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Industrial Context
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» Cullet is mainly used for the production of container glass: @

Germany 88 %
Poland 43 %
United-Kingdom 64 %
Sweden 97 %

Table 1: Rates of glass recycling in Europe in 2013 [data SEVE].

Belgium
Italy
Portugal
Holland

95 %
76 %
60 %
79 %

France
Austria
Spain
Denmark

73 %
93 %
60 %
98 %

» Advantages of introduction of cullet in raw materials:
» Reductions of mineral resources;
» Reduction of CO, release;
» Reduction of the energy to provide.

Cemef
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» Cullet is mainly used for the production of container glass:

Cemef
Germany 88 % Belgium 95% France 73 %
Poland 43 % Italy 76 % Austria 93 %
United-Kingdom 64 % Portugal 60 % Spain 60 %
Sweden 97 % Holland 79% Denmark 98 %

Table 1: Rates of glass recycling in Europe in 2013 [data SEVE].

» Advantages of introduction of cullet in raw materials:

» Reductions of mineral resources;
» Reduction of CO, release;
» Reduction of the energy to provide.

What is the limitation to go forward 100 % of
cullet?
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1. Experimental set-up Cemef

2. Spatial distributions of nucleated bubbles

3. Bubble growth rate
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1. Experimental set-up 2,

cold bottom
Cemef
sample in a silica crucible

T » Float glass samples are
introduced in silica
& crucible;

» Recording of the melting
and other events with 2
cameras (60 and
25 um/px).

ﬁ camera

Figure 1: Sketch of HTO furnace.

Si0, Na,0 CaO MgO AlLO; SO, Fe,0; FeO
72.4 1385 888 3.74 073 022 0.055 0.014

Table 2: Composition of the glass samples (wt %).
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2. Spatial distributions of nucleated bubbles &1
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2. Spatial distributions of nucleated bubbles 2,

Figure 2: Detection of nucleation sites on each face of the crucible
and Voronoi diagram of nucleation sites.
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2. Spatial distributions of nucleated bubbles 2,
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Figure 3: PDF of the area of
Voronoi cells.

» For objects randomly distributed over a surface, n=7/2".
'Ferenc, J.-S. & Néda, Z. (2007). Physica A, 385:518-526
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2. Spatial distributions of nucleated bubbles 2,
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Figure 4: PDF of area of Voronoi cells obtained from the numerical

simulations.
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2. Spatial distributions of nucleated bubbles &
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Figure 6: Bubble densities on the two sides of glass samples.

» In atmosphere side, dy = 40 nuclei/cm?;
» In tin side, dy = 9300 nuclei/cm? (230 times larger).
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3. Bubble growth rate Z
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Figure 7: a (um) vs. v/t (,/s) for bubbles in tin and atmosphere sides
of molten glass samples.
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3. Bubble growth rate Z
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Figure 7: a (um) vs. v/t (1/s) for bubbles on tin and atmosphere sides
of molten glass samples.
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3. Bubble growth rate 2.
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» In the mass transfer modeling, we consider two redox
couples?:

3¢, T TR

Fe’™ + -0 = Fe"" + —0,, (3)
2 4
]

Sl’l4+ + 027 = Sn2+ + 502 (4)

» Using the experimental bubble growth rate, the
“equilibrium” Po, is:
> In atmosphere side, Py, = 1.3 1073 Pa;
> Intin side, Po, =4.1-107* Pa.

» Tin leads to a reduction of glass.

2Pigeonneau, F. (2011). Int. J. Heat Mass Transfer, 54:1448-1455.
12/15



4. Saturation and nucleation yo g

» The critical bubble size for nucleation in the case of Cemef
multi-species is given by

= it , (5)
Cc.
Sag, n (6)
LGIP/ '

» The supersaturation for Ny dissolved species is

0—2831/66 _ 7)
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4. Saturation and nucleation yo g
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Figure 8: o vs. T (°C) in atmosphere and tin sides.
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5. Conclusion 2.

Cemef

» Remelting of cullet leads to a large bubble formation.

» Enhancements of the bubble nucleation and growth rate
due to the tin pollution.

» The glass reduction on tin side is the main parameter
controlling the bubble nucleation and the growth rate.

» Difficult to quantify the bubble nucleation rate (work in
progress to improve the prediction).

» The 100 % of cullet is difficult to reach because the bubble
creation persists and needs to introduce fining agents.

» See for more details®.

3Boloré, D. & Pigeonneau, F. (2018). J. Am. Ceram. Soc., 101:1892-1905.
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