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Stochastic observers on Lie groups: a tutorial

Axel Barrau, Silvère Bonnabel

Abstract— In this tutorial paper, we discuss the design of
geometric observers on Lie groups in the presence of noise.
First we review Lie groups, and the mathematical definition
of noises on Lie groups, both in discrete and continuous
time. In particular, we discuss the Ito-Stratonovich dilemma.
Then, we review the recently introduced notion of group affine
systems on Lie groups. For those systems, we discuss how using
the machinery of Harris chains, (almost) globally convergent
deterministic observers might be shown to possess stochastic
properties in the presence of noise. We also discuss the design
of (invariant) extended Kalman filters (IEKF), and we recall the
main result, i.e., the Riccati equation computed by the filter to
tune its gains has the remarkable property that the Jacobians
(A,C) with respect to the system’s dynamics and output map
are independent of the followed trajectory, whereas the noise
covariance matrices (Q,R) that appear in the Riccati equation
may depend on the followed trajectory. Owing to this partial
independence, some local deterministic convergence properties
of the IEKF for group-affine systems on Lie groups may be
proved under standard observability conditions.

I. INTRODUCTION

Over the past decade, the design of observers on Lie
groups has been a vibrant research topic, see [7], [21], [20],
[19], [17], [32], to cite a few. Yet, most of these approaches
do not explicitly account for uncertainties in the model and
in the measurements, that is, they are deterministic.

In this tutorial paper, we discuss the design of geometric
observers on Lie groups in the presence of noise. First we
review Lie groups, and the mathematical definition of noises
on Lie groups, both in discrete and continuous time. Then,
we review the recently introduced notion of group affine
systems on Lie groups. For those systems, we discuss how
using the machinery of Harris chains stochastic properties
of geometric observers might be obtained in the presence
of noise. We also discuss the design of (invariant) extended
Kalman filters (IEKF) [9], [8], and we recall that the Riccati
equation computed by the filter to tune its gains has the
remarkable property that the Jacobians (A,C) with respect to
the system’s dynamics and output map are independent of the
followed trajectory, whereas the noise covariance matrices
(Q,R) that appear in the Riccati equation may depend on
the followed trajectory. Owing to this partial independence,
some local convergence properties of the IEKF for group-
affine systems on Lie groups may be proved under standard
observability conditions in [5].

S. Bonnabel is with MINES ParisTech, PSL Reasearch Univer-
sity, Centre for Robotics, 60 bd Saint-Michel, 75006 Paris, France.
silvere.bonnabel@mines-paristech.fr.

A. Barrau is with SAFRAN TECH, Groupe Safran, Rue des Je-
unes Bois - Chateaufort, 78772 Magny Les Hameaux CEDEX, France,
axel.barrau@safrangroup.com.

A. Literature review and historical perspectives

In the presence of noise, the synthesis of observers is
generally referred to as a “filtering problem”. Several ap-
proaches to filtering for systems possessing a geometric
structure have been historically developed. For stochastic
processes on Riemannian manifolds [18] some results have
been derived, see e.g., [23]. The specific situation where the
process evolves in a vector space but the observations belong
to a manifold has also been considered, see e.g. [15], [25]
and more recently [26]. For systems on Lie groups powerful
tools to study the filtering equations - such as harmonic
analysis [29], [27] - have been used, notably in the case of
bilinear systems [28] and estimation of the initial condition
of a Brownian motion in [14]. A somewhat different but
related approach to filtering consists of finding the path that
best fits the data in a deterministic setting. It is thus related to
optimal control theory where geometric methods have long
played an important role [12]. A certain class of least squares
problems on the Euclidean group has been tackled in [16],
see also [31].

II. PRIMER ON LIE GROUPS

Matrix Lie group: In this paper, we will only consider
matrix Lie groups, although the results remain valid for
general Lie groups. Indeed, matrix Lie groups provide a more
concrete picture for the unfamiliar reader. A matrix Lie group
G is subgroup of GLn(R) (invertible square N×N matrices)
and an embedded manifold of RN×N . The first condition
means G is a subset of GLN(R) containing identity (IN ∈G)
and stable by multiplication and inversion: for χ1,χ2 matrices
of G, we have χ1χ2 ∈G, and χ

−1
1 ∈G. The second condition

means that an affine subspace χ +T Gχ “tangent to G at χ”
can be defined for any point χ ∈ G as on Figure 1 (the
base “point” χ being a matrix and T Gχ a sub-vector space
of RN×N). The vector space T Gχ is called “tangent space
at χ”. The dimension d of this space, independent of the
chosen point χ , is the dimension d of G. One of the most
basic examples is SO(3) = {R ∈R3×3 | detR = 1, RT R = I3}
where I3 denotes the identity matrix of R3×3. SO(3) is a 3
dimensional Lie group, that is, d = 3 and N = 3.

Lie algebra: The identity matrix IN ∈ G plays a central
role, as it is the neutral element for the group composition.
The tangent space Tχ G ∈ RN×N mentioned avove, taken at
χ = IN , can be defined as the vector space spanned by all
initial velocity vectors d

dt γ(0) for curves γ(t), that start at
γ(0) = IN and entirely lie in G, see Figure 1, left plot. The
tangent space TIN G is called the Lie algebra of G, and is



denoted by g, i.e.,

TIN G := g⊂ RN×N .

It is a vector subspace of RN×N , with dimension d < N2.
Identification of the Lie algebra to Rd: g being a d-

dimensional vector subspace of RN×N , identifying it to the
vector space Rd makes all computations easier. A map, Rd→
g filling this task will be denoted by ξ 7→ ξ∧. Thus

ξ ∈ Rd is a vector, and ξ
∧ ∈ RN×N is a matrix.

This is illustrated on Figure 1, right plot. We will denote the
inverse of ∧ by ∨, that is (ξ∧)∨= ξ . Note that, specifying the
map ∧ is equivalent to choosing a basis of the Lie algebra.
There is often a basis that is more suitable than others. Note
that, the covariance matrices below reflect a dispersion with
respect to the choice of basis induced by ∧.

Exponential map: There is a natural map between g
and G, given by the matrix exponential expm. As g can be
identified to RN , we also have a local parameterization of G
in the neighborhood of IN by vectors of Rd : ξ → expm(ξ

∧)
which proves very useful in practice. In the remainder of the
paper, we will define and refer to the exponential map exp :
Rd → G as the map defined by exp(ξ ) := expm(ξ

∧). Using
a first order Taylor expansion of the matrix exponential, we
obtain the local approximation exp(ξ ) = IN +ξ∧+O(||ξ ||2).
The exponential defines a diffeomorphism from Rd to G,
invertible at least in an open subset of Rd containing 0. Its
local inverse is called the Lie logarithm log χ .

Linearization on groups: Similarly, the tangent space
Tχ G at arbitrary χ ∈ G can be identified to Rd for we
have T Gχ = χg = gχ . This means vectors of T Gχ can be
written as χξ∧ with ξ ∈ Rd , or (ξ∧)χ with a different
ξ ∈Rd (see Figure 1, center plot). Throughout this paper, we
will privilege left multiplications, for exposition purposes.
To linearize a function h : G 7→ Rp, at an arbitrary point
χ ∈ G, we can evaluate how it changes by infinitesimally
following an arbitrary tangent vector χξ∧ at χ . The left
linear approximation to h : G→ Rp at χ in the direction
ξ ∈ Rd can then be defined as the matrix H ∈ Rp×d such
that h(χ exp(ξ ))− h(χ) = Hξ + O(||ξ ||2), that is, Hξ =
d
ds h(χ exp(sξ )) |s=0. If h is defined for any matrix M ∈RN×N ,
with differential Dhχ : RN×N → Rp, the first order approx-
imation of the exponential above gives Hξ = Dhχ(χξ∧) .
One must then bear in mind that infinitesimal shifts at any
χ ∈ G are thus always represented by elements of Rd .

Adjoint representation: The operator Adχ , encoded by
a matrix of Rd×d , is called the adjoint representation, and
is defined by (Adχ ξ )∧ := χ(ξ∧)χ−1. We have the useful
relation χ exp(ξ ) = exp(Adχ ξ )χ .

III. NOISY DYNAMICS ON GROUPS

Dynamical systems on a matrix Lie group G are eas-
ily defined. However, if one wants to put some random
variability in the system, the usual method that resorts to
additive Gaussian white noise in the Euclidean setting does
not directly carry over to Lie groups, as G is not a vector
space. In this section, we discuss the usual methods for
“adding” white noise on G.

Fig. 1. Left and right multiplications offer two ways to identify the tangent
space Tχ G at χ with the tangent space at Identity TIN G, called the Lie
algebra g. In turn, the application ξ 7→ ξ∧ provides a linear bijection between
the Euclidean space Rd and g.

A. Discrete time noisy dynamics

Consider a system evolving on G in discrete time:

χt+1 = f (χt) (1)

with f : G→G. Note that, the system is general at this stage
and does not need to be invariant.

Suppose we want to add a centered d-dimensional Gaus-
sian noise ξ ∼ N (0,Q) to the dynamics, to reflect some
uncertainties in the evolution model. As f (χt) is a group
element, a mere addition f (χt) + ξ does not make sense.
First we must find some group counterpart to ξ ∈ Rd , and
then we must “add” it to f (χt).

“Gaussian” noise on G: A natural counterpart to ξ ∼
N (0,Q) on G is easily obtained using the exponential map,
and defining W = exp(ξ ) ∈G as a random element of G, as
largely advocated in [11], [2], [1]. Note that, an alternative
route may consist in defining some measure on G and then
to use it to characterize “Gaussian” laws, see [13].

“Adding” noise on G: Now that we have a “centered”
random “Gaussian” variable exp(ξ ) on G, we need to apply it
to f (χt) to model dispersion with respect to the deterministic
dynamics (1). To do so, standard addition may be replaced
with group multiplication. Depending on the choice of left
or right multiplication, this yields two alternative noisy
dynamics

χt+1 = f (χt)exp(ξ ) with ξ ∼N (0,Q) (2)
or χt+1 = exp(ξ ) f (χt) with ξ ∼N (0,Q) (3)

Note that these two are related as χ exp(ξ ) = exp(Adχ ξ )χ ,
with Adχ the adjoint. As a result (4) and (5) define stochastic
processes having identical distribution:

χt+1 = f (χt)exp(ξ ) with ξ ∼N (0,Q) (4)

χt+1 = exp(η) f (χt) with η ∼N (0,Adχt QAdT
χt ) (5)

with T denoting the transposed matrix. Note that, the trans-
pose of Adχt is well defined here since we have chosen a
basis of the Lie algebra when we have introduced the map
∧. And the matrix Q is naturally also defined using this basis.

“Isotropic” noise: As a result, we will say a noise ξ ∼
N (0,Q) is “isotropic” if for all χ ∈G we have Adχt QAdχt =
Q. In this case both dynamics (2) and (3) define processes
having identical probability distributions. It is also called Ad-
invariant noise or sometimes bi-invariant noise.



B. Continuous time noisy dynamics
Consider a system evolving on G in continuous time:

d
dt

χt = f (χt) (6)

with f : G→ Tχt G, such that d
dt χt is a tangent vector to G

at χt , see Figure 1, central plot. Note that, the system is not
necessarily invariant. In (6), f (χ) is just a vector field on G.

Suppose we want to add a centered d-dimensional white
noise with covariance Q to the dynamics, to reflect some
uncertainties in the evolution model. As the tangent space
Tχt G is a vector space, and as χ(w∧) ∈ Tχ G for any vector
w ∈ Rd , a mere addition might work, that is,

d
dt

χt = f (χt)+χt(w∧t ) ∈ Tχt G (7)

where we let wt be a continuous centered white noise in Rd

with covariance matrix Q. Note that, here again, we could
have instead added a term of the form (w̃∧t )χt , as the latter
is also an element of Tχt G. Owing to the definition of Adχ ,
we see that if w̃t = Adχt wt then both equations are identical.
As a result, we only need consider (7), at least at this stage.

The problem is, that (7) is a stochastic differential equation
(SDE) on G, since it contains the stochastic term χt(w∧t ),
and it should be given a proper mathematical meaning. It
turns out that, adding stochastic terms to ordinary differential
equations generates some (apparently inevitable) mathemat-
ical issues, which may be somehow surprising, since adding
uncertainty is so easy in the discrete time case. This prompts
the following subsections, that are meant to be a gentle, but
rather mathematically loose, introduction to the subject.

C. Stochastic differential equations in Rd

Consider a stochastic differential equation (SDE) in Rd of
the form:

d
dt

xt = g(xt)+ w̄t (8)

where w̄t is a continuous centered white noise in Rd with
covariance matrix Q. It can be re-written as:

d
dt

xt = g(xt)+Q1/2wt (9)

with wt a white noise with identity covariance matrix Id .
White noise: The noise wt cannot be mathematically

defined as a a random function of time t, only its integral
(the noise cumulated over a time interval) is: for all t1, t2 ≥
0 we have

∫ t2
t1 wsds = Wt2 −Wt1 , with Wt a d-dimensional

Wiener process, also known as d-dimensional Brownian
motion (and the white noise wt can be interpreted as its
time derivative). The Wiener process or Brownian motion is
a well-known stochastic process, characterized by the fact
that it is continuous, centered, with statistically independent
increments and such that Wt+∆t −Wt ∼

√
∆tN (0, Id).

Discretization scheme: Equation (9) can thus be given a
proper mathematical meaning through its integral counter-
part, that is, the well-defined equation:

xt = x0 +
∫ t

0
g(xs)ds+Q1/2Wt . (10)

We can then define a solution to SDE (9) as any (xt)t≥0 that
satisfies the integral equation (10). Moreover we can write
the increment xt − x0 as the sum of all the variations over
intervals of length ∆t, that is, ∑

(t/∆t )
i=0 [x(i+1)∆t−xi∆t ]. Using in

(10) that
∫ (i+1)∆t

i∆t g(xs)ds = g(xi∆t)∆t +O(∆t2), and owing to
the property of the Wiener process above, we have thus

xt − x0 = lim
∆t→0

(t/∆t )

∑
i=0

[g(xi∆t)∆t +
√

∆tQ1/2
ξi]

in distribution, where the ξi ∼ N (0, Id) are i.i.d standard
Gaussians. More prosaically (and quite loosely speaking) it
means that the solution to the differential equation (9), and
thus to (8), may be defined as the limiting process as ∆t→ 0
of the following (Euler-Maruyama) discretization method;

xt+∆t = xt +∆tg(xt)+
√

∆tξ

with the ξ ′s i.i.d Gaussians with distribution N (0,Q).
Mathematical problems arise, though, with equation

d
dt

xt = g(xt)+ r(xt)wt (11)

where r : Rd → Rd×d an arbitrary function of xt . There are
then two ways to cope with the multiplicative term r(xt).

Ito’s approach: Roughly speaking, it consists in defining
the solution to (11) as the limit as ∆t → 0 of the following
(Euler-Maruyama) discretization method

xt+∆t = xt +∆tg(xt)+
√

∆t r(xt)ξ (12)

with the ξ ′s i.i.d Gaussians with distribution N (0,Q).
Stratonovich’s approach: Roughly speaking, it consists,

in contrast, in defining the solution to (11) as the limit as
∆t→ 0 of the following discretization method

xt+∆t = xt +∆tg(xt)+
√

∆t r ((xt + xt+∆t)/2)ξ

with the ξ ′s i.i.d Gaussians with distribution N (0,Q).
Although Ito’s approach seems more natural, as it leads

to an explicit integration scheme instead of an implicit one,
Stratonovich’s approach has the merit to be compatible with
chain’s rule, i.e., if F is any smooth function, and xt is the
solution to (11) in the sense of Stratonovich, then zt = F(xt)
is the solution in the sense of Stratonovich to equation d

dt zt =
DF(xt)

(
g(xt) + r(xt)wt

)
. Unfortunately, this is not true as

concerns the solution to (11) in the sense of Ito.

D. Stochastic differential equations on Lie groups

Hence, there are two ways to interpret the stochastic term
χtw∧t of (7). The first one is Ito’s intepretation of SDE
(7). Roughly speaking, it means that the solution to the
differential equation (7) corresponds to the limit as ∆t → 0
of the following (Euler-Maruyama) discretization method

χt+∆t = χt +∆t f (χt)+
√

∆tχt(ξ
∧
t ) (13)

with ξ ’s independent Gaussians with distribution N (0,Q).
Stratonovich’s interpretation leads to (13) but where χt is
replaced with (χt + χt+∆t)/2. The question is whether the
limiting process (χt)t≥0 of discretization (13) as ∆t → 0



actually remains inside G at all times, or if it results in
matrices of the ambiant space RN×N , that lie outside G.

Ito versus Stratonovich: It turns out that, only the
Stratonovich approach guarantees that the solution (χt)t≥0
remains in G. Indeed, Stratonovich’s approach is the only one
that is compatible with the geometry. From Von Neumann’s
closed subgroup theorem, we know that any matrix Lie
group G corresponds to a level set of a submersion F :
RN×N → RN2

. Thus, the the tangent space at χ is the set
Tχ G = {v ∈ RN×N | DF(χ)v = 0}. This implies that, if at
all times d

dt χt = vt is a (possibly random) element of Tχt G
then, and χt is defined as the solution in the Stratonovich
sense, we have d

dt F(χt) =DF(χt)(
d
dt χt) since Stratonovich’s

stochastic calculus is compatible with the chain rule, and thus
d
dt F(χt) = 0 at all times; so that xt remains in G. To fix ideas,
in the case of rotation matrices, we choose F(χ) = χT χ , and
SO(3) corresponds to the level set F(χ) = I3,det(χ) = 1. For
more details, see Section 20.4 of [13]. With Ito’s approach,
the solution steps out of the group almost surely, see e.g. [4].

Implementation of EDS on Lie groups: Another idea
to ensure that χt remains in G may be to define a group
counterpart to Ito’s discretization (12), by replacing addition
with group multiplication. This can be done as follows.
f (χt)∈ Tχt G and thus it is of the form f (χt) = χt(ω

∧
t ) where

ω∧t ∈ g, and where ωt ∈ Rd is defined as ωt = [χ−1
t f (χt)]

∨.
With this notation, Equation (7) then becomes

d
dt

χt = χt(ωt +wt)
∧. (14)

As ωt +wt ∈ Rd , one could be tempted to discretize this
equation using a group multiplicative counterpart of Ito’s
approach (12), that is, using i.i.d. Gaussians ξ ∼N (0,Q):

χt+∆t = χt expm(∆t(ωt)
∧+
√

∆t(ξ∧)) = χt exp(∆tωt +
√

∆tξ ),
(15)

and the limiting process as the discretization step ∆t → 0
may serve as a direct definition for the solution of (12) on G.
Indeed, we readily see the scheme (15) defines a stochastic
process that remains in G at all times, since ∆t(ωt)

∧ +√
∆t(ξ∧)∈ TIN G= g, so that expm(∆t(ωt)

∧+
√

∆t(w∧t ))∈G.
Moreover, it is reminds much of the discrete time case of
Section III-A. It turns out this is a viable route indeed, owing
to results by McKean [22] and related to his multiplicative
stochastic integral, and more remotely to Brownian motion
on Lie groups, [24], [18], [30].

Proposition 1 ([22], see also [13]): The discretized solu-
tion of the multiplicative scheme (15) converges in probabil-
ity to the solution in the sense of Stratonovich to (14) and
thus to the solution to SDE (7).

Corollary 1: Discretization (15) thus serves as an explicit
convergent implementation scheme with time step ∆t of the
EDS (14) and thus (7), that guarantees the solution remains
in the group G at all times, regardless of the chosen step ∆t.

IV. STOCHASTIC OBSERVERS ON LIE GROUPS

Due to space limitation, we focus on the continuous
time case with discrete time measurements. As concerns the

discrete time case the reader is referred to [6] which provides
a tutorial introduction to the discrete time case. In this section
we essentially review the results of our main paper on the
subject [5], yet adopting a perspective more oriented towards
stochastic aspects.

A. Considered stochastic observer problem

On the matrix Lie group G⊂ RN×N , we consider contin-
uous time (not necessarily invariant) dynamics of the form

d
dt

fut (χt) (16)

here fut : G→ Tχt G. This echoes (6), except that to be more
relevant to applications we allow f to also depend on a time-
varying input t 7→ ut , where ut ∈U lives in some space U .
To model possible uncertainties in the dynamics, noise must
be added in the tangent space along the lines of Section III-B.

Stochastic dynamics: This yields the two noisy dynamics

d
dt

χt = fut (χt)+χt(w∧t ) ∈ Tχt G (17)

d
dt

χt = fut (χt)+(w̄∧t )χt ∈ Tχt G (18)

The choice between (17) and (18) is generally dictated
by the application. In many applications, χt represents the
configuration of a vehicle in space, i.e., a transformation that
maps the body (i.e., vehicle) frame to an earth fixed frame.
In this case when confronted with relations of the form

α = χtβ , α,β ∈ RN , χt ∈ G

we generally say that β is a vector of the body frame,
whereas α is a vector of the fixed frame. In the main
applications, ut represents the measurements from motion
sensors, such as accelerometers, gyrometers, and odometers,
which are all attached to the body, and wt then represents
sensor noise, and is thus also a vector of the body frame,
so that (17) are the dynamics to consider. The typical
example is when χt = Rt ∈ SO(3) denotes a rotation matrix,
in which case ut ∈ R3 denotes the (bias free) gyrometers
measurements, and wt ∈ R3 the gyrometers’ noise, that
models the (random) discrepancy between measured angular
velocity and the true angular velocity. The dynamics then
write d

dt Rt = Rt((ut +wt)
∧) = Rt(u∧t )+Rt(w∧t ) indeed.

Measurement model: Suppose that there are noisy partial
measurements of the state, available at discrete times t0 <
t1 < t2 · · · , and which write

Yn = h(χtn)+Vn (19)

with h : G → Rp an output map. The stochastic observer
problem consists in providing the best estimate of χt given
all past measurements Y1, · · · ,Yn where tn ≤ t < tn+1.

B. Group affine systems

In the sequel, we will systematically suppose that fut

possesses the “group affine” property [5]:

∀u ∈U , a,b ∈ G fu(ab) = a fu(b)+ fu(a)b−a fu(Id)b.
(20)



In this equation fu(ab) ∈ TabG, fu(a) ∈ TaG, fu(b) ∈ TbG.
For example the left-invariant dynamics d

dt χt = χtωt , the
right-invariant ones d

dt χt =ωt χt and the mixed-invariant ones
d
dt χt = χtω

(1)
t +ω

(2)
t χt all are group-affine dynamics.

Fundamental property of invariant filtering: Consider
two trajectories χt , χ̃t of the noise free system (16). Let ηt =
χ
−1
t χ̃t ∈ G be the error between those two solutions in the

sense of group multiplication. It is the group analog of the
linear error χt− χ̃t , which does not make sense on the group
G, since it is not a vector space. We have

Theorem 1 ([5]): fut satisfies Equation (20) if and only if
there exists a map gut such that d

dt ηt = gut (ηt). Moreover,
we have necessarily that gut (η) = fut (η)− fut (IN)η .

C. Invariant observers and autonomous error equations

Invariant observers on Lie groups, or more generally
nonlinear observers on Lie groups, are estimators that no-
tably ensure the estimate χ̂t remains in the group G at all
times. Referring to, e.g., [7], [21], [20], [19], [17], [32],
they are continuous time and are generally of the form
d
dt χ̂t = fut (χ̂t)+ χ̂tL(y(t)−h(χt)) (“left-invariant” observer),
or alternatively of the form d

dt χ̂t = fut (χ̂t)+L(y(t)−h(χt))χ̂t
(“right-invariant” observer), where y(t) is a continuous time
output noise-free measurement and L : Rp 7→ g some nonlin-
ear map to be tuned by the user. Note that, as χ̂tL(y(t)−
h(χt)) ∈ Tχ̂t G the estimates are garanteed to remain inside
G. However, noisy discrete-time measurements of the form
(19) are more easily defined that continuous-time noisy
measurements. Moreover, in practice, measurements always
come in discrete time. The continuous-discrete counterpart
of nonlinear observers on Lie groups is of the form

d
dt

χ̂t = fut (χ̂t), tn−1 ≤ t < tn (21)

χ̂
+
tn = χ̂tn exp(Ln(Yn−h(χtn))), t = tn (22)

with Ln : Rp→Rd a nonlinear map to be tuned by the user.
Remark 1: As always, a choice between left and right

multiplication must be made, leading to two different fami-
lies of observers. In (22), we have opted for left multplication
by χ̂tn . However, right multiplications by χ̂tn might prove
more suited in various applications. For tutorial purposes,
we will stick with the left version (22), but the reader should
bear in mind the other family of observers. For more details,
and guidelines see [5].

Step (21) is called the propagation step, and Step (22)
the update step. To evaluate the accuracy of the estimates,
consider the error ηt = χ

−1
t χ̂t in the sense of group multpli-

cation, between the estimate and the true state. An absence
of error leads to ηt = IN . Of course, due to noise it is not
possible to have ηt → IN , but one can try to minimize the
dispersion of ηt under the effect of noise.

Corollary 2 (of Thm 1, see[5]): Consider (17), with fut

group-affine, and observer (21)-(22). During the propagation
step, we have d

dt ηt = gut (ηt)− (w∧t )ηt , that is the evolution
of the error does not depend explicitly on the trajectory χ̂t .

Proof: We write d
dt ηt = ( d

dt χ
−1
t )χ̂t +χ

−1
t ( d

dt χ̂t) and then
we use the general matrix equality d

dt χ
−1
t =−χ

−1
t ( d

dt χt)χ
−1
t .

This yields d
dt ηt = χ

−1
t [ fut (χ̂t) − fut (χt)ηt ] − (w∧t )ηt =

fut (ηt)− fut (IN)ηt − (w∧t )ηt = gut (ηt)− (w∧t )ηt where we
have used (20) that implies f (χ̂) = f (χη) = χ f (η) +
f (χ)η−χ f (IN)η .

Proposition 2 ([5]): Suppose that, moreover, h(χ) is of
the form h(χ) = χ d̄ with d̄ ∈RN a vector, or a collection of
such measurements, and the measurement noise is isotropic.
Let Ln(Yn−h(χtn))) = L̄n(χ̂

−1
tn [Yn−h(χtn)]) in (22) for some

function L̄n that does not depend on χ̂tn . Then, the error after
update writes (24), and thus neither does it explicitly depend
on the current estimate.

Proof: We have χ̂
−1
tn [Yn−h(χtn)] = η

−1
tn d̄− d̄− χ̂

−1
tn Vn

which is equal in distribution to η
−1
tn d̄ − d̄ −Vn since the

noise was supposed to be isotropic. And we see the updated
error η

+
tn is a function of ηtn only.

Autonomous error equation: Under the assumptions that
the dynamics are group affine, and the measurements as in
Proposition 2, we have shown using Cor. 2 and Prop. 2, that
the error ηt = χ

−1
t χ̂t satisfies the error equation:

d
dt

ηt = gut (ηt)− (w∧t )ηt , tn−1 ≤ t < tn (23)

η
+
tn = ηtn exp(L̄n(η

−1
tn d̄− d̄−Vn)), t = tn (24)

that can be called “autonomous” in the sense that its evo-
lution does not depend on the trajectory followed by the
estimate χ̂t . This opens up for possible analysis of the
stochastic behavior of the error, without having to care about
the particular behavior of χ̂t , or of the true trajectory χt .

D. Benefits of the autonomous error property

Harris chains and gradient-like observers: The paper
[20] discusses systems on Lie groups having a synchrony
property. In the present formalism this property means there
exists input trajectories ut such that gut (η) = 0 ∀η , t. In
this case Eq. (23) defines a Brownian motion on G (i.e.
a “random walk” on G), and if L̄n(·) = K(·) is minus a
gradient term that tends to make the output error η

−1
tn d̄− d̄

decrease, inspiring from gradient-like observers [20], then
there are hopes that the distribution of the error ηt will
asymptotically converge to a stationary distribution, resorting
to the machinery of Harris chains, as proved in [3] for the
SO(3) case. Once this is established, the gain function K(·)
can advantageously be tuned offline through Monte-Carlo
experiments so as to minimize the asymptotic dispersion of
ηt . This kind of optimal offline tuning is made possible only
by the fact the error equation (23)-(24) does not depend on
the actual trajectory, a well known feature of linear systems,
that proves to carry over to group-affine systems.

Invariant EKF (IEKF): Unfortunately, in many applica-
tions of interest, gut depends on the time t, through the input
ut , and the noises are not isotropic. This makes the analysis
of the error system very difficult, albeit autonomous. To cope
with dependency with respect to time, we can resort to ex-
tended Kalman filtering (EKF), which is the most widespread
approach to observer design for non-linear (time varying)
systems. However, the EKF is designed for systems on vector
spaces, and it needs to be transposed in the Lie group setting.



This yields the invariant EKF (IEKF), introduced in [9],
[8]. The Left-invariant EKF (LIEKF) for continuous-discrete
group affine systems with left-equivariant output writes [5]:

d
dt

χ̂t = fut (χ̂t), tn−1 ≤ t < tn (25)

χ̂
+
tn = χ̂tn exp(Kn(χ̂

−1
tn Yn− d̄)), t = tn (26)

with Kn ∈ Rd×N a matrix tuned through a Riccati equation.
It turns out that, the Jacobians (At ,Ct) in the sense of group
linearization (see Section I) with respect to the system’s
dynamics and output map are independent of the followed
trajectory, a remarkable property owing to the autonomy of
the error equation, due in turn to the group-affine property,
whereas the noise covariance matrices (Qt ,Rt) that appear in
the Riccati equation may depend on the followed trajectory
when the noises are not isotropic.

Stochastic first-order optimality: as the conventional
EKF, the IEKF is stochastically optimal for the linearized
system around the estimate, with respect to chosen noises.
This property is important in practice, but provides no
guarantee regarding the nonlinear system. Yet, nonlinear
guarantees exist for the IEKF in a deterministic setting.

Deterministic nonlinear convergence properties: The
fact that the Jacobians (At ,Ct) do not depend on the estimates
χ̂t reminds much of the linear (time-varying) Kalman filter
theory. This implies great stability of the linearized error
system. The fact that covariance matrices (Qt ,Rt) may de-
pend on the estimates, impacts only mildly the stability of
the error system. As a result, it could recently be proved in
[5] that, when used as non-linear observer the IEKF enjoys
local asymptotic convergence properties for all (observable)
group-affine systems with equivariant outputs. This is a non-
trivial result as there are few local convergence results for the
conventional EKF, unless some impractical assumptions on
the stability of the covariance matrix are made. see e.g., [10].
Moreover, group affine systems are a large class of nonlinear
systems on Lie groups with relevant applications, see [6].
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