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Summary

The model reduction of mechanical problems involving contact remains an

important issue in computational solidmechanics. In this article, we propose an

extension of the hyper-reductionmethod based on a reduced integration domain

to frictionless contact problems written by a mixed formulation. As the poten-

tial contact zone is naturally reduced through the reduced mesh involved in

hyper-reduced equations, the dual reduced basis is chosen as the restriction of

the dual full-order model basis. We then obtain a hybrid hyper-reduced model

combining empirical modes for primal variables with finite element approx-

imation for dual variables. If necessary, the inf-sup condition of this hybrid

saddle-point problem can be enforced by extending the hybrid approximation

to the primal variables. This leads to a hybrid hyper-reduced/full-order model

strategy. Thisway, a better approximation on the potential contact zone is further

obtained. A posttreatment dedicated to the reconstruction of the contact forces

on the whole domain is introduced. In order to optimize the offline construction

of the primal reduced basis, an efficient error indicator is coupled to a greedy

sampling algorithm. The proposed hybrid hyper-reduction strategy is success-

fully applied to a 1-dimensional static obstacle problem with a 2-dimensional

parameter space and to a 3-dimensional contact problem between two linearly

elastic bodies. The numerical results show the efficiency of the reduction tech-

nique, especially the good approximation of the contact forces compared with

other methods.

KEYWORDS

contact mechanics, hybrid-order model, hyper-reduction, mixed formulation, model order

reduction, reduced integration domain (reduced mesh)

1 INTRODUCTION

The numerical solution of partial differential equations (PDEs), especially variational inequalities, can become really
expensive when accurate predictions are required. The size of the full-order model (FOM) obtained by standard dis-
cretization methods (finite difference, finite element (FE), and finite volume) is proportional to the number of discrete
unknowns. To tackle this limitation, some techniques based on reduced bases (RBs) have been developed since the 1970s
and generalized to various systems. The principle of this kind of technique is to restrict the solution space to a smaller
subspace defined from the RB.1 The reduced-order model (ROM) is then obtained by projecting the initial PDE on the RB.

1

https://doi.org/10.1002/nme.5798
http://orcid.org/0000-0001-7487-0218
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.5798&domain=pdf&date_stamp=2018-04-30


For nonlinear PDE, one of the most popular methods to a posteriori construct the RB is the snapshot proper orthogonal
decomposition (POD).2,3

We focus here on the model reduction of mechanical problems involving contact written by a mixed formulation
(saddle-point problem) and numerically solved using Lagrange multipliers that physically represent the contact forces.4,5

Building a dual RB (for the Lagrange multipliers) with POD is not convenient because of their positivity constraint. Two
recent articles6,7 focus on the construction of a positive dual RB. The first article6 consists in extending the so-called RB
method8 to variational inequalities solved due to a mixed formulation. Similar to the primal RB (for the displacements),
the dual RB is directly composed of well-chosen Lagrange multiplier snapshots. This dual RB represents precisely the
contact forces but can rapidly become of large dimension. In the work of Balajewicz et al,7 the projection-based (PB)
method proposes two different approaches to building the primal RB and the dual RB. In this method, an efficient primal
RB is obtained due to POD. The dual RB is built applying the nonnegative matrix factorization (NNMF) algorithm9 to the
Lagrange multiplier snapshots. This latter algorithm guarantees positive basis vectors and a limited RB dimension, but
the obtained dual RB is far less accurate than the primal RB.
In this paper, we propose to extend another type of model order reduction method called hyper-reduction (HR)10-12

to contact problems. Hyper-reduction methods have been proposed to limit to few entries the computation of implicit
nonlinear balanced equations and, hence, to speed up the computation time. Various approaches have been developed
for that purpose, as follows:

• Interpolation methods that estimate the nonlinear terms of interest by interpolating their values at a few spatial loca-
tions. For the empirical interpolation method (EIM)10 and the discrete EIM (DEIM),13 the set of interpolation points
is generated by the method itself using the snapshots and a POD basis, respectively. In some other model reduction
techniques asmissing point estimation14 or Gauss-Newtonwith approximated tensors,15 the construction is done using
the gappy PODmethod.16 The EIM and, respectively, the DEIM have been recently extended to variational inequalities
treated by penalty methods in the works of Bader et al17 and Balajewicz and Toivanen.18

• Cubaturemethods12,19 that estimate the spacial integrals involved in the weak formulation, by using only few unassem-
bled elemental contributions. The elements of interest and their weighting coefficients to the global contribution are
determined using an optimization process.

• Boundary value problems restricted to a reduced integration domain (RID).20 The RID usually involve elements con-
nected to interpolation points computed by the DEIM algorithm,13 by considering several POD RBs including the
primal one.

We adopt the last approach as it had been successfully applied to elastoplastic problems20,21 that usually appear under
extreme contact conditions, althoughwe restrict our attention in this paper to elastic problems. For simplicity, theHR-RID
approach is termedHR in the sequel. As for the classical HRmethod, the primal solution is obtained on thewhole domain
since the related RB is defined on the whole domain.
The proposed extension of the HR method to contact problems consists in conserving a few vectors of the FOM dual
basis as the number of contacts is naturally reduced by the RID. Hence, only the contacts in the RID are treated but with
a local high fidelity. A strategy based on the solution of a nonnegative least squares (NNLS) problem is introduced to
reconstruct contact forces on the whole domain by postprocessing the HR predictions. As for the previous cited ROM for
mixed contact problems, the so-called LBB (Ladyzenskaia-Babuška-Brezzi)22,23 or inf-sup condition has to be respected
for the obtained ROM mixed problem to have a unique solution. The condition imposes the projected contact matrix
restrained to the active contacts to have full row rank. As the active contacts are a priori unknown, we propose to extend
the condition to the potential contact. For the proposed hybrid HR method for contact problems, the verification of this
condition depends on the primal RB and the RID. If required, the respect of this condition can be enforced by coupling the
hyper-reduced approximation to a restricted FOM approximation due to a domain decomposition technique of the RID
as proposed in the work of Baiges et al.24 Originally, hybrid reduced-order/full-order models have been proposed in the
literature to circumvent the lack of accuracy of RB approximations; see, for example, the application to elliptic problems
in elasticity,25 to nonlinear structural problems involving plasticity or damage26,27 or to Navier-Stokes equations.24 The
method introduced here can be viewed as a hybrid HR/FOM approach to deal with contact problems solved with a mixed
formulation.
In order to choose pertinent snapshots, a greedy sampling algorithm can be applied as initially proposed in the works of

Prud'Homme et al.28,29 This strategy ensures the robustness of the ROMwith respect to variations of themodel parameters.
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A simple but efficient error indicator adapted to the HR is proposed. This indicator consists in the difference between the
FOM solved on the RID submitted to interpolated Dirichlet boundary conditions and the HR solution.
This article is structured as follows. The next section is devoted to the introduction of some notations. In Section 3,

the contact problem written by a mixed formulation and its solution with the FE method is briefly recalled. Section 4
emphasizes themain points of the HRmethod, whereas Section 5 is devoted to the extension of the HRmethod to contact
problems. In Section 6, the proposed hybrid HR approach is verified on a 1-dimensional (1D) (obstacle-type inequality)
test case derived from the literature.6,7,17 A comparison between the hybrid HR method and the PB method introduced
in the work of Balajewicz et al7 is done. Finally, in Section 7, a two-elastic-solid unilateral contact 3-dimensional (3D)
problem is treated with the proposed approach.

2 NOTATION

Tensors and hypermatrices are underlined as many times as their order. For example, vectors are once underlined · ,
whereas matrices are twice underlined · , etc. Moreover, 0 (respectively, 0) identifies a vector (respectively, a matrix) of

zeros. Subscripts identify the components of a tensor. For example, (A)i j denotes the component located at the ith row

and the jth column of the matrix A.

IN denotes the identity matrix of size N × N.

We use the Python notation to restrict vectors/matrices to some rows or columns. For example, the restriction of a
matrix A to some rows with the set of indices  is written as A[, ∶].
We denote by ⊙ the element-wise multiplication. For example, (A⊙ B)i𝑗 = (A)i𝑗(B)i𝑗 or (a⊙ B)i𝑗 = (a)i(B)i𝑗 .

The symbol “:” designates the double inner product that consists in a double contraction over the last two indices of
the first tensor and the first two indices of the second tensor. For example, A ∶ B =

∑
i𝑗(A)i𝑗(B)i𝑗 is a scalar, whereas

C ∶ B =
∑

kl(C)i𝑗kl(B)kl gives a matrix.

The positive and the negative part of x ∈ R are respectively defined as [x]+ = max(x, 0) and [x]− = min(x, 0) and those
of a vector x ∈ RN as [x]+ = ([(x)i]+)

N
i=1

and [x]− = ([(x)i]−)
N
i=1
.

The Euclidian norm or 2-norm of a vector is denoted by || · ||2

||u||2 = (
uTu

) 1

2 =

(∑
i

(u)2i

) 1

2

, (1)

where the superscript T designates the transpose operation.
The L2 inner product defined on Ω is denoted by ⟨·, ·⟩L2(Ω), such that

⟨u, v⟩L2(Ω) = ∫
Ω

uTv dΩ. (2)

The related L2 norm defined over the domain Ω is denoted by || · ||L2(Ω) and defined as

||u||L2(Ω) =
(⟨u,u⟩L2(Ω)

) 1

2 =

⎛
⎜⎜⎝∫Ω

uTu dΩ
⎞
⎟⎟⎠

1

2

,

whereas the H1 norm writes

||u||H1(Ω) =

(
||u||2

L2(Ω)
+

D∑
k=1

||𝜕xku||2L2(Ω)
) 1

2

with D as the space dimension.
Let E denote a Hilbert space and F its dual space. Their inner products are respectively denoted by ⟨·, ·⟩E and ⟨·, ·⟩F.
Introducing a basis of E, {𝛽 i}

HE

i=1
, we can write ∀u,u′ ∈ E, ⟨u,u′⟩E = 𝜉 TuM

E𝜉u′ with 𝜉u and 𝜉u′ as the coefficients associated

to u and u′ in the E basis andME = (⟨𝛽 i, 𝛽𝑗⟩E)HE

i,𝑗=1
. We then have ⟨v, v′⟩F = 𝜉 Tv (M

E)−1𝜉v′ , ∀v, v′ ∈ F with 𝜉v and 𝜉v′ as the

coefficients associated to v and v′ in the F basis.
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3 CONTACT PROBLEM – FINITE ELEMENT MODEL

We are interested in the solution of elastic frictionless unilateral contact problems inherently nonlinear, involving
variational inequalities and constrained minimizations.
For the sake of clarity and without any loss of generality, we consider here a model problem involving two deformable

elastic bodies defined by the two open-bounded domains Ω1 ∈ RD andΩ2 ∈ RD with D as the dimension of the problem.
The whole domain is defined by Ω = Ω1 ∪ Ω2 (see Figure 1). We denote by 𝜕Ω = 𝜕Ω1 ∪ 𝜕Ω2 the boundary of Ω. This
boundary can be divided into three parts ΓD,ΓN, andΓC such that 𝜕Ω = ΓD ∪ ΓN ∪ ΓC with ΓD ∩ ΓN = ∅ and ΓD ∩ ΓC = ∅.

• On ΓD, displacement conditions are imposed (Dirichlet boundary conditions).
• On ΓN, surface forces are applied (Neumann boundary conditions).
• ΓC is the possible and a priori unknown contact zone (contact boundary conditions). We have ΓC = ΓC1 ∪ ΓC2 with

ΓC
i
, i ∈ {1, 2} as the potential contact boundary on Ωi, i ∈ {1, 2}.

Let ni denote the external unit normal toΩi on ΓC. We take ui (respectively, 𝜎i) to denote the displacement field (respec-

tively, stress field) in Ωi. The points on ΓC are paired by minimal distance in order to evaluate the gap denoted by uN on
each point of ΓC. Let us denote by {x, x′} a pair of coupled points between ΓC1 and Γ

C
2 . Then, the gap uN writes

uN = u1(x)
Tn1(x) + u2(x

′)Tn2(x
′), ∀ paired couple{x, x′} ∈

(
ΓC1 ,Γ

C
2

)
. (3)

Under small perturbation hypothesis, n1(x) = −n2(x′), ∀ {x, x′} ∈ (ΓC1 ,Γ
C
2 ). The unknown contact forces F

i on ΓC
i
are

decomposed into normal and tangential parts, ie,

Fi(x) = 𝜎 i(x)ni = FiN(x)ni(x) + Fi
T
(x), ∀x ∈ ΓCi . (4)

In this paper, we restrict our attention to frictionless contact. Signorini's law of unilateral contact30 is given on ΓC by

Fi
T
= 0 (frictionless), (5)

uN ≤ d (nonpenetration), (6)

FN = F1N = F2N ≤ 0 (nonadhesion), (7)

(uN − d)FN = 0 (complementary slackness), (8)

where d generically denotes the initial gap on each node of ΓC.

FIGURE 1 Geometry of a generic 2-body contact problem
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The strong formulation of the elastostatic frictionless unilateral contact problem can then be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div𝜎 = 𝑓 in Ω,

𝜎 = C ∶ 𝜀 in Ω,

𝜀 =
1

2

(
gradu + (gradu)T

)
in Ω,

u = u
0

on ΓD,

𝜎n = g on ΓN ,

uN ≤ d, FN ≤ 0, (uN − d)FN = 0 on ΓC,

𝜎n = FNn on ΓC.

(9)

The primal variational formulation of (9) can be written as a variational inequality31

{
Findu ∈ C such that
a(u, v − u) ≥ l(v − u), ∀v ∈ C (10)

with C = {v ∈  | vN ≤ d on ΓC},  = {v = r(u0) + ũ | ũ ∈ 0}, r(u0) as the lifting of u0 over Ω, 0 = {v ∈

(H1(Ω))D | v = 0 on ΓD}, and

a(u, v) = ∫
Ω

𝜀(u) ∶ C ∶ 𝜀(v)dΩ, (11)

l(v) = ∫
Ω

𝑓TvdΩ + ∫
ΓN

g
TvdΓ. (12)

Due to the variational inequality, the unilateral contact problem is nonlinear. In the work of Duvaut and Lions,31 it is
demonstrated that the solution of inequality (10) can be obtained by minimizing the potential energy, ie,

min
v∈C

J(v) =
1
2
a(v, v) − l(v). (13)

The minimization of J is then equivalent to a saddle-point problem when introducing Lagrange multipliers.32,33 The
saddle-point problem can be written as

⎧
⎪⎨⎪⎩

Find (u, 𝜆) ∈  × such that

a(u, v) + b(v, 𝜆) = l(v), ∀v ∈ 0
b(u, 𝜅 − 𝜆) ≤ ⟨d, 𝜅 − 𝜆⟩

H
1
2 (ΓC),H−

1
2 (ΓC)

, ∀𝜅 ∈ 
(14)

with = {𝜅 ∈ H−
1

2 (ΓC) | 𝜅 ≥ 0}, where H−
1

2 denotes the dual of H
1

2 , b(v, 𝜅) = ⟨vN , 𝜅⟩
H

1
2 (ΓC),H−

1
2 (ΓC)

, and ⟨·, ·⟩
H

1
2 ,H−

1
2

is the duality product. We can notice that the solution (u, 𝜆) recovers the complementary slackness condition. Also, the
resulting Lagrange multiplier is physically representative of the contact forces, 𝜆 = −FN.
We now apply the FEM. The shape functions of the FE basis are denoted by (𝜑𝑗)

m
𝑗=1 with m as the number of dis-

cretization nodes. For the displacement discretization, we introduce 𝜑i = 𝜑𝑗ek with i = ( j − 1)D + k, j ∈ {1, … ,m},
k ∈ {1, … ,D} and ek as the canonical vectors of a Cartesian coordinate system. The decomposition of the displacement
on the (𝜑i)

N
i=1
, N = mD basis is written as

uh = r(u
0
) +

N∑
i=1

𝜑i ui, (15)

where uh is the approximate FE solution and U = (ui)
N
i=1

is the vector of the related degrees of freedom (DOFs).
The nonhomogeneous Dirichlet condition is treated using usual techniques existing in the FE solvers (Lagrange multi-
pliers, penalty, elimination, lifting, etc). For the sake of clarity, it will not appear in the discrete approximations written
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in what follows. The FOM, with N as the total number of primal DOFs and N𝜆 as the total number of potentially active
contacts, can be written as

⎧⎪⎪⎨⎪⎪⎩

Find (U,Λ) ∈ RN × (R+)N𝜆 such that

KU + BTΛ = F

Λ⊙ (B U − D) = 0

BU ≤ D,

(16)

where K ∈ RN×N , B ∈ RN𝜆×N , F ∈ RN , D ∈ RN𝜆 ,U, andΛ are, respectively, the discretization of a, b, l, d, u, and 𝜆 in (14).

K is commonly called the stiffness matrix, and B is the potential contact matrix where each line is associated to a potential

contact node.

4 HYPER-REDUCTION METHOD

A common approach for model order reduction is projection-based reduction, which aims to reduce the number of DOFs
by projecting the balance equation on a smaller subspace. Here, HR is applied in the framework of a posteriori model
reduction methods. In this category of methods, it is common to follow a decomposition of computational tasks in two
phases, namely, offline and online. The offline phase is the part where parameter-independent quantities like RB or RID
are precomputed. It is time consuming because it requires solutions of the FOM for different parameters but permits to the
online phase, where the ROM is used, to be faster. This kind of method becomes useful for real-time simulation or when
a large number of simulations needs to be done like for a parametric study or the solution of an optimization problem.
TheHR21methoduses projection onRB to reduce the number ofDOFs, but it also uses the fact that solving the equations

on a reduced mesh is sufficient to find the reduced DOFs. This particularity improves the computational time savings,
especially for nonlinearities that cannot be precomputed offline. Indeed, the RID, built during the offline part, reduces
the cost of the projections to get the reduced nonconstant stiffness matrix from the Jacobian matrix.

4.1 Reduced basis construction

For nonlinear problems, the most famous method for building an RB is the POD method. It gives the optimal low-rank
approximation of the minimization problem, which consists in compressing the simulation data generated during the
offline phase. This method will hence be used here to reduce the primal basis. The 2-norm POD basis can be easily
computed by collecting snapshots and applying the singular value decomposition (SVD) algorithm or computing the
eigendecomposition of the correlation matrix. Let us consider a snapshot matrix S of dimension N × Ns. Computing the

SVD on S gives

S = V sΣ sW
T
s , (17)

where V s ∈ RN×N andW s ∈ RNs×Ns are orthonormal matrices and Σ s ∈ RN×Ns is a diagonal matrix containing singular

values 𝜎j ordered by decreasing size. The 2-norm POD basis of rank ls is then denoted V and obtained, according to the

Eckart-Young theorem,34 by taking the ls first left-singular vectors, V = V s[∶, {1, … , ls}]. To choose ls, we introduce the

information rate (ls) of the ls first singular vectors defined as follows:

(ls) =
∑ls

𝑗=1 𝜎
2
𝑗∑min(N,Ns)

𝑗=1 𝜎2
𝑗

. (18)

ls is then obtained by solving argminls∈N((ls) ≥ 1 − 𝜖tol) with 𝜖tol as a given threshold.
This way, we obtain an RB composed of a few vectors able to approximate the space spanned by the snapshots. The FE

basis enables the recovery of the continuous empirical modes denoted by (𝜓k)
ls
k=1

:

𝜓k =

N∑
i=1

𝜑i vik with vik = (V)ik. (19)
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4.2 Reduced integration domain construction

There are different ways to build an RID. One of them is to use a manufacturing construction knowing important zones
needed to be included. Amore genericmethod, used in this article, is based on theDEIMprocedure.13 The procedure takes
as input an RB, denoted V ∈ RN×ls , and returns a set of interpolation indices  selected so that each of them corresponds

to the entry with the largest magnitude of the error between each vector of the input basis and its approximation doing
an empirical interpolation of the vectors already treated. The final number of indices is equal to the number of vectors
in the RB: card() = ls. A POD basis is a suitable choice for this algorithm as the vectors are ordered by importance. An
important result is that the restriction of the RB V to the interpolation indices list , V[, ∶] ∈ Rls×ls , is a full rank matrix

and then any extension of the interpolation indices list ext of size lext ≥ ls would retain V[ext, ∶] ∈ Rlext×ls an RB.

The RID is defined as

ΩA = ∪i∈supp(𝜑i), (20)

where supp(𝜑i) denotes the FE basis 𝜑i support. Usually, as proposed in the work of Ryckelynck et al,21 the DEIM
algorithm is applied to several RBs, including the RB related to dual variable, to obtain an RID apprehending more infor-
mation. If required to improve the accuracy of the HR predictions, the RID can also be supplemented by one or several
layers of connected elements, as well as a region of interest.
We denote by ΩB the counterpart of ΩA such that Ω = ΩA ∪ ΩB and ΓI = ΩA ∩ ΩB, where ΓI is the interface between the
two subdomains. We introduce  as

 =

⎧
⎪⎨⎪⎩
i ∈ {1, … ,N} | ∫

ΓI

𝜑T
i 𝜑i dΓ ≠ 0

⎫
⎪⎬⎪⎭
. (21)

We introduce, which denotes the set of all DOFs that are not connected to ΩB, as follows:

 =

⎧
⎪⎨⎪⎩
i ∈ {1, … ,N} | ∫

ΩB

𝜑T
i 𝜑i dΩ = 0

⎫
⎪⎬⎪⎭

(22)

and 𝜓A
k
, which is the setting to 0 of 𝜓k over ΩB, as

𝜓A
k
(x) =

∑
i∈

𝜑i(x) vik, ∀ x ∈ Ω. (23)

The counterpart of the restricted mode 𝜓A
k
is denoted by 𝜓 B

k
such that

𝜓 B
k
(x) = 𝜓k(x) − 𝜓A

k
(x), ∀ x ∈ Ω, k = 1, … , ls. (24)

4.3 Usual hyper-reduced balance equations without contact conditions

Let us consider problem (9) without contact (ΓC = ∅). The primal variational formulation reads:
{
Find u ∈  such that

a(u, v) = l(v), ∀v ∈ 0 (25)

with a and l defined as before in (11) and (12).
In thework of Ryckelynck et al,21 the setting of the hyper-reduced balance equations starts by defining a surrogate space for
 in order to solve a reduced problem inΩA. This subspace reads ΩA

HR = {v = rΩA
(u

0
)+ r̃ΩA

(uI)+ ũ | ũ ∈ span{𝜓A
k
}
lu
k=1

}

with uI as an additional boundary condition on ΓI, r̃ΩA
(uI) as its lifting over ΩA, rΩA

(u0) as the restriction of r(u0) to ΩA,

and {𝜓A
k
}
lu
k=1

as the primal restricted POD modes. The proposed hyper-reduced balance equation is defined as

⎧
⎪⎨⎪⎩

Find u ∈ ΩA

HR such that

aΩA
(u, v) = lΩA

(v), ∀v ∈ span
{
𝜓A
k

}lu

k=1
,

(26)
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where aΩA
and lΩA

denote the forms a and l where the integration is reduced to ΩA since v vanishes on ΩB. Then, the
approximate displacement reads:

u(x) = rΩA
(u0)(x) + r̃ΩA

(uI)(x) +

lu∑
k=1

𝜓A
k
(x) 𝛾k, ∀x ∈ ΩA. (27)

In the standard HR method,21 the lifting of uI is set up over Ω by

r̃(uI)(x) =

lu∑
k=1

𝜓 B
k
(x) 𝛾B

k
, ∀x ∈ Ω, (28)

where 𝛾B
k
are additional parameters chosen as 𝛾B

k
= 𝛾k, k = 1, … , lu in order to recover the usual RB approximation.

In particular, r̃ΩA
(uI) is the restriction to ΩA of r̃(uI), and uI is the trace on ΓI of r̃(uI)(x):

uI(x) =

lu∑
k=1

𝜓 B
k
(x) 𝛾B

k
x ∈ ΓI . (29)

Then, the approximate displacement is defined over Ω by

u(x) = r(u0)(x) +

lu∑
k=1

𝜓k(x) 𝛾k, ∀x ∈ Ω. (30)

Then, u ∈ POD = {v = r(u0) + ũ | ũ ∈ span{𝜓k}
lu
k=1

}.
After discretization, we obtain problem (31) written with a Petrov-Galerkin formulation.

{
Find 𝛾 ∈ Rlu such that

V[, ∶]TK[, ∪ ]V[ ∪ , ∶]𝛾 = V[, ∶]TF[]
(31)

Remark. The restriction of V 𝛾 on  ∪  is due to the structure of K. The support of the FE basis functions implies

that only DOFs in ∪  are connected to DOFs in through K.

5 EXTENSION OF THE HR METHOD TO CONTACT PROBLEMS

5.1 Additional boundary for the HRmodel

For contact problems, with the standard RID construction described Section 4.2, the gap may not be computable on all
points contained in ΓC ∩ 𝜕ΩA (see Figure 2). We then need to extend ΓI to ΓCI , which denotes the part of Γ

C ∩ 𝜕ΩA where
the gap cannot be computed because of missing opposite points or, in other words, when only one point of the pair of
coupled points is in ΓC ∩ 𝜕ΩA. Indeed, no Lagrange multiplier can be computed on a boundary where the gap cannot be
estimated. The extended interface permits to enforce additional pseudo-Dirichlet boundary conditions (see Equation (18))
on ΓC

I
instead of writing balance conditions. It reads:

ΓI = (ΩA ∩ ΩB) ∪ ΓCI . (32)

We must then adapt the definition of. The convenient restriction reads:

 =

⎧
⎪⎨⎪⎩
i ∈ {1, … ,N} | ∫

ΩB

𝜑T
i 𝜑i

dΩ + ∫
ΓC
I

𝜑T
i 𝜑i dΓ = 0

⎫
⎪⎬⎪⎭
, (33)

where  is the set of all displacement DOFs that are neither connected to ΩB nor located on ΓC
I
. Then, the reduced

Hertz-Signorini-Moreau equations are set only over ΓC
A
= (ΓC ∩ 𝜕ΩA)∖Γ

C
I
(see Figure 2).
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FIGURE 2 Reduced integration domain representation for a generic 2-body contact problem [Colour figure can be viewed at

wileyonlinelibrary.com]

5.2 Hybrid hyper-reduced balance equations for contact

Wepropose to extend theHRmethod to themixed contact problembypreserving a local FE approximation of the Lagrange
multipliers. The number of Lagrange multipliers is then bounded by construction due to the restriction of the potential
contact zone to the RID. The hybrid HR saddle-point problem reads:

⎧⎪⎪⎨⎪⎪⎩

Find (u, 𝜆) ∈ ΩA

HR ×ΩA

HR such that

aΩA
(u, v) + bΓC

A
(v, 𝜆) = lΩA

(v), ∀v ∈ span
{
𝜓A

k

}lu

k=1

bΓC
A
(u, 𝜅 − 𝜆) ≤ ⟨d, 𝜅 − 𝜆⟩

H
1
2 (ΓCA),H

−
1
2 (ΓCA)

, ∀𝜅 ∈ HR

(34)

with ΩA

HR = {𝜅 ∈ H−
1

2 (ΓC
A
) | 𝜅 ≥ 0} and bΓC

A
(v, 𝜅) = ⟨vN , 𝜅⟩

H
1
2 (ΓC

A
),H−

1
2 (ΓC

A
)
. This way, the solution u verifies

⟨uN − d, 𝜆⟩
H

1
2 (ΓC

A
),H−

1
2 (ΓC

A
)
= 0.

We introducec as the set of DOFs of located on the potential contact zone,𝜆 as the set of dual DOFs connected to
c by the matrix B, and′

c as the set of primal DOFs connected to𝜆 by B, ie,

c =
{
𝑗 ∈  | ∃i ∈ {1, … ,N𝜆} s.t. B i𝑗 ≠ 0

}
(35)

𝜆 =
{
i ∈ {1, … ,N𝜆} | ∃𝑗 ∈ c s.t. B i𝑗 ≠ 0

}
(36)

′
c =

{
𝑗 ∈ {1, … ,N} | ∃i ∈ 𝜆 s.t. B i𝑗 ≠ 0

}
. (37)

Then, we havec ⊆ ′
c but not necessarily′

c ⊂ . If the contact problem is an obstacle problem (see Section 6.1) or the
contact is numerically treated with a node-to-node algorithm requiring matching meshes, then ′

c = c. We denote by
NC

𝜆
the cardinal of𝜆.

After discretization, we obtain problem (38) to be solved in the online phase, as follows:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Find
(
𝛾,Λ[𝜆]

)
∈ Rlu × (R+)N

C
𝜆 such that

V[, ∶]TK[, ∪ ]V[ ∪ , ∶]𝛾 + V[c, ∶]
TB[𝜆,c]

TΛ[𝜆] = V[, ∶]TF[]

Λ[𝜆]⊙
(
B
[𝜆,′

c

]
V
[′

c, ∶
]
𝛾 − D[𝜆]

)
= 0

B
[𝜆,′

c

]
V
[′

c, ∶
]
𝛾 ≤ D[𝜆],

(38)

where B[𝜆, ∶], D[𝜆], and Λ[𝜆] are, respectively, the potential contact matrix, the vector of the initial gap, and the

approximation of the Lagrangemultipliers restricted to𝜆. One of the benefits of this formulation is that we are verifying
the Signorini contact conditions in the RID (without projection).

Property 1. In the case′
c = c, if B[𝜆,c]V[c, ∶] has full row rank, then Problem (38) is consistent with the FE

formulation (16).

9
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Proof. We suppose′
c = c. A necessary condition for the saddle-point contact Problem (38) to be well posed is given

by the so-called inf-sup or LBB condition, which is equivalent to saying that B[𝜆,active,c]V[c, ∶]must have full row

rank, where𝜆,active denotes the DOFs of𝜆 associated to an active contact (B[𝜆,active,c]V[c, ∶]𝛾 = D[𝜆,active]).

As the active contacts are a priori unknowns, we extend that condition to a stronger one, which is B[𝜆,c]V[c, ∶]

having full row rank. A necessary condition for verifying the discrete extended LBB is lu ≥ NC
𝜆
. If the discrete LBB

condition is verified and because the term V[, ∶]TK[, ∪ ]V[ ∪ , ∶] is well defined by the classical HR (see

Section 4.3), then Problem (38) admits a unique solution. Moreover, Problem (38) is founded on the FE formu-
lation (16) by restraining matrices and vectors to the RID, projecting the balanced equation on V[, ∶] and then

replacing U[ ∪ ] by V[ ∪ , ∶]𝛾 .
If the extended LBB condition (B[𝜆,c]V[c, ∶] has full row rank) is not verified, we propose to adopt a hybrid

full-order/reduced-order model strategy.24,26,27 This approach follows the usual principles of the HR method by using a
mixed primal RB. The mixed primal RB contains the usual POD modes and few FE shape functions. The selected FE
shape functions have to be related to the nodes on ΓC

A
in order to increase the rank of B[𝜆,c]V[c, ∶]. We denote by

(ic𝛼)
card(c)

𝛼=1 the indices inc. Then, the mixed primal RB reads:

𝜓
k
=

{
𝜓
k
, if k ≤ lu

𝜑ic
k−lu

, if lu < k ≤ l̄u
, k = 1, … , l̄u (39)

with card() ≥ l̄u ≥ max(lu,NC
𝜆
) defined such that B[𝜆,c]V[c, ∶] has full row rank, thematrixV[c, ∶] being defined

as the discretization of 𝜓
k
:

V =

(
V | I N

[
∶,
(
ic
k−lu

)l̄u
k=lu+1

])
. (40)

Problem (38) is then defined with V playing the role of V .

When D > 1 and the number of nodes on ΓC
A
is small enough, it may be interesting to treat every primal DOF on the

potential contact zone with FE shape functions in order to simply ensure the full row rank condition, good stability, and
accurate solutions on the contact zone.

5.3 Reconstruction of the Lagrange multipliers from the hyper-reduced solution

Due to the choice of the lifting of uI (28), the primal solution is defined everywhere by U = V 𝛾 . However, a drawback of

the proposed HR approach is that the nonpenetration condition (6) may not be verified outside the RID.
The proposed reducedmodel (38) gives contact forces inside the RID only. The reconstruction of the contact forces over

Ω is possible with a postprocessing but brings us back to the problem of finding a reliable dual RB. We propose here a
postprocessing that consists in extracting from the dual snapshotsNs linearly independent snapshots such thatNs ≤ NC

𝜆
+

N𝜆, and we denote it S𝜆. Our strategy is to find the coefficients 𝛾𝜆, with positivity constraints to ensure the nonadhesion

condition, associate to S𝜆 minimizing the complementary slackness condition as well as the distance with the solution

obtained by solving the HR model. The proposed reconstruction is obtained by solving the NNLS problem (41), where U
and Λ[𝜆] are the primal and the dual solution obtained by solving the HR model (38).

min
𝛾 𝜆

‖‖‖‖‖‖

(
S𝜆[𝜆; ∶]

[BD − D]− ⊙ S𝜆

)
𝛾 𝜆 −

(
Λ[𝜆]
0

)‖‖‖‖‖‖

2

2

subject to 𝛾 𝜆 ≥ 0 (41)

The Lagrange multipliers are then defined outside the RID due to the relation Λ[{1, … ,N𝜆}∖𝜆, ∶] =

S𝜆[{1, … ,N𝜆}∖𝜆, ∶]𝛾 𝜆.

5.4 Greedy algorithm coupled with an error indicator

The reliability of an RB strictly depends on the snapshots (see Section 4.1 for an RB made of POD modes). In order to
accurately choose the snapshots, two possibilities are at least possible. The first possibility is to take the snapshots in
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the parameter space randomly or uniformly distributed. The second possibility is to apply a greedy algorithm,35 which is
going to select iteratively the snapshots maximizing an error indicator. The greedy algorithm is usually used as it enables
choosing pertinent snapshots and obtaining aminimal robust RB. However, this algorithmmay be slow (but in the offline
part) and requires an error indicator. This error indicator will be used to have a stopping criterion.
In the work of Balajewicz et al,7 the error indicator used is based on the nonsatisfaction of the contact conditions.

However, for the hybrid HR model (38) proposed here, the contact conditions are respected by construction on the RID.
We hence propose a simple but efficient a posteriori error indicator for HR. We first interpolate at 𝜇 ∈  the primal

snapshots collection snap ⊂  restricted to the DOFs  located on ΓI (see Equation (21)):

Ũ(𝜇)[] = ∑
𝜌∈snap

𝛼𝜌(𝜇)U(𝜌)[] (42)

with 𝛼𝜌(𝜇) as the interpolation coefficients. The interpolated solution is imposed as a Dirichlet boundary condition on

the RID interface ΓI. We can then solve the FOM problem defined on ΩA, in order to obtain an approximation of the
displacements and contact forces reference solutions inside the RID. The primal and dual approximations are respectively
denoted Ũ[] and Λ̃[̌𝜆] with ̌𝜆 ⊆ 𝜆 since the problem is directly defined on ΩA. The reduced FE approximation
tends to the FOM approximation as the interpolation error tends to zero. Our error indicator is the relative discrepancy
between the HR solution (U

hr
,Λhr) and the reduced FE approximation in the RID, where (H

1)′ denotes the dual of H1.

𝜂(𝜇) = 𝜂u(𝜇) + 𝜂𝜆(𝜇) with 𝜂u(𝜇) =

‖‖‖(Uhr
− Ũ)(𝜇)[]

‖‖‖H1

‖‖‖Ũ(𝜇)[]
‖‖‖H1

, 𝜂𝜆(𝜇) =

‖‖‖(Λhr − Λ̃)(𝜇)[̌𝜆]
‖‖‖(H1)′

‖‖‖Λ̃(𝜇)[̌𝜆]
‖‖‖(H1)′

(43)

In the following applications, we use a bilinear interpolation in the parameter space, but it could be interesting to use an
interpolation on the manifold as proposed in the work of Amsallem et al.36

6 ACADEMIC TEST CASE

6.1 Model

The application we will focus on comes from the work of Haasdonk et al6 and has been used in the work of
Balajewicz et al.7,17 It is a 1D static obstacle problem. We consider a 1D elastic rope described by problem (9) with
𝜎= 𝜈 grad u inΩ = [0, 1]. Homogeneous Dirichlet boundary conditions are applied on ΓD = {0, 1}. Moreover, ΓN = ∅ and
ΓC =]0, 1[. The function f is nonparametric and corresponds to a gravity, f (x) = −1. The problem depends on a parameter
vector 𝜇 living in the domain  = [0.05, 0.25] × [−0.05, 0.5]. The elasticity function 𝜈 depends on the first parameter 𝜇1 as

𝜈(x, 𝜇1) = 𝜇1 1[0,0.5](x) + 0.15 × 1]0.5,1](x) with 1Ξ(x) =

{
1, if x ∈ Ξ

0, elsewhere.

The second parameter 𝜇2 controls the obstacle function involved in the gap, ie,

d(x, 𝜇2) = 0.2(sin(𝜋x) − sin(3𝜋x)) + 0.5 − 𝜇2(x − 0.5), ∀x ∈ Ω.

We represent in Figure 3 the primal and dual solutions of the FOM obtained using linear FE for different parameters
𝜇 in  . The choice of the paramaters 𝜇1 and 𝜇2 then influences the active contact zone and the magnitude of the contact
forces. The domain Ω is discretized in 100 nodes uniformly distributed.

6.2 Active-set algorithm

All contact saddle-point problems (eg, (16), (38), and (43)) are solved here with an active-set strategy. This strategy of
resolution consists in explicitly verifying the complementary slackness condition by imposing contact condition ((B U)i =

(D)i) where Lagrange multipliers are active. The set of active Lagrange multipliers is updated due to the violation of the
Signorini laws. Lagrange multipliers are respectively activated and deactivated where the nonpenetration ((B U)i ≤ (D)i)

and the nonadhesion ((Λ)i ≥ 0) conditions are violated.

11



(A) (B)

(C) (D)

FIGURE 3 Full-order model solutions, where (A) and (B) are respectively the primal and dual solutions with variations of the parameter

𝜇1 in [0.05, 0.25] and (C) and (D) are respectively the primal and dual solutions with variations of 𝜇2 in [−0.05, 0.5]

6.3 Projection-Based method

We briefly recall the PB method introduced in the work of Balajewicz et al7 as we are going to compare the proposed
hybrid HR method for contact to this method. No comparison between the hybrid HR and the RB method introduced in
the work of Haasdonk et al6 is done here as this latter method does not use data compression to build the RB (like POD)
and, hence, can lead to a large RB when using a lot of snapshots, as explained in the work of Balajewicz et al.7 The PB
method, introduced for contact problems, is based on the POD to construct the primal RBVu and on theNNMF algorithm

to build a dual RB V𝜆, which preserves the positivity of Lagrangemultipliers after projection. The integers lu and l𝜆 denote

respectively the number of vectors in Vu and V𝜆. The Galerkin projection of the FOM (16) on these two bases gives

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Find (𝛾 u, 𝛾 𝜆) ∈ Rlu × (R+)l𝜆 such that

V T
uKV u𝛾 u + V T

uB
TV 𝜆𝛾 𝜆 = V T

uF

𝛾 𝜆 ⊙

(
V T

𝜆
BV u𝛾 u − V T

𝜆
D
)
= 0

V T
𝜆
BV u𝛾 u ≤ V T

𝜆
D.

(44)

The displacement field and Lagrange multipliers are finally obtained by U = Vu𝛾u and Λ = V𝜆𝛾𝜆. The NNMF takes as

input the number of vectors in the RB. In order to have the largest number of dual DOFs while respecting the extended
necessary condition (lu ≥ l𝜆), we impose l𝜆 = lu for this method.
Using these RB approximations, only the nonadhesion condition on Λ is ensured by the positive dual RB V𝜆 built with

NNMF. The nonpenetration and complementary slackness conditions are not verified forU andΛ. Indeed, one can prove
that ΛT(B U − D) = 0 but not componentwise (Λ⊙ (B U − D) = 0) since B U − B is not necessarily negative or zero.
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Unlike the POD and its unique factorization, there is no unique NNMF factorization. Moreover, NNMF algorithms
can converge to different local minima (and even this convergence to local minima is not guaranteed), which is why
initialization of the algorithm becomes critical.37

Themethod used here for the computation of the NNMF dual RB is an alternating NNLSmatrix factorization using the
projected gradient (bound-constrained optimization) method for each subproblem. It can be found in the Python library
introduced in the work of Zitnik and Zupan.38 This method takes as input several parameters as the initialization, the
rank approximation, the maximum number of factorization iterations, the number of runs of the algorithm, etc. We opt
for an NNDSVD initialization.

6.4 On the difficulty of finding a reliable dual RB

In order to illustrate the difficulty of finding a reliable dual RB, we consider snapshots taken on a coarse grid of 10 × 12
points uniformly distributed in  . The difficulty of the dual FOM solutions to be approximated by an RB can be under-
stood looking at Figure 4, where we draw the relative error in the Frobenius norm between the snapshots and its k-rank
approximation by an RB. For the POD RBs built with SVD, this is equivalent to 1 − (k) as defined in Equation (18).
Compared to a primal POD RB, the dual POD RB needs much more vectors to reach the same error threshold. The POD
giving an optimal k-rank basis, any other algorithm would give a less decreasing curve as we can see for the dual NNMF
RB. For this latter algorithm, we study the influence of the maximum number of factorization iterations. Two maxima
have been tested: 102 and 104 iterations as reported in Figure 4. For low k, whatever the maximum number of factoriza-
tion iterations, the approximation errors done by the dual NNMF RB are really close to the one done by the dual POD
RB. Differences appear for large k, where the level of stagnation error varies with the maximum number of factorization
iterations. As low k corresponds to the domain of interest for model order reduction and because the CPU time for the
construction of the dual NNMF RB grows with the number of iterations, we set the maximum number of factorization
iterations to 102 in the sequel of the article.

6.5 Hyper-Reduction method

In order to illustrate the construction of the hybrid HR model for the rope test case, we first consider snapshots taken on
the coarse grid of 10× 12 points as introduced in Section 6.4. The verification of the hypothesis of Property 1 implies that
l̄u = NC

𝜆
in the contact problem with the obstacle under study (B = I card()). The chosen full-order DOFs have to ensure

that V has full row rank.

6.5.1 Primal RB and RID construction
The primal RB is built with the POD.We draw in Figure 5 some of the lu = 9 first PODmodes selected for a POD threshold
𝜖tol = 10−7. In practice, the higher the mode number is, the higher gradients there are in the mode.

FIGURE 4 Relative error between snapshots and best approximation using the reduced basis (RB). NNMF, nonnegative matrix

factorization; POD, proper orthogonal decomposition
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FIGURE 5 Proper orthogonal decomposition modes contained in the primal reduced basis built by using 10 × 12 snapshots [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 6 Top: reduced integration domain built by using 10 × 12 snapshots, where red ticks represent set, whereas green ticks
represent set . Bottom: example of the obstacle for 𝜇2 = 0.17 [Colour figure can be viewed at wileyonlinelibrary.com]

We detail here the procedure used to construct the RID. We first apply the DEIM algorithm on the primal RB. We next
apply the DEIM on the POD basis obtained for the Lagrange multipliers to make sure that the most important contact
zones are included in the RID. In this example, we take a dual POD threshold 𝜖tol = 10−1 giving l𝜆 = 1 vector. The RID
is then the union of the two domains obtained with the DEIM. The RID does not need to be extended. Because it is an
obstacle problem, the gap can be evaluated in all points of the RID. We represent at the top of Figure 6 the RID obtained
and at the bottom an example of the obstacle (𝜇2 = 0.17). The reduced mesh is located where the obstacle is at the higher
position; hence, the RID seems to include the most part of the contact zone. In this case, the RID contains 28 nodes in
ΩA including 14 in ΓC

A
(the red dots), whereas the initial domain counts 100 nodes. To respect the extended necessary

condition, 5 primal DOFs are treated as full-order DOFs.

6.5.2 Results obtained using the hybrid HRmodel
On a fine grid of 100 × 120 points uniformly distributed in  , we compare the solutions obtained with the reference
FOM and with the HR model. We represent in Figure 7 the 2-norm relative errors over the parameter space for both
displacements and contact forces. The mean andmaximum relative errors for the displacements overΩ respectively read
0.34% and 1.13% (Figure 7A), whereas the mean and maximum relative errors for the contact forces over ΓC

A
respectively

read 24% and 148% (Figure 7B). We can conclude that the regular snapshots grid has not catched the maximum relative
error for the contact forces.
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(A) (B)

(C)

FIGURE 7 Errors of the hybrid hyper-reduction model compared to the full-order model generated by using 10 × 12 snapshots. The

snapshots are represented with the symbol . A, Primal error on Ω with the 2-norm; B, Dual error on ΓC
A
with the 2-norm; C, Dual error on Ω

with the 2-norm (after reconstruction)

Using the reconstruction strategy introduced in Section 5.3, the average and maximum relative errors for the con-
tact forces over Ω respectively read 39% and 127% (Figure 7C). The mean relative error over Ω is higher than before
reconstruction but is still satisfactory. The proposed reconstruction seems efficient and reliable.

6.6 Comparison between the HR and PBmethods

6.6.1 Regular grid
We first compare the hybrid HR model introduced in the previous section with two equivalent models made due to the
PB method. The primal RB, built with the POD for the two methods, is made of lu = 9 (𝜖tol = 10−7) vectors for the HR.
Due to the inf-sup condition to be respected, the hybrid HR model may have a hybrid primal basis with 5 more vectors.
The two PB models are respectively built with lu = 9 (𝜖tol = 10−7) and lu = 14 (𝜖tol = 6.0 × 10−9) vectors in the primal
RB. The dual RB is constructed by NNMF with the same number of vectors as the primal RB while the FOM dual basis is
maintained in the HR.
We respectively draw in Figures 8 and 9 the HR and PB solutions to be compared with the FOM solutions for 𝜇 =

(0.07, 0.17)T not taken in the sample of snapshots. Details on the calculus are presented in Table 1. As we can see in
Figures 8A and 9A, the primal solutions for both methods are truly accurate. Concerning the dual solutions obtained
with the PB method and represented in Figure 9B, the Lagrange multipliers are non-null at similar locations, but magni-
tudes are significantly different compared to the FOM dual solution. In comparison, the dual HR model solution drawn
in Figure 8B is better due to the nonprojection on a dual compressed RB. The speed-up values obtained (see Table 1) are
rather close to each other if the posttreatment to reconstruct the HR dual solution everywhere using the snapshots basis
is not taken into account. These speed-up values are strongly dependent on the number of iterations of the active-set
method. We can see in Table 1 that the error on contact forces is of 13% compared to 23% for the PB method with the
same number of unknowns. This confirms that the proposed hybrid HR model is really efficient.
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(A) (B)

FIGURE 8 Hyper-reduction (HR) solution compared to the full-order model solution for (𝜇1, 𝜇2) = (0.07, 0.17). A, Primal solution; B, Dual

solution

(A) (B)

FIGURE 9 Two projection-based (PB) solutions built with lu = 9 and lu = 14 compared to the full-order model solution for

(𝜇1, 𝜇2) = (0.07, 0.17). A, Primal solution; B, Dual solution

TABLE 1 Comparison of the methods for (𝜇1, 𝜇2) = (0.07, 0.17). In the

hyper-reduction (HR) column, we specify the results without/with the contact forces

reconstruction

HR (lu = 9) PB (lu = 9) PB (lu = 14)

Total number of unknowns 28 18 28

Speed-up 8.5∕5.9 8.4 9.1

Active-set iterations 4 6 5

Displacement 2-norm relative error (%) 0.15 0.32 0.04

Contact force 2-norm relative error (%) 13∕12 44 23

Abbreviation: PB, projection-based.

6.6.2 Greedy algorithm
In order to compare both approaches using a greedy algorithm, we will compare the results obtained by choosing the
snapshots due either to the error indicator introduced in this paper (see Equation (43)) and dedicated to the HR method
or to the error indicator introduced as (𝛾, 𝛼1, 𝛼2, 𝛼3) in the work of Balajewicz et al7 based on the nonverification of the
Signorini conditions and dedicated to the PB method. We will use in this comparison only the error indicator based on
the nonpenetration (𝛾, 1, 0, 0) as it is the cheapest and gives the most accurate approximation following the work of
Balajewicz et al.7 It reads:

I(𝜇) =
‖‖‖‖
[
B(𝜇)V 𝛾(𝜇) − D(𝜇)

]
+

‖‖‖‖2. (45)
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(A) (B)

(C) (D)

FIGURE 10 Decrease of the average relative errors during the greedy algorithm based on the error indicator 𝜂 applied to the

hyper-reduction (HR) method. A, Primal error with theH1 norm; B, Dual error with the (H1)' norm; C, Primal error with the 2-norm; D, Dual

error with the 2-norm. PB, projection-based; RID, reduced integration domain [Colour figure can be viewed at wileyonlinelibrary.com]

The primal POD threshold is set at 𝜀tol = 10−10 for bothmethods. The dual POD threshold for the HR-RID construction is

set to 5.10−2, whereas the number of vectors of the dual RB for the PBmethod is set to the number of vectors of the primal

RB. POD thresholds are taken smaller than for the regular grid in order to have a good RID from the beginning of the

algorithm. During the greedy algorithm iteration, the RID can only be enlarged: the RID used in the HRmodel is then the

union of the previous iteration RID and the current iteration RID. The greedy algorithm is stopped at the 50th iteration.

We draw in Figure 10 the evolution of the average relative errors for both methods using the snapshots obtained due to

the error indicator 𝜂 (Equation (43)) applied to theHRmethod. In this Figure, the reference errormeans the error between

the ROM and the FOM. The HR reference error corresponds to the relative error on Ω for the primal solution and on ΓC
A

for the dual solution, whereas the HR reference reconstruction error corresponds to the relative error on Ω for the dual

solution. The error indicators are overestimating the reference errors as the HR model converges faster to the FOM than

the FE approximation based on the boundary condition interpolation. This convergence is directly related to the POD

threshold, which is rather small here. In the H1 norm, the primal HR model error is clearly smaller than the primal PB

model error as we can see in Figure 10A, whereas it is slightly smaller for the 2-norm (see Figure 10C). Thismeans that the

HR model better approximates the gradient of the displacement (strain) than the PB model. In accordance with Table 1,

the fact that the HR model 2-norm error is slightly smaller is probably due to a larger number of primal DOFs (l̄u ≥ lu).

The dual (H1)′ norm HR model error is equivalent to the dual PB model error (except for the high number of iterations)

as we can see in Figure 10B. Because the (H1)′ norm is difficult to apprehend, we also plot the dual relative error obtained

with the 2-norm in Figure 10D. With this norm, the dual HR model error is clearly better than the dual PB model error

even after reconstruction on ΓC. We recover here the quantitative first conclusions drawn from Figures 8 and 9.

We draw in Figure 11 the evolution of the average relative error for both methods using snapshots obtained with the

error indicator I(𝜇) applied to the PB method. The HR reference average relative errors obtained are decreasing faster

than in Figure 10 but are more unstable. Once again, the HR model errors are much smaller than the PB model errors,
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(A) (B)

FIGURE 11 Decrease of the average relative errors during the greedy algorithm based on the error indicator I(𝜇) applied to the

projection-based (PB) method. A, Primal error with the 2-norm; B, Dual error with the 2-norm. HR, hyper-reduction [Colour figure can be

viewed at wileyonlinelibrary.com]

(A) (B)

(C)

FIGURE 12 Errors of the hybrid hyper-reduction model compared to the full-order model generated by using 10 × 12 snapshots. The

snapshots are represented with the symbol . A, Primal error on Ω with the 2-norm; B, Dual error on ΓC
A
with the 2-norm; C, Dual error on

Ω with the 2-norm (after reconstruction)

especially for contact forces. However, we can see that the error indicator I(𝜇) estimates very well the reference PB error
as already shown in the work of Balajewicz et al.7

At the end of the greedy algorithm, we report in Figure 12 the 2-norm reference relative errors obtained with the HR
model built with its associated error indicator. A fine grid of 100×120 points uniformly distributed in  is used. Themean
and maximum relative errors for the displacements over Ω respectively read 0.004% and 0.077% (Figure 12A), whereas
the mean and maximum relative errors for the contact forces over ΓC

A
respectively read 0.34% and 10% (Figure 12B). We

can see that the error is highly smoother than with a regular grid (see Figure 7). It demonstrates the effectiveness of the
proposed error indicator 𝜂 used in the greedy algorithm. The highest error for both displacements and contact forces is
localized where 𝜇1 is small, eg, where the active contact zone is the most important. Reconstructing the contact forces on
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Ω gives average and maximum relative errors that respectively read 1.3% and 18% over Ω (Figure 12C). The error is then
higher than before reconstruction and spread to all small 𝜇1 except on snapshots.
The results obtained with the hybrid HR model give confidence in the proposed method. The hybrid HR model error

is generally equivalent to the PB model error or even better depending on the norm, especially to approximate contact
forces.

7 APPLICATION TO A 3D PROBLEM

This 3D example aims to show the supply of the proposed hybrid HR model for 3D contact problems. We will especially
focus on the RID construction that predicts to have benefit for nonlinear behaviors. We assume a node-to-node contact.

7.1 Elastic model

The test case, derived from nuclear fuel simulations, is a 3D extension of the one we can find in the work of Liu et al.39 We
consider a cylindrical pellet (13.5-mmheight), in a cladding (4.1-mm internal radius, 4.7-mm external radius). To account
for symmetries, only one eighth of the mechanical system is simulated, as shown in Figure 13. An axial pressure pA (5
Mpa) is imposed on the top of the pellet, and 2 radial pressures pB (50 MPa for z > 2 mm) and pC (250 MPa for z < 2 mm)
are imposed on the cladding. Three radii of the pellet are considered to investigate the effect of the initial gap on the
stresses: radius 4.1mm (no initial gap), 4.02mm, and 4.06mm. The related FE simulations are denoted S1, S2, and S3. The
pellet and the cladding have the same elastic properties: 105 MPa for Young's modulus and 0.3 for the Poisson coefficient.
The loading conditions are applied with 25 time steps according to a linear ramp.

7.2 Empirical modes and RID

Empirical modes for displacements, stresses, and generalized forces are generated by using the numerical results of sim-
ulations S1 and S2 at every time step. Generalized forces denote the Lagrange multipliers and the external forces. Then,
the PODmethod gives 17 displacement modes (𝜖tol = 10−5). The first 6 displacement modes and the last mode are shown
in Figure 14, over the cladding only. As we already saw, the higher the mode number is, the higher there are large gradi-
ents in the mode. Similar results are obtained for empirical modes related to stresses and generalized forces. We obtain
20 modes for stresses and 21 for the generalized forces with the POD used to build the RID only.
In Figure 13, we show various contributions to the RID. Ωu is the domain covered by elements connected to the 17

interpolation indices obtainedwith theDEIMalgorithmapplied to the 17 empiricalmodes related to displacements. These
elements are spread on all the domain, either in the pellet or in the cladding. Similar remarks can be drawn forΩ𝜎 andΩF

generated by the interpolation indices related to stress modes and generalized force modes, respectively. The elements in
ΩF are on both sides of the contact surface and also on the symmetry plans and surfaces submitted to pressure loading.
A region of interest on the top of the pellet is added as ΩROI in order to better account for inhomogeneous Neumann
conditions. The domain ΩA = Ωu ∪ Ω𝜎 ∪ ΩF ∪ ΩROI is shown on the right of Figure 13.

FIGURE 13 Left: the reference geometry and the Neumann boundary condition. Right: various contributions to the reduced integration

domain [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 14 Empirical modes for displacement approximation, over the cladding only

FIGURE 15 Displacement u1 over the cladding, hybrid reduced-order model (HROM) versus full-order model (FOM)

We can observe that it is not possible to compute the gap for many nodes on the contact surface (ΓC ∩ 𝜕ΩA) on the red
and blue domains. The domainΩA is hence extended by elements on ΓC having a node at a distance less than d = 0.1 mm
of one node on ΓC ∩ 𝜕ΩA. If a layer of elements connected to ΩA is added to this domain, then we obtain the RID shown
on the right of Figure 15 for the cladding and on the right of Figure 16 for pellet and cladding. We have clearly increased
the number of nodes where the gap can be computed.

7.3 Hyper-reduced predictions

The hyper-reduced order model obtained by using the simulation results of S1 and S2 is used to predict the numerical
results of S3 restrained to the RID. In the hybrid hyper-reduced model, each primal DOF on the potential contact zone is
treated with the FE shape function associated. Here, the hyper-reduced simulation is 10 times faster than S3. As for the
1D elastic rope, the hyper-reduced predictions are more accurate for displacements than for stresses. Themaximum error
over the RID is respectively 1% and 5%. Since the RID contains the region of active contacts, these results are satisfactory.
The predictions related to S3 and the hyper-reduced simulation are shown in Figure 15 and Figure 16 for the components
u1 and 𝜎11 of displacements and stresses respectively.
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FIGURE 16 Stress 𝜎11, hybrid reduced-order model (HROM) versus full-order model (FOM)

Without the extension of the RID with respect to the d distance, the hyper-reduced prediction are twice less accurate.
This is due to the fact that less contact conditions can be correctly treated by the hybrid HR model.

8 CONCLUSION

We have introduced an extension of the HR method based on an RID able to deal with contact mechanics problems
solved due to a mixed formulation. This method is hybrid because the dual basis related to the contact forces is only
a restriction of the FOM one. It enables us to obtain a good approximation of the contact forces. If necessary, a hybrid
reduced-order/full-order approach is also used for the displacement in order to ensure the inf-sup condition. We propose
an efficient error indicator to be coupled with a greedy algorithm in order to choose snapshots to be done. Themethod has
been tested on an academic test case, a reference 1D elastic rope obstacle problem, and compared with the PB method.
Results show the efficiency of the proposed strategy in terms of accuracy of the solution (especially contact forces) com-
pared to the PB method. A 3D test case implying two elastic bodies in contact confirms that the RIDmust account for the
contribution of interpolation points related to contact forces. Moreover, it shows the importance for a contact between
solids of extending the RID to the elements allowing the computation of the gap. The obtained results enable to appreci-
ate the efficiency of the hybrid HR-contact strategy. A future work will consist in applying the hybrid HR-contact strategy
to reduce a node-to-surface contact problem. As the HR method has already shown its capacity to successfully deal with
nonlinear mechanical behaviors, the next step will consist in the extension of the HR-contact strategy to viscoplastic
behaviors.
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