Olivier Hermant
email: olivier.hermant@mines-paristech.fr

Polarized Rewriting and Tableaux in B Set Theory

We propose and extension of the tableau-based first-order automated theorem prover Zenon Modulo to polarized rewriting. We introduce the framework and explain the potential benefits. The first target is an industrial benchmark composed of B Set Theory problems.

Introduction

The B Method set theory [START_REF] Abrial | The B-book: Assigning Programs to Meanings[END_REF] has been extensively used for 20 years by the railway industry in France to develop certified correct-by-construction software. Recently, the BWare [START_REF]The BWare Project[END_REF] project has tackled the issue of automatically proving the thousands of proof obligations generated by the development process.

Zenon Modulo [START_REF] Delahaye | Zenon modulo: When achilles outruns the tortoise using deduction modulo[END_REF] is one of the tools developed to this aim. Originally a tableau-based prover, Zenon [START_REF] Bonichon | Zenon : An extensible automated theorem prover producing checkable proofs[END_REF] is used for instance by TLA+ [START_REF] Cousineau | TLA + proofs[END_REF] and FoCaLiZe [START_REF] Dubois | Verified functional iterators using the focalize environment[END_REF]. To help manage the axioms of set theory, but also the uncountable derived constructs definitions (e.g. inclusion, union, functions), we deemed useful to not let nonlogical axioms wander as formulas: a prover would easily get lost by decomposing one or another axiom in an unorganized fashion.

We replaced them with rewrite rules, turning Zenon into an implementation of Deduction Modulo Theory [START_REF] Bonichon | TaMeD : A tableau method for deduction modulo[END_REF][START_REF] Bonichon | A semantic completeness proof for tableaux modulo[END_REF][START_REF] Dowek | Theorem proving modulo[END_REF], which allows rewriting on terms and formulas. Additionally, we equipped it with ML polymorphic types and arithmetic [START_REF] Bury | Automated deduction in the B set theory using typed proof search and deduction modulo[END_REF]. On the BWare benchmark, the success rate was raised from 2.5% to 95%.

We propose to extend Zenon Modulo with polarized rewriting, a more permissive rewrite relation. We first introduce the framework, then we discuss examples and the pros and cons of the approach. There is currently no implementation, essentially because this is a perfect match for an intern or a PhD student.

Polarized Tableaux Modulo Theory

We assume familiarity with first-order logic and at least one deduction system. Tableaux calculus is a refutational calculus, thus, to show F under the assumptions Γ , we refute Γ, ¬F . The first-order tableaux rules are recalled in Figure 1, see textbooks [START_REF] Nerode | Logic for Applications[END_REF] for details. The rules have the following characteristics:

as customary, they are presented in a top-down fashion.

-Formulas are not in negation normal form, rules are duplicated.

-A branch may be closed, denoted ⊙, if we find on it (including internal nodes) an occurrence of some F and its negation, or an explicit contradiction. A tableau is a proof iff each branch is closed. -α-rules are for non-branching connectives rules and β-rules for branching ones, δ-rules are for quantifier rules introducing a fresh constant c and γrules for those introducing any term.

⊥ ⊙ ⊥ ⊙ F, ¬F ⊙ ⊙ ¬⊤ ⊙ ¬⊤ ⊙ ¬¬F ᬬ F F ∧ G α∧ F, G ¬(F ∨ G) α¬∨ ¬F, ¬G ¬(F ⇒ G) α¬⇒ F, ¬G F ∨ G β∨ F | G ¬(F ∧ G) β¬∧ ¬F | ¬G F ⇒ G β⇒ ¬F | G ∃x F (x) δ ∃ F (c) ¬∀x F (x) δ ¬∀ ¬F (c) ∀x F (x) γ ∀ F (t) ¬∃x F (x) γ ¬∃ ¬F (t)
Fig. 1: Tableaux Rules Tableaux Modulo Theory [START_REF] Bonichon | TaMeD : A tableau method for deduction modulo[END_REF] extends tableaux with a set of rewrite rules R. A rewrite rule is a pair of terms, l → r, where the variables of r appear in l. Given a set R, a term t rewrites into u, denoted t → u, if there is a rule l → r ∈ R and a substitution σ, such that there is an occurrence of lσ in t, and u is t where that occurrence has been replaced with rσ. In other words, → is the closure of R by substitution and the subterm relation. The transitive closure of → is denoted ։ and its further reflexive-symmetric closure is ≡, which is a congruence.

Deduction Modulo Theory also allows rewrite rules on formulas, provided the left member P of such a rule P → F is atomic. The relations →, ։, ≡ on formulas embed their counterparts on the subterms of the formulas.

Tableaux can be extended to rewriting with the addition of a rule allowing to convert any formula with ≡, as in Figure 2a. When rewriting is confluent, we can orient this rule as in Figure 2b. In practice, Deduction Modulo Theory-based automated theorem provers [START_REF] Burel | Embedding deduction modulo into a prover[END_REF] implement this last rule, which is a way to decide ≡ when confluence holds. Other presentations exist [START_REF] Bonichon | TaMeD : A tableau method for deduction modulo[END_REF][START_REF] Bonichon | A semantic completeness proof for tableaux modulo[END_REF][START_REF] Bury | Automated deduction in the B set theory using typed proof search and deduction modulo[END_REF].

The calculus of Zenon Modulo [START_REF] Bury | Automated deduction in the B set theory using typed proof search and deduction modulo[END_REF] enjoys meta-variables, Hilbert's ǫ operator, reasoning over reflexive/transitive/symmetric relations, an equality predicate, ML-polymorphic types, and, of course, rewriting. The simpler case of Figure 1 is sufficient here, as we focus on rewriting, that we now extend to polarity.

F ≡ , if F ≡ G G (a) General Case F ։ , if F ։ G G (b) Confluent Case
-G is F , -G is G 1 ∧ G 2 , G 1 ∨ G 2 , ∀xG 1 , ∀xG 1 or H ⇒ G 1 and the occurence of F in G 1 or G 2 is positive (resp. negative), -G is ¬G 1 or G 1 ⇒ H and the occurrence of F in G 1 is negative (resp.
positive).

Now, we consider two (proposition) rewrite systems R + ∪ R -.

Definition 2 (Polarized Rewrite Relation). Let F and G be two formulas. F → + G iff F → G with a term rewrite rule or there exists a positive (resp. negative) occurrence H in F , a substitution σ, and a rule l → r ∈ R + (resp. R -), such that H = lσ and G is F where H has been replaced with rσ. F → -G iff ¬F → + ¬G, that is to say we exchange R + and R -above.

We denote by ։ + and ։ -the reflexive-transitive closures of → + and → -, respectively. Defining ≡ + and ≡ -is more delicate and unlikely to be useful practice. Polarized Tableaux combine the rules of Figure 1 and Figure 3.

F ։+ , if F ։+ G G

Implementation

Zenon Modulo rewrites only literals, in a forward fashion. This is a further restriction of Figure 2b and it relies on termination of term rewriting and on confluence of the whole rewriting. Otherwise, completeness of the proof search fails. The heuristic is, each time we meet a literal, to:

1. normalize the terms it contains; 2. rewrite the literal itself (if there is an applicable rewrite rule) on one step; 3. if the formula is in normal form or compound, stop, otherwise repeat.

To get polarized rewriting it suffices to modify the second step into "rewrite positively if the literal is positive, negatively otherwise". The expected gain does not lie here, but in an optimized preprocessing for rules. Indeed [START_REF] Dowek | Polarized deduction modulo[END_REF], a polarized rule P → + F ∈ R + represents/can be represented as an axiom ∀(P ⇒ F) (∀ is the universal closure over the free variables). Similarly, a negative rewrite rule P ։ -F ∈ R -is equivalent to the axiom ∀(F ⇒ P). In contrast, Deduction Modulo Theory's rewrite rules P → F are equivalent to ∀((P ⇔ F) [START_REF] Dowek | Theorem proving modulo[END_REF]. Remind that we are discussing propositional rewrite rules, so P has to be atomic. Consequently, polarization offers the following improvements:

more axioms correspond to rewrite rules, and this improves proof search [START_REF] Delahaye | Zenon modulo: When achilles outruns the tortoise using deduction modulo[END_REF].

Axioms of the form ∀x(P ⇒ A) and ∀x(A ⇒ P), with P atomic, become rules of R + and R -, respectively. In classical logic, when P is a negated atom, we also get rewrite rules in R -and R + , respectively. -We can Skolemize rewrite rules. This has two benefits: first, less inference rules are necessary in the tableaux, and second, the Skolem term is uniform, while multiple applications of δ ∃ or δ ¬∀ introduce different fresh symbols at each time. This also holds in the presence of meta-variables.

Skolemizing the rules is impossible in vanilla Deduction Modulo Theory, as rewriting applies at positive and negative occurrences. Therefore, we do not know in advance which quantifiers are positive and negative. To illustrate the difference, consider axioms of the type ∀x(P ⇒ A) and ∀x(A ⇒ P).

-In ∀x(P ⇒ A), we can replace all the positive existential and negative universal quantifiers of A by a Skolem function symbol. -Similarly, in ∀x(A ⇒ P), we can replace all the positive universal and negative existential quantifiers of A by a Skolem function symbol.

The very same principle applies to polarized rewrite rules. We leave the study and the choice of the strategies for Skolemization [START_REF] Nonnengart | Computing small clause normal forms[END_REF] for a later stage. Both improvements can be applied to heuristics turning assumptions (of a given problem) into rewrite rules, and to hand-tuning of the rewrite rules of a specific theory, for instance B Method set theory.

Example

Let us consider the classical example of proving a ⊆ a with the standard axiom of inclusion ∀x∀y x ⊆ y ⇔ (∀z z ∈ x ⇒ z ∈ y). A usual tableau proof involves the succession of rules γ ∀ (twice), α ∧ , β ⇒ , δ ¬∀ and α ¬⇒ on the axiom. Deduction Modulo Theory turns it into the rewrite rule x ⊆ y → (∀z z ∈ x ⇒ z ∈ y), and yields the 3-rules axiomless proof of Figure 4a.

If we switch to Polarized Deduction Modulo Theory, we get the pair

R + = {x ⊆ y → (∀zz ∈ x ⇒ z ∈ y)} and R -= {x ⊆ y → (f (x, y) ∈ x ⇒ f (x, y) ∈ y)}.
The proof of a ⊆ a is one more step smaller, as shown in Figure 4b.

¬(a ⊆ a) ։ ¬(∀z z ∈ a ⇒ z ∈ a) α ¬∀ ¬(c ∈ a ⇒ c ∈ a) α¬⇒ ¬(c ∈ a), c ∈ a ⊙ ⊙ (

Conclusion

We expect the polarized approach to give at least as efficient as Zenon Modulo itself. The proof-search algorithm needs only few changes, mostly in the rule pre-processing. The obtained rules contain less quantifiers, allowing for fewer rules in proof-search and potential earlier unification and branch closure, since using a rewrite rule several times now involves the same Skolem symbol. On the risk side, implicational axioms can now be turned into rewrite rules. This might be a threat to termination or confluence. A study of the theoretical framework, including models, is required. Automated theorem provers are aggressively optimized tools, naturally lending themselves to bugs. This is why independent double checking facilities are important. Zenon Modulo is able to produce proof-terms or proof certificates, though it provides no rewrite steps explicitly, following Poincaré's Principle: computations (rewriting) in proofs give no insight, they can be quickly reconstructed (by the checker) at will and are to be left implicit. Such a clerk/expert distinction has for instance been studied in the Foundational Proof Certificate project [START_REF] Miller | Foundational proof certificates[END_REF], at the proof level, with the help of focusing [START_REF] Chihani | A semantic framework for proof evidence[END_REF].

On the BWare benchmark, all statements proved by Zenon Modulo [START_REF] Bury | Automated deduction in the B set theory using typed proof search and deduction modulo[END_REF], that do not involve arithmetic, are actually declared well-typed by Dedukti [START_REF] Boespflug | The λΠ-calculus modulo as a universal proof language[END_REF], a type checker based on an extension of Deduction Modulo Theory to dependent types. Dedukti's rewriting ability made extremely smooth the reconstruction of rewriting : there is essentially nothing to do but to declare the rules.

The challenge is to keep this skeptical double-checking approach viable. We may need a depolarization of the proofs, perhaps following [START_REF] Burel | Regaining cut admissibility in deduction modulo using abstract completion[END_REF], or an substantial extension of Dedukti and its foundations to polarized rewriting, perhaps with the help of subtyping.

Fig. 2 :

 2 Fig. 2: The Additional Rule of Tableaux Modulo Theory

Fig. 3 :

 3 Fig. 3: The Additional Rule of Polarized Tableaux Modulo Theory

Fig. 4 :

 4 Fig. 4: Proof of a ⊆ a in Deduction Modulo Theory