days for day-ahead simulations. In addition, figure 6 shows an example of net
load confidence intervals for two selected days: November 5th and 27th.
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M
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Figure 5: Average net load intervals calculated with equation (41)
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Figure 6: Net load interval for two days. November 5th ( ) and November 27th ( )

4. Results

4.1. Input data

The proposed algorithm is coded in Python. The electric base load is generated using the logic
explained in section 2.1 for the 25 houses in the Evora demonstrator. The location of the HEMS
in the real-life distribution network and the resources present in each house are shown in figure
7. The 25 houses correspond to two different LV rural networks, A and B, comprising 16 and 9
households respectively and containing the distribution of resources shown in the figure. In total,
the houses feature 25 PV panels, 16 BESS and 15 EWHs. The test case is composed of only the
HEMS and the control capabilities that an aggregator has over the device settings. Operation
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and control of the MV and LV networks are carried out by the DSO and do not come under the
aggregator’s capabilities or responsibilities. A normalized thermal load pattern is taken from [45].
realistic behavior.

HEMS in LV Network A 

Solar panel 

Battery  

Electric Water Heater 

Solar panel 

Battery 
Solar panel 

Electric Water Heater 

MV Network 

Location of 
HEMS in LV 
Network A 

Location of 
HEMS in LV 
Network B 

HEMS in LV Network B 

Figure 7: Composition and location of the proposed 25-household HEMS

Electricity prices are taken from the EPEX-European Power Exchange database [46], and a
persistence model is used to forecast the day-ahead and imbalance prices, consisting in assuming
the last known data for the same weekday. This is done to consider a realistic case in which an
aggregator, when defining day-ahead purchases, does not have the settled prices. Hence, by taking
the prices for the same day in the previous week, we obtain available input data to make decisions.
In line with [21, 26], price deviation from forecasted values are assumed to be ±10%, in order to
create confidence intervals.

The charging and discharging efficiency of the batteries is assumed to be 95% in line with
[47, 48, 49, 50]. 15 batteries are rated 3kW / 3.3 kWh, and the remaining battery is a 10kW /
20 kWh device. All PV panels are rated 1.5 kWp. The cycling behavior is based on the li-ion
battery information available on the market, and the curve fitting values to obtain the relation of
cycle life versus DoD are taken from its technical specifications [51]. The coefficients obtained are
n100 = 5135.7 and kp = 1.759.

The battery’s initial cost is EUR 500 e /kWh, according to the latest IRENA information on
residential storage systems for European countries [52].

The rated power/energy for all EWH is 1.5 kW / 3 kWh and thermal resistance/capacitance
are 568 (◦C/kW)/0.3483 (kWh/◦C) in line with [5].

4.2. Operational behavior in the deterministic and robust approaches

The following results present the behavior of the main variables after solving the deterministic
model presented in equations (2)-(22) and the adaptive robust optimization counterpart (ARO) in
(38)-(40), for a medium MI day (Nov. 15th). When solving the deterministic problem, the day-
ahead operational cost obtained is 14.93e . On the other hand, a cost of 29.88e is found to be the
robust solution when ΓDA = 24, ΓD = 1 and Γth = 1, which corresponds to considering the full
uncertainty budget for all of the uncertain variables in the model. This robust DA operation cost
establishes an upper bound for the operation cost, while the deterministic solution is a lower bound.
For the deterministic solution, this means that any uncertainty realization that is different from the
central forecasts for prices, load and PV would imply penalization due to imbalances. On the other
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hand, any realization of the uncertainty set within the budget would never yield an operation cost
higher than 29.88e , which acts as a guaranteed minimum.

Figure (8) shows the accumulated (all BESSs) SOC for both deterministic ( ) and ARO ( )
cases for this complete formulation of the problem.
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Figure 8: Accumulated SOC for Deterministic ( ) and ARO ( ).

The deterministic ( ) SOC shows, in general, a similar evolution when compared to the
ARO. However, a particular difference is evident in timeframes 12h-16h, which coincides with PV
production hours. In the ARO, there is a discharging pattern of the batteries during these time
frames provided that a highly conservative scenario is implicitly assumed within the model when
ΓD=1 and Γth=1: minimum PV production and maximum demand. This situation leads the
optimal solution to set BESS in discharging mode to compensate for low levels of available PV. The
ARO indicates a more conservative discharging-charging, given that stored energy during these time
frames avoids a setting point close to the boundaries, in order to cope with potential uncertainty
realizations in a more cost-efficient way. For instance, if during 12h-15h time frames, uncertainty
realizations were higher than forecasted PV values, the ARO solution would allow more room for
power injection into the grid. On the contrary, the deterministic solution would be more limited to
exploit this potential situation, given that the BESS settings would not allow additional storage.
However, the next subsection analyzes in more detail the potential savings and cost advantages of
the ARO approach versus the deterministic approach.

In addition, we carried out a simulation that neglects cycling aging cost (second term in equation
(2) for the deterministic and ARO cases. Neglecting these term in the model, means that the
batteries can cycle without any related cost provided that equivalent cycling aging will have a cost
of zero in the objective function. The obtained SOC for this case is depicted in figure 9 for both
deterministic ( ) and ARO ( ) cases. This simulation shows deeper cycling for time frames:
3h-5h, 14h-16h and 20h-22h. This is an expected result provided that the omission of aging in the
model, cause the battery to cycle without degradation constraints and presents deeper and more
frequent cycling. In general, cycling patterns are deeper in figure 9 than in figure 8.

The energy purchase commitment for both cases is shown in figure 10. Except for two time
frames (20h and 23h), purchase commitment for the ARO approach ( ) is always higher than for
the deterministic approach ( ). This is an expected result given that, as explained above, the
robust solution is conservative and represents an upper cost bound to withstand different uncertainty
realizations while maintaining final operation below this maximum guaranteed cost.

When the aggregator bids in the day-ahead energy market and determines the operation of its
devices for each hour, there may be imbalances due to deviations, as explained in subsection 3.2. In
this case, energy shortage/excess should be purchased/sold at the imbalance price, increasing final
operational costs.

Robustness can be visualized by analyzing imbalances due to deviations when DA purchase
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Figure 9: Accumulated SOC when cycling cost is neglected in the model: Deterministic ( ) and ARO ( ).

5 10 15 20
−50

0

50

time[h]

[k
W

]

Figure 10: Day-ahead energy purchase: deterministic ( ), ARO ( )

commitment is subject to multiple random realizations of prices, PV production and demand. To
generate boxplots of imbalance for deterministic and ARO solutions, MC simulation is implemented
using the procedure in subsection 3.2. Figure 11 shows a comparison of the imbalances (same
selected day: 15th Nov.) for each time frame. For this specific case, it can be seen that the
robust solution (ΓDA = 24, ΓD = 25 and Γth = 1) does not incur negative imbalances (additional
purchases), but only sells excess energy, (positive imbalance) during all time periods, with particular
higher median values during 5h and 6h and around noon. This is explained by the fact that the
ARO returns a solution that is feasible for the lowest levels of PV production and the highest load
scenarios, leading to energy excess when different realization of this uncertainty are analyzed. The
positive imbalance during the early hours coincides with the high energy purchase (see figure 10) for
battery charging (see figure 8), which becomes an energy excess and is sold back to the market. In
contrast, when the deterministic solution is subject to uncertainty realizations, negative imbalance
appears at all time steps, given its limited capacity for handling uncertainty realizations that are
different from the central forecasted values, especially when load is higher and PV production is
lower.

4.2.1. Interaction of devices in the deterministic and robust approaches

Another simulation was carried out for the complete month of analysis. In this case, the in-
teraction of different sources of flexibility was analyzed for the deterministic and RO cases. The
proposed test system has two technologies for storing energy: electrochemical batteries and EWHs.
The possibility of using the EWHs to store thermal energy allows this device to act as a flexible
load. Average costs were obtained for different cases as shown in table 1.

The table shows that for both cases (deterministic and RO) better results are obtained when
TES is allowed as a form of flexibility. In specific, when EWHs are used to store heat, deterministic
and RO approaches achieve 3.2% and 2.6% cost decrease respectively, when compared to cases in
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Figure 11: Comparison of imbalance needs for the deterministic and the robust approach when ΓDA = 24, ΓD = 1
and Γth = 1

Table 1: Average daily costs of resource management
Used flexibility Equiv. cost Total operation

Case BESS TES cycling [e ] cost [e ]

Deterministic Yes No 0.20 15.7

Deterministic Yes Yes 0.20 15.19

RO Yes No 0.19 28.89

RO Yes Yes 0.18 28.14

which only batteries are used to store energy. This shows the importance of allowing control of the
EWHs’ settings in order to store hot water to be used in later hours.

For instance, figure 12 shows the average stored heat of all EWHs in the test system. From
the figure it can be concluded that the robust approach presents higher levels of stored heat versus
the deterministic case. This is explained by the fact that the RO is protected against potential
variations of thermal load including the maximum values in the confidence interval. Hence the
available hot water should be enough to face this extreme scenario in each time step.

The figure also shows aggregated average SOC for the BESS. In this case, stored energy for the
RO case differs from deterministic mainly around noon hours, presenting lower DoD, or similarly:
available stored energy. This difference in stored energy also leads to lower average cycling aging
in the robust case. For instance, 10% equivalent cycling average cost decrease is achieved in RO
versus the deterministic, due to the difference in the batteries’ SOC.

4.2.2. Impacts of battery efficiency on cost

To determine the impacts of charging and discharging efficiency on the total operation cost
obtained by the deterministic and ARO approaches (with ΓDA=24, ΓD=25 and Γth=1), a sensitivity
analysis is carried out.

This analysis consists on changing the value of η = ηc = ηd in equation 5 and solving for each
day during the analyzed month. Afterwards, the monthly average cost is calculated and associated
to each η value. After this procedure is completed, the obtained values are depicted in figure 13.

This figure shows that lower values of efficiency lead to average cost decrease for both cases:
deterministic and ARO. For the case of the deterministic approach, when losses are neglected (η = 1)
the cost is 14.74e , and increases up to 8.6% when an efficiency of 0.8 is considered for the storage
system.
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Figure 12: Daily average operation (state of charge) of BESS and EWHs
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Figure 13: Sensitivity analysis for variations of charging and discharging efficiency. Average daily cost for November.
Deterministic ( ) and Robust case ( )

For the ARO case, an average cost of 27.69e is obtained when losses are neglected, and cost
increase reaches 8.3%. The direct comparison of the ARO and deterministic solutions shows that
when losses are neglected, ARO presents an extracost of 87.85% when compared to the deterministic.
Extracost of 81.1% is obtained for the case of η = 0.8, showing that despite large variations in η,
the robust solutions present a higher guaranteed costs than the deterministic. This may lead to
different scheduling of devices and absolute costs for each methodology, but as expected, ARO
solutions always present higher maximum guaranteed cost, as also explained in section 4.2.

4.3. Effects of the budget of uncertainty

Selecting the budget of uncertainty influences the performance of the day-ahead operation,
which explains the decision to use the ARO approach in the presented paper. In order to determine
better budget choices, we use the procedure explained in figure 4. This allows us to use MC for
several combinations of ΓDA, ΓD and Γth, and determine average cost and SD. In this way, a set
of uncertainty budgets can be determined such that the average cost and deviation are minimized.
Two days are selected to develop this analysis: November 5th (High MI) and 27th (Low MI). The
steps for ΓDA, ΓD and Γth are i = 6, j = 0.2 and k = 0.2 respectively, therefore, 180 combinations
are generated to be analyzed under the performance evaluation methodology. After running MC
simulation for each of the 180 budgets of uncertainty, we obtain the costs and deviations in figure
14. Note that the values are normalized using the deterministic values as a base (1 p.u.). The plot
shows the performance for the deterministic solution as a blue sqare: ( ).
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This simulation shows that in both cases, the deterministic solution tends to have a higher
standard deviation compared to the robust approach under different uncertainty budgets. This
indicates that robust solutions tend to be more reliable and steady in terms of imbalances and
subsequent penalization, and hence represent a less risky operation for the aggregator.
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Figure 14: Average operation cost for two days under different budgets of uncertainty and Pareto front. Performance
for the deterministic solution is depicted as a blue square and Pareto front by black dots

In particular, the simulation for Nov. 5th shows that only 8 AROs have higher SDs than the
deterministic solution, and the fourth highest for Nov. 27th. With the robust formulation, SD can
be reduced by 27.3% and 36.4% for each day, respectively.

Regarding the performance costs obtained with ARO, and compared to the deterministic ap-
proach, costs can be reduced on average by 5.7% and 2.6% respectively for each day. In addition,
the min-min Pareto front can be found by determining the non-dominated set of points according
to Pareto optimality criteria [44]. This Pareto front (depicted by: [.85]) represents the best set of
solutions from the perspective of average performance cost and SD.

Table 2: Details of the Pareto fronts values and improvement with respect to deterministic solution
Day ΓDA / ΓL / Γth Cost [p.u.] SD [p.u.]

Nov. 5th

ΓD5
1 : 12 / 0 / 0.4 0.948 0.728

ΓD5
2 : 12 / 0 / 0.8 0.944 0.780
ΓD5
3 : 24 / 0 / 0 0.943 0.923

ΓD5
4 : 24 / 0 / 0.8 0.943 0.906

Nov. 27th

ΓD27
1 : 18 / 0.2 / 0.2 0.974 0.825

ΓD27
2 : 18 / 0.2 / 0.6 0.975 0.729
ΓD27
3 : 24 / 0.4 / 0 0.979 0.636

ΓD27
4 : 24 / 0 / 0.2 0.977 0.692

Table 2 shows the points that comply with the following two conditions: 1) form the Pareto

21



front and 2) independently dominate the deterministic solution. The table also shows operation cost
improvement with respect to the deterministic solution, obtaining cost improvements in the ranges
of 5.2%-5.7% and 2.1%-2.6% for each day, respectively. In addition, the ranges of improvement for
SD are 7.7%-27.2% and 17.5%-36.4%, respectively.

It should be noted that the Pareto front for Nov. 5th contains only zero values for ΓL. This
result shows that for high mean net load interval days, the methodology avoids using high values
of this budget of uncertainty, given the over-conservatism that these values yield. As for November
27th (low mean net load interval), ARO formulation performs in several cases even with values
different from zero for all uncertainty budget parameters. This result is explained by the fact
that the uncertainty realizations for load are contained in narrower intervals and close to central
forecasts.

For further analysis, the ARO solutions in the Pareto front are selected to build Cumulative
Density Functions (CDF) and compare performance versus the deterministic solution from a cost
standpoint. As per figure 15, the ARO solutions for both days independently, behave similarly
among themselves, and all share a common feature in each day, i.e. the associated costs are lower
than those obtained in the deterministic approach. This result shows again the robustness of the
proposed model to handle uncertain parameters and their potential realizations.
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Figure 15: Performance Cumulative Density Functions for selected Robust Solutions

For instance, for November 5th the probability that the ARO solutions will have a lower cost
than the deterministic average lies in the range of 91.2% to 96.3%. For November 27th, there
is a probability between 79.0% and 85.4% that the ARO solutions will perform better that the
deterministic mean. These values can be found simply by intersecting the curves where cost equals 1
p.u. and determining the respective cumulative density. In general, the leftmost solutions represent
better performance.

It can also be noted that the CDFs for November 27th are less scattered when compared to
those of November 5th. This is again an expected solution, provided that this day presents a lower
MI; thus it is expected that robust and deterministic solutions will have closer performance and
behavior.

4.4. Effects of considering cycling aging in the model

To analyze this impact, the same day used in subsection 4.2 (Nov. 15th) and the following
arbitrary values for the uncertainty budget are used: ΓDA=12, ΓD=0.5 and Γth=0.5. Three cases
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are run and their performances are calculated with MC:

Naive Solution (NS). consists in neglecting the cycling aging cost described by equations (10)-(18)
and the second term in objective function (2). This solution allows unconstrained cycling of the
batteries.

Real Cost of Naive Solution (RCNS). This solution is obtained by adding two terms: 1. obtained
cost of NS, and 2. the equivalent cycling aging cost of this solution. In this way, we can obtain the
real cost the NS incurs.

Complete Robust Solution (ARO). This is the solution obtained by solving the complete formulation
in equations (38)-(40).

After running the simulations and determining the respective performances, the following aver-
age costs are found: 14.43e , 22.04e and 14.53e for the NS, RCNS and ARO, respectively. These
results show the importance of taking into account the degradation model within the optimization,
so as to obtain a lower overall operation cost. The naive approach appears to have a lower cost,
but as the battery is allowed to cycle without constraints, there is a hidden cost that increases op-
eration from 14.43e to 22.04e . When using the ARO complete formulation we propose, a 34.07%
cost reduction is achieved compared to the RCNS.

When the CDFs are analyzed, as depicted in figure 16 the NS could imply the achievement
of lower costs, as this curve presents more leftmost points. However, the real cost of ignoring the
cycling model can be observed by the rightmost CDF.

12 14 16 18 20 22 24 26

Cost [EUR]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Naive

RCNS

ARO

Figure 16: Cumulative Density Functions for the robust model when cycling is considered and neglected

4.5. Remarks about computational time

To give an insight on the solution time for each of the solution alternatives: ARO, NS and
deterministic; additional simulations were carried out. These simulations consisted on running each
alternative for each day in November and determining the computational time in seconds. Figure 17
shows the obtained simulation time in each day of the month. It can be seen that the NS presents
lower computational times in each day and it is an expected outcome provided that this alternative
does not include the additional constraints and binary variables used to calculate cycling aging of
the battery.

In addition, the deterministic case presents higher computational times in average, compared
to NS. This is explained by the fact that the deterministic alternative includes cycling aging, thus
increasing the size of the problem and the number of binary variables.

Table 3 shows the behavior and comparison of the computational time for each alternative.
As expected, the complete ARO formulation presents higher computational times given that it
includes constraints and binary variables to calculate cycling aging, and also includes the additional
constraints and dual variables that appear in the robust counterpart. This leads to higher average
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solution time and also higher SD. Average computational times of ARO solutions are 3.6 times
higher than those of the deterministic approach.

Table 3: Daily average computational performance of the ARO, NS and deterministic approaches
ARO NS Deterministic

Mean time [s] 4.59 1.11 1.28

Time range [s] 2.41-16.05 1.07-1.21 1.01-1.89

Time SD [s] 2.77 0.03 0.25

5. Conclusions

A model for aggregating PV, thermal storage and batteries at the residential level is presented.
The model shows that including the degradation cost in the optimization model leads to cost savings
due to less battery cycling. In the concrete case of the presented results, a 34.07% reduction was
achieved.

The proposed approach, which can also be applied by aggregators of medium- and large-size
equipment, shows that by using ARO and analyzing interactions of robust parameters, different
levels of cost reduction can be achieved than with the deterministic approach. For the simulations
performed, up to 5.7% cost savings were achieved. For the case of SD, the best result reduced the
performance of the deterministic solution by 36.4%. This shows that not only can expected costs
be reduced, but that lower risk is associated with decision-making under this approach. The results
prove that using ARO also increases the probability of acheiving lower expected costs. When
compared to the deterministic scheme, probabilities of up to 96.33% are obtained by analyzing
CDFs.

The value of BESS efficiency changes the levels of operational cost for the aggregator. in the
case of the presented simulations, cost increases for η = 0.8 reached 8.6%/8.3% for the determinis-
tic/ARO approach, when compared to a scenario that neglects losses (η = 1).

Although computational effort of ARO is in average 3.6 times higher than the deterministic
solution, the times remain in ranges lower than 20 seconds, which allow to make decisions for
day-ahead practical applications without prohibitive computational efforts.

This framework can also fit into models in which other agents with batteries at the DSO/TSO
levels are willing to participate in energy and ancillary markets. The robust-based performance
methodology proposed in this paper, can also be applied to analyze other storage ownership con-
figurations, remuneration schemes and risk tolerance.

The presented results could also be further explored by including intra-day operation, distribu-
tion services to be offered to the grid, and aggregation of a large set of households to diversify the
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portfolio and offer ancillary services.
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