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Industrial Context

I Cullet is mainly used for the production of container glass:

Germany 88 % Belgium 95 % France 73 %
Poland 43 % Italy 76 % Austria 93 %

United-Kingdom 64 % Portugal 60 % Spain 60 %
Sweden 97 % Holland 79 % Denmark 98 %

Table 1: Rates of glass recycling in Europe in 2013 [data SEVE].

I Advantages of introduction of cullet in raw materials:
I Reductions of mineral resources;
I Reduction of CO2 release;
I Reduction of the energy to provide.

What is the limitation to go forward 100 % of
cullet?

2 / 15



Industrial Context

I Cullet is mainly used for the production of container glass:

Germany 88 % Belgium 95 % France 73 %
Poland 43 % Italy 76 % Austria 93 %

United-Kingdom 64 % Portugal 60 % Spain 60 %
Sweden 97 % Holland 79 % Denmark 98 %

Table 1: Rates of glass recycling in Europe in 2013 [data SEVE].

I Advantages of introduction of cullet in raw materials:
I Reductions of mineral resources;
I Reduction of CO2 release;
I Reduction of the energy to provide.

What is the limitation to go forward 100 % of
cullet?

2 / 15



1. Experimental set-up

2. Spatial distributions of nucleated bubbles

3. Bubble growth rate

4. Saturation and nucleation

5. Conclusion

3 / 15



1. Experimental set-up
cold bottom

sample in a silica crucible

heating elements

camera

Figure 1: Sketch of HTO furnace.

I Float glass samples are
introduced in silica
crucible;

I Recording of the melting
and other events with 2
cameras (60 and
25µm/px).

SiO2 Na2O CaO MgO Al2O3 SO3 Fe2O3 FeO
72.4 13.85 8.88 3.74 0.73 0.22 0.055 0.014

Table 2: Composition of the glass samples (wt %).
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2. Spatial distributions of nucleated bubbles

5 / 15



2. Spatial distributions of nucleated bubbles

Figure 2: Detection of nucleation sites on each face of the crucible
and Voronoï diagram of nucleation sites.
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2. Spatial distributions of nucleated bubbles

Figure 3: PDF of the area of
Voronoï cells.

f (x) = nnxn−1e−nx/Γ(n), (1)

with x =
A
〈A〉

.

I Atmosphere side: n = 3.5;
Tin side: n = 12.2 at the
beginning and n = 25.5 at
the end.

I For objects randomly distributed over a surface, n = 7/2 1.
1Ferenc, J.-S. & Néda, Z. (2007). Physica A, 385:518–526
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2. Spatial distributions of nucleated bubbles

Figure 4: PDF of area of Voronoï cells obtained from the numerical
simulations.
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2. Spatial distributions of nucleated bubbles

Figure 5: n vs. the proportion of coalesced objects.

n =
7
2

e2.47x , with x =
d0 − d

d0
. (2)
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2. Spatial distributions of nucleated bubbles

Figure 6: Bubble densities on the two sides of glass samples.

I In atmosphere side, d0 = 40 nuclei/cm2;
I In tin side, d0 = 9300 nuclei/cm2 (230 times larger).
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3. Bubble growth rate
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Figure 7: a (µm) vs.
√

t (
√

s) for bubbles in tin and atmosphere sides
of molten glass samples.
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3. Bubble growth rate

I In the mass transfer modeling, we consider two redox
couples2:

Fe3+ +
1
2

O2− 
 Fe2+ +
1
4

O2, (3)

Sn4+ + O2− 
 Sn2+ +
1
2

O2. (4)

I Using the experimental bubble growth rate, the
“equilibrium” PO2

is:
I In atmosphere side, PO2

= 1.3 · 10−3 Pa;
I In tin side, PO2

= 4.1 · 10−4 Pa.
I Tin leads to a reduction of glass.

2Pigeonneau, F. (2011). Int. J. Heat Mass Transfer, 54:1448-1455.
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4. Saturation and nucleation

I The critical bubble size for nucleation in the case of
multi-species is given by

acr =
2γ Ng∑

i=1

Sa
1/βGi
Gi

− 1

Pl

, (5)

SaGi =
CGi

LGi P
βGi
l

. (6)

I The supersaturation for Ng dissolved species is

σ =

Ng∑
i=1

Sa
1/βGi
Gi

− 1. (7)
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4. Saturation and nucleation
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Figure 8: σ vs. T (◦C) in atmosphere and tin sides.
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5. Conclusion

I Remelting of cullet leads to a large bubble formation.
I Enhancements of the bubble nucleation and growth rate

due to the tin pollution.
I The glass reduction on tin side is the main parameter

controlling the bubble nucleation and the growth rate.
I Difficult to quantify the bubble nucleation rate (work in

progress to improve the prediction).
I The 100 % of cullet is difficult to reach because the bubble

creation persists and needs to introduce fining agents.
I See for more details3.

3Boloré, D. & Pigeonneau, F. (2018). J. Am. Ceram. Soc., 101:1892-1905.
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