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Abstract—Cloud computing is one of the most widely spreaded
platforms for executing tasks through virtual machines as pro-
cessing elements. However, there are various issues that need
to be addressed in order to be efficiently utilized for workflow
applications. One of the fundamental issues in cloud computing
is related to task scheduling. Optimal scheduling of tasks in
cloud computing is an NP-complete optimization problem, and
many algorithms have been proposed to solve it. Furthermore,
the existing algorithms fail to either meet the user’s Quality of
Service (QoS) requirements such as minimizing the makespan
and satisfying budget constraints, or to incorporate some basic
principles of cloud computing such as elasticity and heterogeneity
of computing resources. Among these algorithms, the Heteroge-
neous Earliest Finish Time (HEFT) heuristic is known to give
good results in short time for tasks scheduling in heterogeneous
systems. Generally, the HEFT algorithm yields good tasks exe-
cution time, but its drawback is that there is no load balancing.
In this paper, an enhancement of Heterogeneous Earliest Fin-
ish Time (E-HEFT) algorithm under a user-specified financial
constraint is proposed to achieve a well balanced load across
the virtual machines while trying to minimize the makespan
of a given workflow application. To evaluate the performance
of the enhancement algorithm, we compare our algorithm with
some existing scheduling algorithms. Experimental results show
that our algorithm outperforms other algorithms by reducing the
makespan and improving load balance among virtual machines.

Index Terms—scientific workflows; task scheduling; data de-
pendency; cloud computing; load balancing

I. INTRODUCTION

Cloud computing is a kind of Internet-based computing,
where virtually unlimited resources are provided on demand
and as services (i.e., IaaS, PaaS and SaaS, respectively). Cloud
computing has also emerged as a platform for executing
scientific workflows. Under this new paradigm, services and
storage resources are now delivered on a pay-as-you-go basis
[1], [2], where clients only pay for resources they actually
used and for the time they own them. Cloud clients are
consuming and producing a huge volume of data that should
be analyzed and processed, thus being considered as data-
intensive experiments. This large volume of data can be found

in many areas like astronomy [3], high-energy physics [4]
and bio-informatics [5], etc. Thus, scientists need to analyze
terabytes of data either from existing data resources or col-
lected from physical devices. In order to manage the execution
of these complex experiments, scientific workflows can be a
prominent solution. A scientific workflow [8] describes the
automation of scientific or general process and the set of rules
(dependencies). In other words, scientific workflows are sets of
elementary tasks and their dependencies. In addition, a given
client is interested in reducing the makespan. So, the scheduler
should efficiently fully utilize the available resources and make
sure that the load is globally well balanced.

In a scheduling algorithms, scientific workflow can be
viewed as a directed acyclic graph (DAG), where nodes
(or tasks) represent the computation and edges represent the
communication between them. The scheduler assigns a weight
for each node in the DAG, which represents the computation
cost, and assigns weights for edges corresponding to commu-
nication cost between nodes. In addition, scientific workflow
applications have many computations and tasks that generate
many intermediate large datasets with dependencies among
them. So, the scheduler should also take care of precedence
constraints between the set of tasks.

In its most general form, the problem of tasks scheduling
of a graph onto a set of different resources is an NP-Complete
problem [9]. As a result, over several years, a number of
heuristic algorithms suitable for DAG scheduling on hetero-
geneous resources have been suggested [10] that attempt to
strike a good balance between running time, complexity and
schedule quality [11], but still a lot of work needs to be done to
make scheduling in clouds more effective. The Heterogeneous
Earliest Finish Time heuristic (HEFT) [6] has been one of the
most often cited and used, with the advantage of simplicity and
generating generally good schedules with a short makespan.
However, HEFT algorithm lacks load balancing among the
machines of the cluster. In this paper, we extend our previous
work [7], which balances the load between datacentres and
afterwards minimizes the overhead of data exchanges, and



propose an enhancement of HEFT algorithm. In other words,
our scheduling algorithm aims to minimize the total execution
time of tasks as well as to achieve a well-balanced load across
all VMs in cloud environment, always obeying both budget
and precedence constraints imposed by the DAG. That is,
there are two objectives considered here. The first one is the
minimization of the tasks execution time. The second one is
to evenly distribute the workload among the virtual machines
of the entire cluster.

In this paper, in order to reduce the total execution time of
the workflow, we propose a scheduling approach that takes into
account the variety and heterogeneity of virtual machines in
a cloud computing cluster (e.g. different bandwidths, transfer
rates, and processing capacities). It also takes into account
the data distribution and data constraints all together within
the same solution, i.e. tasks and data transfers are scheduled
together by the E-HEFT. Thus, the scheduler defines the
distribution of tasks and data among the virtual machines
so it minimizes the total execution time and the unnecessary
data transfers. Then, our scheduling algorithm is simulated
using the CloudSim toolkit package [12], [13]. To evaluate
the performance of the enhancement algorithm, a comparative
study is done among some state-of-the-art algorithms.

The rest of the paper starts with a review of related works
in section 2. In section 3, we describe the task scheduling
problem, its formulation and our objective function. Sec-
tion 4 presents the proposed algorithm. Section 5 assesses
the applicability of our proposed solution and illustrates its
performance using Cloudsim simulator. Section 6 outlines a
conclusion and some future works.

II. RELATED WORK

In this section, we conduct a survey of related work on
different task scheduling techniques in cloud computing. Task
scheduling or module mapping for workflows has been inves-
tigated extensively in the literature in the past decade [14].

Many task scheduling algorithms have been proposed to
minimize the workflow makespan in heterogeneous environ-
ment such as Opportunistic Load Balancing (OLB) [15],
Minimum Execution Time (MET) [16] and Heterogeneous
Earliest Finish Time (HEFT) [6]. OLB assigns randomly each
task to the machine that is expected to be available, regardless
of the tasks expected execution time on that machine [17].
This algorithm aims to keep all machines as busy as possible.
One advantage of OLB is its simplicity. However, OLB does
not consider expected task execution times, the mappings it
finds can result in very poor makespan. In contrast to OLB,
Minimum Execution Time (MET) assigns randomly each task
to the machine with the best expected execution time for that
task, regardless of that machines availability [15], [16]. MET
aims to give each task to its best machine. This can cause a
severe load imbalance across machines. Earliest Finish Time
(HEFT) algorithm aims to minimize the overall execution time
of a DAG application in a heterogeneous environment. While
being effective at optimizing makespan, the HEFT algorithm
does not consider the budget constraint and load balancing

among the machines of the cluster when making scheduling
decisions. In [18], Chase et al. constructed analytical models
to quantify the network performance of scientific workflows
using cloud-based computing resources. In this work, they
designed a critical-greedy algorithm to minimize the workflow
end-to-end delay by defining a global budget level (GBL)
parameter and preassigns tasks with the budget-level execution
cost. However, this algorithm is designed for homogeneous
cloud environments, where the communication time between
tasks is assumed zero, which is not the case on heterogeneous
cloud computing systems.

In addition to single parameter optimization scheduling,
the task scheduling problem becomes more challenging when
two QoS parameters (i.e., time, cost and load balancing) are
considered simultaneously. The authors in [19] have studied
the problem of budget- constrained schedules of bag-of-tasks
problems on clouds. Authors have presented a scheduler which
is used to calculate the cost and performance of a scientific
workflow on multiple different clouds under budget-constraints
and offer viable options to the user. The work have focused
on a statistical method for estimating costs and application
makespan for a given bag on different clouds. Their work
however does not consider the problem of load balancing dis-
cussed in this paper. Another multi-objective algorithm named
Revised Discrete Particle Swarm Optimization (RDPSO) al-
gorithm was proposed by Wu et al. [20]. The algorithm
suggested by the authors, either optimizes cost or makespan
based on the budget and deadline constraints. For evaluating
cost, the data transmission costs and the computation costs are
taken into account. Different sets of workflows are used for
experimentation and comparisons are made with the standard
PSO and the BRS algorithms. This multiobjective model is
efficient and the results show that the RDPSO algorithm can
attain much more cost savings and reduces the makespan
than the existing PSO and BRS (Best Resource Selection)
algorithms.

A common drawback of the aforementioned approaches is
that they do not consider the load balancing among the cluster
machines. The proposed E-HEFT algorithm covers all of these
deficits and presents an approach that achieves well balanced
load across the machines and minimizes the makespan of
a given workflow application under a user-specified budget
constraint.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We start by refining the problem definition and then present
a background about HEFT algorithm. Recall that the problem
we are interested in this paper is performing the tasks of a
scientific workflow in a cloud computing environment while
taking into account the quality of service criteria, namely the
overall execution time and load balancing.

As illustrated in Fig. 1, there are three layers in the
system model for the workflow scheduling problem in cloud
environments [18]: the task graph layer which is comprised of
tasks with precedence constraints, the resource graph layer



Fig. 1: System model of workflow application scheduling on cloud Computing.

which represents a network of virtual machines, and the
cloud infrastructure layer consisting of a set of data centers
connected by network links. According to [21] the problem
of task scheduling in heterogeneous systems is finding proper
assignment of tasks to machines in order to optimize some per-
formance metrics such as resources utilization, load balancing
and execution time. A popular representation of a scientific
workflow application is the directed acyclic graph (DAG):
G(T,E), where T = {t1, t2, · · · , tn} is the set of tasks and E
is the set of directed edges between tasks. An edge eji of the
form (ti, tj) of graph G represents the precedence constraint
between these tasks, case in which ti is said to be the parent
task of tj and tj is said to be the child task of ti. Based on
this constraint, a child task can not be executed until all of its
parent tasks are completed. If there is data transmission from
ti to tj , the tj can start only after all the data from ti has
been received. A task without parent is called an entry task,
denoted tentry, whereas a task without child is called an exit
task, denoted texit. A sample workflow is shown in Fig 2.

The data exchanged between the virtual machines are rep-
resented by a n ∗ n matrix which is denoted by Dout, where
Dout[i, j] represents the amount of transmitted data from the
virtual machine VM(ti) that executes the task ti to the virtual
machine VM(tj) that executes the task tj . We assume that the
size of the output data Dout

ti produced by task ti is known in
advance. Let β be a matrix of dimension m ∗m representing
the bandwidth between the different virtual machines that
execute the workflow tasks. β[i, j] is the bandwidth between
the virtual machine VMi and the virtual machine VMj .
Note that this matrix is not necessarily symmetric. Indeed,
the bandwidth between VMi and VMj is not necessarily
the same as that between VMj and VMi. Fig 3 shows an
example of resources graph with transfer speeds (bandwidth)

between different virtual machines of a cloud environment.
The transfer time between two virtual machines executing the
tasks ti and tj , that is VM(ti) and VM(tj), is determined by
the amount of transferred data and bandwidth between these
virtual machines. Note that the transfer time between two tasks
running on the same VM equals 0. The transfer time TT is
calculated as:

TT (ti, tj) =
Dout[i, j]

β[i, j]
(1)

Let ET be a n∗m matrix, where ET (ti, V Mj) is the estimated
execution time of the task ti on the virtual machine VMj . The
real execution time of a task on a given virtual machine also
depends on the amount of its input and output data.

Fig. 2: An example of workflow application.



Fig. 3: Architectural model.

B. Background

Among the scheduling algorithms for heterogeneous system,
the Heterogeneous Earliest Finish Time (HEFT) algorithm
has been one of the most frequently cited and used because
of both its simplicity and good performance [6]. HEFT is a
natural extension of the classical list scheduling algorithm for
homogeneous systems to cope with heterogeneity, outperforms
other comparable algorithms in terms of minimization of the
execution time.

There are two phases for the algorithm. The prioritizing
phase for giving a priority to each task and a machine selection
phase for selecting a suitable machine that minimizes the
execution time. If two or more tasks have equal priority, then
the tie is resolved by selecting a task randomly. The last
phase is repeated until all tasks are scheduled on suitable
machines. This algorithm has relatively low complexity and
is very efficient when compared to other algorithms. Thus,
HEFT assigns first a weight to each node and edge of the DAG
based on the average computation and communication costs,
respectively [22]. Ranku represents the length of the longest
path from task ti to the exit node, including its computational.
It is recursively defined as:

ranku(ti) =W i + max
tj∈succ(ti)

(ci,j + ranku(tj)) (2)

Where succ(ti) is the set of immediate successors of the
task ti, ci,j is the average communication cost of edge eji ,
and W i is the average execution cost for task ti. Then, the
graph is traversed upwards and ranku value is assigned to
all nodes. For the exit task, ranku(texit) = W exit. Tasks are
then scheduled, in descending order of their rank value, on the
machine which gives the smallest estimated finish time.

C. Objective function

Before presenting the objective function, it is necessary to
define the ST and FT attributes, which are derived from a
given partial schedule. ST (ti) and FT (ti) are the earliest
starting time and the earliest finishing time of task ti, respec-
tively. For the input task tentry:

ST (tentry) = 0 (3)

FT (tentry) = ET (tentry, V Mj)) (4)

For the other graph tasks, the values of ST and FT are
calculated recursively, starting from the entry task. In order
to compute the FT of a task ti, all immediate predecessor
tasks of ti must have been assigned and scheduled with the
consideration of the transfer time as shown in equations 5 and
6:

FT (ti) = ST (ti) + min
VMj

{ET (ti, V Mj)} (5)

ST (ti) = max
tj∈pred(ti)

{FT (tj) + TT (tj , ti)} (6)

Where pred(ti) is the set of predecessors of the task ti.
We propose a scheduler S defined by a set of resources, a set
of tasks to schedule, the total execution time, and the total
execution cost. S = (T,R,ET (ti, V Mj), PC(ti, V Mj))

• T = {t1 · · · tn} is the set of tasks compose the Workflow
W.

• R = {VM1 · · ·VMm} is the set of virtual machines.
• ET (ti, V Mj) is the total execution time of the task ti on
VMj .

• PC(ti, V Mj):(Processing cost) is the total execution cost
of the task ti on VMj , which equals:
PC(ti, V Mj) = Cost(VMj) ∗ ET (ti, V Mj) (7)

Where Cost(VMj) is the cost of data processing per hour in
the virtual machine VMj , and ET (ti, V Mj) is the execution
time of the task ti on VMj .
The objective function of the overall execution time can be
defined as follows:

Makespan = min{FT (texit)} (8)

Therefore, the objective function is to efficiently assign tasks
of a given workflow application to virtual machines such that
its makespan is minimized.

Subject to:∑
ti∈T

PCti ≤ Budget(W ) (9)

∀t ∈ T | ∃! VMj ∈ R , µ(ti) = VMj (10)∑
ti∈rj

RAM(ti) ≤ RAM(VMj) (11)

∑
ti∈rj

IS(ti) +OS(ti) ≤ SC(VMj) (12)

The associated constraints are given in Eq. 9 to 12.
Constraint 9 ensures that the workflow processing cost must

be less or equal to the budget dedicated to this workflow.
Constraint 10 ensures that each task is scheduled on a single

virtual machine. Where µ is a matching function between the
set of tasks and the set of virtual machines.

Constraint 11 ensures that the total RAM required by all
tasks running on VMj should be less than the available RAM
on this virtual machine.

Constraint 12 ensures that the total disk space (input size
and output size) required by all tasks assigned to VMj should
be less than the storage capacity available on VMj .



IV. TASK SCHEDULING ALGORITHM

In this section, an algorithm to resolve the above mentioned
problems is proposed. The algorithm is consisted of four
phases. In the first phase, we specify the load threshold of each
machine based on both processing speed and storage capacity.
In the second phase, we define the datasets dependencies in
order to cluster the datasets into different datacenters based
on these dependencies. In the third phase, we group the set
of tasks by level, then we assign a value (Rank) for each task
based on the algorithm HEFT. Finally, we schedule these tasks
on its best machine bases on Matching Game theory.

A. Attribution of VMs threshold phase

The threshold represents the utilization storage percentage
for each machine that should not be exceeded. We will
attribute a threshold for each machine on the cluster based on
its storage capacity and data processing speed. For quantifying
and evaluating the performance of each machine for the sci-
entific workflow execution, we implement the HPC Challenge
(HPCC), which is benchmark designed to give a picture of
overall supercomputer performance including floating point
computer power, memory subsystem performance and global
network issues. It consists of seven separate workloads build-
ing on the success of the TOP500 list Linpack HPL based
workload [23].

In this paper, we first use the HPL (High-Performance
Linpack Benchmark) [24] measurement as a performance
value to know the real datacenter performance on the HPCC
benchmark. Then, we record the execution time of each
machine based on the output of HPL benchmark. After that,
the shortest execution time is used as a reference to normalize
the execution time measurements, in such a way we attribute
randomly the highest threshold to the machine that has the
shortest execution time. Then, the normalized values are used
to distribute an appropriate threshold to each machine on the
cluster. Thus that a high-speed machine will handle tasks more
than low-speed machine.

B. Specifying datasets dependencies phase

In our strategy, we initially adapted a dependency matrix to
represent the affinity between the datasets. Cloud workflows
can be complex, the execution of one task might require many
datasets. Furthermore, one dataset might also be required by
many tasks. So, we say that the datasets di and dj have a
dependency if there are tasks that will use di and dj together.
The dependency degree is the total number of tasks that
use both di and dj . We use dependencyij to denote the
dependency between the datasets di and dj and the quantity
of this dependency is the number of tasks that use both di
and dj . It can be calculated by counting the tasks in common
between the task sets of di and dj , which are denoted as Ti
and Tj .

dependencyij = card(Ti ∩ Tj) (13)

The dependency matrix is defined by: DM = {Ci,j , (1 6
i, j 6 m)}. For the elements in the diagonal of DM, each value

means the number of tasks that will use this dataset. DM is a
symmetric matrix of dimension m ∗m, where m is the total
number of existing datasets. We store the datasets that have
the highest dependency degree in the same datacenter based
on the total number of tasks that use these datasets as shown
in formula 14.

Max(dependencyij) (14)

As an example in Fig 4 (left side), we assume that we have
four datasets (d1, d2, d3 and d4), and we have also five tasks to
be processed (t1 to t5), the dependency matrix DM is shown
in Fig. 4 (right side).

C. Task sorting phase

The objective of this phase is to define the different levels
of a given workflow (DAG). Therefore, tasks belonging to the
same level can be execute concurrently. This is because two
tasks at the same level do not exchange data (or they are not
linked by precedence constraints). Then, a weight is assigned
to each node and edge of the graph, depending on processing
length of each task in all clusters machines and communication
length between tasks. Then, the graph is traversed upwards and
a value (rank) is assigned to each node at each level. The level
1 and the last level contains respectively the exit task texit and
the entry task tentry. Tasks are sorting in descending order in
the list based on their rank value.

For calculating rank value to give priority to sort tasks to
be executed, we use the rank function of the HEFT algorithm.
Algorithm 1 shows the pseudo code of the ranking method
of HEFT algorithm.

Algorithm 1: HEFT ranking algorithm

1 for each task ti in the graph (DAG) do
2 calculate average execution time on all VMs
3 if task ti is the last task then
4 rank value of ti = its average execution time
5 end
6 else
7 ranku(ti) =

W i +maxtj∈succ(ti)(ci,j + ranku(tj))
8 end
9 end

D. Virtual machine selection phase

The final phase of the proposed approach is to choose an
”optimal” virtual machine to run each of the workflow tasks.
We use game theory [25], which is a theoretical approach of
the game that provides appropriate solid mathematical tools
to study the considered issue and to allocate resources to
the workflow tasks on the basis of low cost, load balancing
and improved tasks execution time. So far, we have modeled
the problem of virtual machines selection as a many-to-one
matching game where the players are the tasks and the VMs.
Each task has the right to choose one VM. By contrast, the



Fig. 4: An example of dependecy matrix.

VMs can host one or more task respecting the maximum
number of quota qvm.

This choice based on the preferences list for all tasks
and virtual machines. The preference lists of each task on
the workflow PL(ti) = {VMj∗, · · · , } contains the set of
VMs, which are selected like potential sites. The elements
in preference list PL(ti) are put in an ascending order
according to the processing power of datacenters, their cost
processor, memory and storage capacity. So, that the one
having the best values of these parameters depending on the
requirement of the client has the highest rank. On the other
hand, The preference list of the jth virtual machine VMj is
PL(VMj) = {ti∗, · · · , }. These tasks are sorted in ascending
orders according to different parameters. The tasks are initially
prioritized according to the impact of these tasks on the use
of the virtual machine in terms of CPU , RAM , etc, such
that one having least impact has highest rank. Thus, the key
factor for prioritizing tasks is their CPU utilization ratio. As
a solution of virtual machines selection phase we used the
matching algorithm as shown in algorithm 2 based on the
deferred acceptance algorithm introduced in [26], which is a
well-known approach to solving the standard matching games.

An overview of our approach is given by algorithm 3 which
includes all the aforementioned phases.

V. PERFORMANCE EVALUATION

In this section, we present the experiments conducted in
order to evaluate the performance of the proposed E-HEFT
algorithm. The performance metrics, real world workflows
used in our experiments, experimental setup and experimental
results are shown in the following subsections.

A. Experimental setup

To evaluate a workflow scheduling algorithm, we should
measure its performance on some sample workflows. So, there
is a need for a good simulator for experimental purposes. One
such a simulator is CloudSim [27], which has been widely
adopted for the modeling and the evaluation of cloud-based
solutions. Particularly, CloudSim provides a generic broker
modeled as a class named DataCenterBroker, we extended

Algorithm 2: Task-VM matching algorithm
Input: Tasks’ preference lists, VMs’ preference lists .

1 while (∃ a free task ti that still has a VMj to propose
to) do

2 Task ti proposes to all VMs on its preference list.
3 if (qvmj ≥ 0) then
4 ti is assigned to the waiting list of VMj

5 else
6 Compare ti with the current tasks on the

waiting list for the VMj and reject the
task that has least preference.

7 end
8 end
9 The rejected tasks re-apply to their next best

choice.
10 Each VM update its waiting list based on its

preference list, and rejects the rest.
11 end

Output: Every ti is on a waiting list of one of the
VMs, and,thus, we have convergence to a
stable matching.

this class to support DAG-structured workflows and to model
the behavior of this component and its particular placement
policies. On the other hands, CloudSim is an extensible sim-
ulation toolkit that enables modeling and simulation of cloud
computing systems and application provisioning environments.
The Cloudsim could implement generic application provision-
ing techniques that can be extended easily with limited efforts.
According to the implementation using Cloudsim, the VMs are
considered as the cloud resources and Cloudlets as tasks/jobs.
We ran our experiment on one datacenter that contains 20
VMs, and the configuration of virtual machine is shown in
Table I. All experiments are performed on a Pentium(R) Dual-
Core processor with a speed of 2.8GHz and memory of 8GB.



(a) Montage

(b) CyberShake

Fig. 5: The structure of two realistic scientific workflows.

Algorithm 3: Task scheduling algorithm
Input: Workflow W, set of virtual machines VMs

1 Attribute a threshold for each Virtual machine
2 Defining Datasets Dependencies() by using the

dependency matrix
3 Read the DAG
4 Break W into set of levels L by traversing the DAG

upward.
5 K ← 1 ; // first level
6 while (K ≤ L) do
7 for each task in level k do
8 calculate rank value applying the HEFT

ranking algorithm
9 end

10 Sort the tasks in a scheduling list by descending
order of ranku values

11 Check tasks and virttual machines Preferences
Lists(PL)

12 Assign task ti to the best virtual machine VM
based on preferences list.

13 Apply Task-VM matching algorithm()
14 Remove ti from the level K
15 K ← K + 1
16 end
17 return Set of VMs with the mapping tasks.

TABLE I: Initial parameters of virtual machine

parameters of virtual machine Value
Number of VM cores 4

Mips of each core 2000MI
RAM 1GB

B. Experimental Workflows

In order to make the results more realistic, it is important to
conduct experiments using workload traces from a real system.
Bharathi et al. [28] investigate the characterizations of six
realistic workflows from diverse scientific applications, two
of which are used in our experiments, which are Montage for
astronomy and CyberShake for earthquake science. Montage
[29] is an astronomy application that was created by the
NASA/IPAC Infrared Science Archive as an open source
toolkit that can be used to construct large image mosaics of the
sky using input images in the Flexible Image Transport System
(FITS) format. The CyberShake [30] workflow is a seismology
application that calculates Probabilistic Seismic Hazard curves
for geographic sites in the Southern California region. Four
different sizes of these workflows are chosen, small (around 30
tasks), medium (around 100 tasks), large (1000 tasks) and x-
large (10000 tasks). Fig. 5 shows the approximate structure of
a small instance of each workflow used in our experiments. For
each workflow, tasks with the same color belong to the same
type. It can be seen that these two workflows have different
structures, data and computational requirements.

C. Performance metrics

The scheduling problem aims to minimize the total exe-
cution time of tasks as well as to achieve a well-balanced
load across all VMs in cloud. That is, there are two factors
considered here. The first one is the minimization of the tasks
completion time. The second one is the evenly distribution
of the workload among virtual machines. So, the two metrics
used to evaluate the scheduling approaches are makespane and
degree of imbalance (DI).
• Makespan:is the maximum needed time to complete the

execution of all tasks.

makespan = max
i∈{1,···k}

{FT (tiexit)} (15)



Where tiexit , i ∈ {1, · · · k} are the independent tasks that
should to run in parallel to complete the execution of the
workflow.

• Degree of imbalance (DI): to measure degree of imbal-
ance (DI) of all virtual machines on the cluster, we use
the following formula:

DI =
Lmax + Lmin

Lavg
(16)

Where L is a load of a VM on the cluster, and equals:

L =
tasklength(VMj)

C(VMj)
(17)

Where tasklength(VMj) is the total length of tasks
submitted to the VMj and C(VMj) = penumj ∗pemipsj

is the capacity of a VMj , with penumj is the number of
processors in VMj and pemipsj is the million instructions
per second of all processors in VMj .

D. Result analysis

We compared our E-HEFT algorithm with the Heteroge-
neous Earliest Finish Time (HEFT) [6] and MinMin Task
Scheduling Heuristic (MinMin-TSH) [31]. The MinMin-TSH
algorithm is a widely-used scheduling algorithm. This is a
task-based greedy algorithm that allocates each ready-to-run
task to a machine based only on the local information of that
task. There are two phases in MinMin-TSH algorithm. In the
first phase it finds the minimum execution time of all tasks.
Then in the second phase it select the tasks with the minimum
execution time among all the tasks and assign that task on
that resource. The same procedure is repeated by MinMin-
TSH algorithm until all tasks are scheduled. We have chosen
MinMin-TSH [31] algorithm and HEFT [6] because these
heuristics run in polynomial time, produce efficient schedules
and have been used as baselines in many related works.

The makespan results (the average of 5 executions) for the
Montage and Cybershake DAGs are shown in Fig 6, while
Fig. 7 shows the comparison of degree of imbalance between
E-HEFT, HEFT and MinMin-TSH Algorithms. According to
the experimental results in Fig 6, it can be seen that the total
running time of scientific workflows lengthens with increase
of the number of submitted tasks. It is clearly evident from
the graph that E-HEFT is more efficient when compared with
other two algorithms based on both workflows. According to
Montage workflow, our proposed algorithm (E-HEFT) outper-
forms HEFT and MinMin-TSH algorithms in terms of the
average makespan of the submitted tasks by 21.37%, and
28.98% respectively as shown in Fig 6a. On the other hand,
The E-HEFT showed an average improvement of 26.07% in
relation of HEFT and 21.93% in relation of MinMin-TSH
based on Cybershake workflow as shown in Fig 6b. It is worth
mentioning that makespan is closely pertinent to the volume
of data movement for data intensive workflow. So, we can
state that those improvements variations are mainly due to
the volume of data that is transferred among activities in each
workflow. Compared with two other algorithms, our algorithm
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Fig. 6: Average makespane of the three algorithms based on
Montage and CyberShake workflows.

incurs less data movement during scientific workflow execu-
tion due to the datasets dependencies specified in the second
phase of our algorithm.

From Fig 7, it can be seen that our algorithm (E-HEFT) can
effectively balance the load among all virtual machines and has
a lesser degree of imbalance when compared with other two
algorithms. This is due to the attribution of VMs utilization
threshold specified in the first phase of our algorithm.

VI. CONCLUSION AND FUTURE WORK

Task scheduling is one of the main issues in cloud com-
puting. Efficient task scheduling is essential for achieving
good system performance. In this paper, we have proposed an
enhancement of Heterogeneous Earliest Finish Time algorithm
(E-HEFT) for achieving tasks scheduling with load balancing
among virtual machines. The main idea of the enhancement
algorithm is first attribute a utilization threshold for each
VM that should not to be exceeded. Then, it specifies the
datasets dependencies to store the dependent datasets on the
same datacenter. After that, the set of tasks are sorted based
on the rank value of the HEFT algorithm. Finally, we have
used matching game theory for selecting virtual machines to
execute the submitted tasks. To evaluate the performance of
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Fig. 7: Comparison between algorithms (E-HEFT, HEFT and
MinMin-TSH) based on degree of imbalance.

our algorithm, we have compared our proposed algorithm with
some existing techniques based on the execution time (i.e.,
makespan) and degree of imbalance (DI). The experimental
results show that our algorithm not only balances the load,
but also takes less time to execute tasks compared to the two
other algorithms. In the future, we plan to extend the proposed
work to take into account others criteria like execution cost.
We also aim to improve our algorithms to run in real cloud
environments, such as Amazon so that it can be utilized for
deploying applications in real life environments.
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