

Cemef

July, 13th 2018, Saint-Malo ■ ■

■ Thermoconvective instabilities of a non uniform Joule-heated liquid enclosed in a rectangular cavity

A. Cornet, F. Lopépé (Saint-Gobain Isover) & F. Pigeonneau

Motivations of the present work

Joule dissipation provides the heating; The maximum of T is observed in the bulk;

Motivations of the present work

Joule dissipation provides the heating; The maximum of T is observed in the bulk; Thermically instable.

1. Problem statement

- 2. Steady-state solutions for $L_e/H = 1$
- 3. Onset of convection when $L_e/H < 1$
- 4. Instabilities in a cavity with $L_e/H = 2/3$
- 5. Conclusion

1. Problem statement I

Figure 1: Cavity Ω filled with an electric conductor liquid according to Sugilal, G., et al. (2005). [*Int. J. Therm. Sci.*, **44**:915-925].

1. Problem statement II

Assumptions

- Boussinesq approximation is used to take into account the buoyancy force.
- Effects of induced magnetic field B are neglected.
- The Lorentz forces are neglected.

Normalization of the problem

- x normalized by H;
- $t \text{ by } H^2/\kappa \text{ with } \kappa = \lambda/(\rho C_p);$
- **u** by $\sqrt{\beta \Delta TgH}$;

$$\theta = \frac{T - T_0}{\Delta T}$$
, with $\Delta T = \frac{\sigma \Phi_0^2 H^2}{2\lambda L^2}$. (1)

1. Problem statement III

Balance equations

$$\nabla \cdot \mathbf{u} = 0, \qquad (2)$$

$$\frac{1}{\Pr} \frac{\partial \boldsymbol{u}}{\partial t} + \sqrt{\frac{\operatorname{Ra}}{\Pr}} \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \rho + \nabla^{2} \boldsymbol{u} + \sqrt{\frac{\operatorname{Ra}}{\Pr}} \theta \boldsymbol{e}_{y}, \qquad (3)$$

$$\frac{\partial \theta}{\partial t} + \sqrt{\operatorname{Pr} \operatorname{Ra}} \nabla \theta \cdot \boldsymbol{u} = \nabla^{2} \theta + 2L^{2} (\nabla \Phi)^{2}, \qquad (4)$$

$$\nabla^{2} \Phi = 0. \qquad (5)$$

$$\frac{\partial \theta}{\partial t} + \sqrt{\operatorname{Pr} \operatorname{Ra}} \nabla \theta \cdot \boldsymbol{u} = \nabla^2 \theta + 2L^2 (\nabla \Phi)^2, \qquad (4)$$

$$\nabla^2 \Phi = 0. \tag{5}$$

Dimensionless numbers

$$Ra = \frac{\beta g \Delta T H^3}{\nu \kappa}, \tag{6}$$

$$Pr = \frac{\nu}{r}.$$
 (7)

2. Steady-state solutions for $L_e/H = 1$

Figure 2: Isolines of θ for (a) Ra = 1700, (b) Ra = 1800 and (c) Ra = 1900.

- $ightharpoonup Ra_{cr} = 1702.$
- By linear stability, Kulacki and Goldstein¹ found Ra_{cr} = 1386.
- ▶ Numerically, Sugilal et al. (2005) found Ra_{cr} = 1650.

¹Kulacki, F. A. & Goldstein, R. J. (1975). Appl. Sci. Res., **31**:81-109.

2. Steady-state solutions for $L_e/H=1$

Figure 3: $Pe_{\infty} = U_{max}H/\kappa$ vs. Ra for L/H=2, $L_e/H=1$ and Pr=1, 10 and 100.

Figure 4: (a) $\theta \in [0, 0.84]$ and (b) stream function ψ for Pr = 1, Ra = 10^2 and $L_e = 2/3$.

Figure 4: (a) $\theta \in [0, 0.84]$ and (b) stream function ψ for Pr = 1, Ra = 10^2 and $L_e = 2/3$.

▶ The threshold disappears when $L_e/H < 1$.

Figure 5: Pe_{∞} vs. L_e for Pr = 1 and $Ra = 10^2$.

Figure 6: Pe_{∞} vs. L_e in the situation where $Ra=10^4$ or 10^5 and for Pr=1.

Figure 7: Temperature field obtained for Ra = 10^5 , Pr = 1 and for (a) $L_e = 0.8$, $\theta \in [0; 0.39]$ and (b) $L_e = 0.9$, $\theta \in [0; 0.36]$.

Numerical solution for $Ra = 4 \cdot 10^4$ and $Pr = 10^2$

Thermoconvective instabilies of a non uniform Joule-heated liquid enclosed in a rectangular cavity

F. Pigeonneau, A. Cornet and F. Lopépé

Thermoconvective instabilies of a non uniform Joule-heated liquid enclosed in a rectangular cavity

F. Pigeonneau, A. Cornet and F. Lopépé

- 1. Steady symmetric structure;
- 2. Steady asymmetric structure;
- 3. Unsteady asymmetric structure.

Figure 8: Pe_{∞} vs. Ra and Pr = 1, 10, 10^2 and 10^3 .

Figure 9: $\|u\|$ vs. t for Pr = 10 and (a) Ra = $4.5 \cdot 10^4$, (b) Ra = $5 \cdot 10^4$, (c) Ra = $5.5 \cdot 10^4$ and (d) Ra = $6 \cdot 10^4$.

Figure 10: Fundamental amplitude of Fourier spectra $A\sqrt{Ra\,Pr}$ vs. $r=(Ra-Ra_{cr_2})/Ra_{cr_2}$ for $Pr=10,\,10^2$ and 10^3 .

Figure 11: Fundamental frequency of Fourier spectra f vs. $r = (Ra - Ra_{cr_2})/Ra_{cr_2}$ for $Pr = 10, 10^2$ and 10^3 .

Figure 12: Stability diagram (Pr, $Ra_{cr_{1,2}}$) describing the three main structures obtained numerically when $L_e = 2/3$.

5. Conclusion

- ▶ If $L_e/H = 1$, the critical Rayleigh number is: $Ra_{cr} = 1702$.
- ▶ If $L_e/H < 1$, convection without threshold.
- Three instabilities are established:
 - The first one is similar to the transcritical bifurcation.
 - The second is subcritical bifurcation.
 - The third is similar to the Hopf bifurcation.
- From the results of oscillation frequencies, we can find:
 - with physical properties of glass wool, $t_{\rm osc} \approx 1$ h.
- Heat transfer has been also studied².
- To be verified in industrial plants.
- Extend this work to 3D configuration.

²Pigeonneau, F., Cornet, A. & Lopépé, F. (2018). *J. Fluid Mech.*, **843**:601–636.