

## Cemef

- Thermoconvective instabilities of a non uniform Joule-heated liquid enclosed in a rectangular cavity
A. Cornet, F. Lopépé (Saint-Gobain Isover) \& F.

Pigeonneau

## Motivations of the present work

## électrodes



Joule dissipation provides the heating; The maximum of $T$ is observed in the bulk;

## Motivations of the present work

## électrodes



Joule dissipation provides the heating;
The maximum of $T$ is observed in the bulk; Thermically instable.

1. Problem statement
2. Steady-state solutions for $L_{e} / H=1$
3. Onset of convection when $L_{e} / H<1$
4. Instabilities in a cavity with $L_{e} / H=2 / 3$
5. Conclusion

## 1. Problem statement I



Figure 1: Cavity $\Omega$ filled with an electric conductor liquid according to Sugilal, G., et al. (2005). [Int. J. Therm. Sci., 44:915-925].

- Assumptions
- Boussinesq approximation is used to take into account the buoyancy force.
- Effects of induced magnetic field B are neglected.
- The Lorentz forces are neglected.
- Normalization of the problem
- x normalized by $H$;
- $t$ by $H^{2} / \kappa$ with $\kappa=\lambda /\left(\rho C_{p}\right)$;
- $\Phi$ by $\Phi_{0}$;
- u by $\sqrt{\beta \Delta T g H}$;

$$
\begin{equation*}
\theta=\frac{T-T_{0}}{\Delta T}, \text { with } \Delta T=\frac{\sigma \Phi_{0}^{2} H^{2}}{2 \lambda L^{2}} . \tag{1}
\end{equation*}
$$

- Balance equations

$$
\begin{array}{r}
\nabla \cdot \boldsymbol{u}=0 \\
\frac{1}{\operatorname{Pr}} \frac{\partial \boldsymbol{u}}{\partial t}+\sqrt{\frac{\mathrm{Ra}}{\operatorname{Pr}}} \boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\nabla p+\nabla^{2} \boldsymbol{u}+\sqrt{\frac{\mathrm{Ra}}{\mathrm{Pr}}} \theta \mathbf{e}_{y}, \\
\frac{\partial \theta}{\partial t}+\sqrt{\operatorname{PrRa}} \boldsymbol{\nabla} \theta \cdot \boldsymbol{u}=\nabla^{2} \theta+2 L^{2}(\nabla \Phi)^{2},  \tag{4}\\
\nabla^{2} \Phi=0 .
\end{array}
$$

- Dimensionless numbers

$$
\begin{array}{r}
\mathrm{Ra}=\frac{\beta g \Delta T H^{3}}{\nu \kappa}, \\
\operatorname{Pr}=\frac{\nu}{\kappa} \tag{7}
\end{array}
$$

## 2. Steady-state solutions for $L_{e} / H=1$

(a) $\mathrm{Ra}=1700$
(b) $\mathrm{Ra}=1800$
(c) $\mathrm{Ra}=1900$

Cemef

Figure 2: Isolines of $\theta$ for (a) $\mathrm{Ra}=1700$, (b) $\mathrm{Ra}=1800$ and (c) $\mathrm{Ra}=1900$.

- $\mathrm{Ra}_{\mathrm{cr}}=1702$.
- By linear stability, Kulacki and Goldstein ${ }^{1}$ found $\mathrm{Ra}_{\mathrm{cr}}=1386$.
- Numerically, Sugilal et al. (2005) found $\mathrm{Ra}_{\mathrm{cr}}=1650$.
${ }^{1}$ Kulacki, F. A. \& Goldstein, R. J. (1975). Appl. Sci. Res., 31:81-109.

2. Steady-state solutions for $L_{e} / H=1$


Figure 3: $\mathrm{Pe}_{\infty}=U_{\max } H / \kappa$ vs. Ra for $L / H=2, L_{e} / H=1$ and $\operatorname{Pr}=1$, 10 and 100 .
3. Onset of convection when $L_{e} / H<1$
(a)Temperature
$\begin{array}{llll}0.0000+00 & 0.211 & 0.421 & 0.632\end{array}$ $8.4240-01$
(b)Stream function


Figure 4: (a) $\theta \in[0,0.84]$ and (b) stream function $\psi$ for $\operatorname{Pr}=1$, $\mathrm{Ra}=10^{2}$ and $L_{e}=2 / 3$.
3. Onset of convection when $L_{e} / H<1$


Figure 4: (a) $\theta \in[0,0.84]$ and (b) stream function $\psi$ for $\operatorname{Pr}=1$, $\mathrm{Ra}=10^{2}$ and $L_{e}=2 / 3$.

- The threshold disappears when $L_{e} / H<1$.

3. Onset of convection when $L_{e} / H<1$


Figure 5: $\mathrm{Pe}_{\infty}$ vs. $L_{e}$ for $\operatorname{Pr}=1$ and $\mathrm{Ra}=10^{2}$.
3. Onset of convection when $L_{e} / H<1$


Figure 6: $\mathrm{Pe}_{\infty}$ vs. $L_{e}$ in the situation where $\mathrm{Ra}=10^{4}$ or $10^{5}$ and for $\operatorname{Pr}=1$.
3. Onset of convection when $L_{e} / H<1$
(a) $L_{e}=0.8$

(b) $L_{e}=0.9$


Figure 7: Temperature field obtained for $\operatorname{Ra}=10^{5}, \operatorname{Pr}=1$ and for (a) $L_{e}=0.8, \theta \in[0 ; 0.39]$ and (b) $L_{e}=0.9, \theta \in[0 ; 0.36]$.

## 4. Instabilities in a cavity with $L_{e} / H=2 / 3$

| PSL速

## Numerical solution for $\mathrm{Ra}=4 \cdot 10^{4}$ and $\operatorname{Pr}=10^{2}$

'Thermoconvective instabilies of a non uniform Joule-heated liquid enclosed in a rectangular cavity
F. Pigeonneau, A. Cornet and IF. Lopépé

## 4. Instabilities in a cavity with $L_{e} / H=2 / 3$

## Numerical solution for $\mathrm{Ra}=4 \cdot 10^{4}$ and $\mathrm{Pr}=10^{2}$

> 'Thermoconvective instabilies of a non uniform Joule-heated liquid enclosed in a rectangular cavity

> 1F. Pigeonneau, A. Comet and IF: Lopépé

1. Steady symmetric structure;
2. Steady asymmetric structure;
3. Unsteady asymmetric structure.
4. Instabilities in a cavity with $L_{e} / H=2 / 3$


Figure 8: $\mathrm{Pe}_{\infty}$ vs. Ra and $\mathrm{Pr}=1,10,10^{2}$ and $10^{3}$.

## 4. Instabilities in a cavity with $L_{e} / H=2 / 3$



Figure 9: $\|\boldsymbol{u}\|$ vs. $t$ for $\operatorname{Pr}=10$ and (a) $\mathrm{Ra}=4.5 \cdot 10^{4}$, (b) $\mathrm{Ra}=5 \cdot 10^{4}$, (c) $\mathrm{Ra}=5.5 \cdot 10^{4}$ and (d) $\mathrm{Ra}=6 \cdot 10^{4}$.

## 4. Instabilities in a cavity with $L_{e} / H=2 / 3$



Figure 10: Fundamental amplitude of Fourier spectra $A \sqrt{\operatorname{RaPr}}$ vs. $r=\left(\mathrm{Ra}-\mathrm{Ra}_{\mathrm{cr}_{2}}\right) / \mathrm{Ra}_{\mathrm{cr}_{2}}$ for $\operatorname{Pr}=10,10^{2}$ and $10^{3}$.
4. Instabilities in a cavity with $L_{e} / H=2 / 3$


Figure 11: Fundamental frequency of Fourier spectra $f$ vs. $r=\left(\mathrm{Ra}-\mathrm{Ra}_{\mathrm{cr}_{2}}\right) / \mathrm{Ra}_{\mathrm{cr}_{2}}$ for $\operatorname{Pr}=10,10^{2}$ and $10^{3}$.

## 4. Instabilities in a cavity with $L_{e} / H=2 / 3$



Figure 12: Stability diagram ( $\operatorname{Pr}, \mathrm{Ra}_{\mathrm{cr}_{1}, 2}$ ) describing the three main structures obtained numerically when $L_{e}=2 / 3$.

## 5. Conclusion

- If $L_{e} / H=1$, the critical Rayleigh number is: $\mathrm{Ra}_{\mathrm{cr}}=1702$.
- If $L_{e} / H<1$, convection without threshold.
- Three instabilities are established:
- The first one is similar to the transcritical bifurcation.
- The second is subcritical bifurcation.
- The third is similar to the Hopf bifurcation.
- From the results of oscillation frequencies, we can find:
- with physical properties of glass wool, $t_{\text {osc }} \approx 1 \mathrm{~h}$.
- Heat transfer has been also studied ${ }^{2}$.
- To be verified in industrial plants.
- Extend this work to 3D configuration.

[^0]
[^0]:    ${ }^{2}$ Pigeonneau, F., Cornet, A. \& Lopépé, F. (2018). J. Fluid Mech., 843:601-636.

