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1. Introduction

2. The incompressible Navier-Stokes equations in the Variational
Multi-Scale framework

2.1. The incompressible Navier-Stokes equations

To fix the notations, let Ω ⊂ Rd be the fluid domain, where d is the space
dimension, and ∂Ω its boundary. The strong form of the incompressible
Navier Stokes equations reads:{

ρ (∂tv + v · ∇v)−∇ ·σ = f
∇ ·v = 0

(1)

where t ∈ [0, T ] is the time, v(x, t) the velocity, p(x, t) the pressure and ρ
the density. The Cauchy stress tensor for a Newtonian fluid is given by:

σ = 2µ ε(v)− p Id, (2)

with Id the d-dimensional identity tensor and µ the dynamic viscosity. In
order to close the problem, Eq. (1) are subject to the homogeneous Dirichlet
boundary conditions.

The weak form of problem (1) combined with (2) is obtained by mul-
tiplication of a test function and integration by parts. Let H1(Ω) be the
Sobolev space of square integrable functions whose distributional deriva-
tives are square integrable, and let V ⊂ [H1(Ω)]

d
be a functional space

properly chosen according to the boundary conditions. Finally, let Q =
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{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. By denoting ( · , · ) the scalar product of the space

L2(Ω), the weak form of problem (1) on ∂Ω reads:
Find (v, p) ∈ V ×Q such that:

ρ [(∂tv,w) + (v · ∇v,w)] + (2µε(v) : ε(w))− (p,∇ ·w) = (f ,w) , ∀w ∈ V
(∇ ·v, q) = 0, ∀q ∈ Q.

(3)
where ρ and µ are the density and the dynamic viscosity, respectively.

The standard Galerkin approximation consists in decomposing the dom-
ain Ω into Nel elements K such that they cover the domain. Therefore, the
elements are either disjoint or share a complete edge (or face in 3D). Using
a partition Th, the above-defined functional spaces V and Q are approached
by finite dimensional spaces Vh and Qh such that:

Vh = {vh|vh ∈ C0(Ω)n,vh|K ∈ P 1(K)n, ∀K ∈ Th} (4)

Qh = {ph|ph ∈ C0(Ω)n, ph|K ∈ P 1(K)n, ∀K ∈ Th} (5)

The Galerkin discrete problem consists therefore in solving the following
mixed problem:

Find (vh, ph) ∈ Vh ×Qh such that:

ρ [(∂tvh,wh) + (vh · ∇vh,wh)] + (2µε(vh) : ε(wh))− (ph,∇ ·wh) = (f ,wh) , ∀wh ∈ Vh
(∇ ·vh, qh) = 0, ∀qh ∈ Qh.

(6)
It is well known that the stability of the semi-discrete formulation requires

an appropriate choice of the finite element spaces Vh and Qh that must fulfill
a compatibility condition [1]. Accordingly, the standard Galerkin method
using P1/P1 elements (i.e. the same piecewise linear space for Vh and Qh)
is not stable. Moreover, convection-dominant problems (i.e. problems where
the convection term v · ∇v is much larger than the diffusion term ∇ · (2µ ε))
also lead to a loss of coercivity in the formulation (3). This phenomenon
manifests itself as oscillations that pollute the solution.

2.2. The Variational Multi-Scale formulation

In this work, we use a Variational MultiScale method[2] which circum-
vents both the previously stated problems through a Petrov-Galerkin appro-
ach. The basic idea is to consider that the unknowns can be split into two
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components, a coarse one and a fine one, corresponding to different scales or
levels of resolution. First, we solve the fine scales in an approximate manner
and then we replace their effect into the large-scale equation. We present here
only an outline of the method, and the reader is referred to[3] for extensive
details about the formulation.

2.2.1. Basic principles of the multiscale approach

Let us split the velocity and the pressure fields into resolvable coarse-scale
and unresolved fine-scale components: v = vh + v′ and p = ph + p′. The
same decomposition can be applied to the weighting functions: w = wh+w′

and q = qh + q′. Subscript h is used hereafter to denote the finite element
(coarse) component, whereas the prime is used for the so called subgrid scale
(fine) component of the unknowns. The enrichment of the functional spaces is
performed as follows: V = Vh⊕V ′, V0 = Vh,0⊕V ′0 and Q = Qh⊕Q′. Thus, the
finite element approximation for the time-dependent Navier-Stokes problem
reads:

Find(v, p) ∈ V ×Q such that:

ρ (∂t(vh + v′), (wh + w′))Ω + ρ ((vh + v′) · ∇(vh + v′), (wh + w′))Ω + (2µεεε(vh + v′) : εεε(wh + w′))Ω

− ((ph + p′),∇ · (wh + w′))Ω = (f , (wh + w′))Ω , ∀w ∈ V0

(∇ · (vh + v′), (qh + q′))Ω = 0, ∀q ∈ Q.
(7)

To derive the stabilized formulation, we split Eq. (7) into a large-scale
and a fine-scale problem. Integrating by parts within each element, we obtain
the so-called coarse-scale problem:

ρ (∂t(vh + v′),wh)Ω + ρ ((vh + v′) · ∇(vh + v′),wh)Ω + (2µεεε(vh) : εεε(wh))Ω

− ((ph + p′),∇ ·wh)Ω = (f ,wh)Ω , ∀wh ∈ Vh,0
(∇ · (vh + v′), qh)Ω = 0, ∀qh ∈ Qh.

(8)
and the so-called fine-scale problem:

ρ (∂t(vh + v′),w′)K + ρ ((vh + v′) · ∇(vh + v′),w′)K + (2µεεε(vh) : εεε(w′))K
− ((ph + p′),∇ ·w′)Ω = (f ,w′)Ω , ∀w′ ∈ V ′0

(∇ · (vh + v′), qh)Ω = 0, ∀q′ ∈ Q′.
(9)
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where ( · , · )Ω represents the scalar product on the whole domain while ( · , · )K
is the scalar product on element K.

To derive our stabilized formulation, we first solve the fine scale problem
(9), defined on the sum of element interiors and written in terms of the time-
dependent large scale variables. Then we substitute the fine scale solution
back into the coarse problem (8), thereby eliminating appearance of the fine-
scale while still modelling their effects. As in [3]; we recall here 3 important
remarks/assumptions that have to be made:

• by considering the small scale velocity as bubble functions vanishing
on the boundaries of the element, terms involving integrals over the
element interior boundaries will be neglected,

• we neglect the second derivatives of the weighting function in the mo-
mentum residuals of (9),

• as the fine-scale space is assumed to be H1-orthogonal to the finite
element space, crossed viscous terms vanish in (8) and (9).

2.2.2. The fine scale sub-problem

Under several assumptions about the time-dependency and the non-linearity
of the momentum equation of the sub-scale system detailed in [3], the fine-
scale solutions v′ and p′ can be written in terms of the time-dependent large-
scale variables using residual-based terms that are derived consistently. For
all K ∈ Th, we have:

v′|K = τKRM

p′ ≈ τCRC
(10)

where the momentum residual RM and the continuity residual RC are ex-
pressed as:

RM = f − ρ∂tvh − ρvh · ∇vh −∇ph
RC = −∇ ·vh

(11)

In this work, we adopt the definition proposed by Codina in [4] for the
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stabilizing coefficient:

τK =

[(
2ρ‖vh‖K
hK

)2

+

(
4µ

h2
K

)2
]− 1

2

, (12)

τC =

[(
µ

ρ

)2

+

(
c2‖vh‖K
c1hK

)2
] 1

2

(13)

where hK is the characteristic length of the element and c1 and c2 are algo-
rithmic constants. We take them as c1 = 4 and c2 = 2 for linear elements.
‖vh‖K is the coarse scale velocity norm on the element, defined by:

‖vh‖K =
√

v2
x,h + v2

y,h (14)

2.2.3. The coarse scale sub-problem

Let us consider the coarse scale problem (8). Taking into account the
assumptions prescribed in [3] and recalled in Section 2.2.1 for the fine scale
fields, the large-scale system becomes:

ρ (∂tvh,wh)Ω + (ρvh · ∇vh,wh)Ω + (ρvh · ∇v′,wh)Ω + (2µεεε(vh) : εεε(wh))Ω

− (ph,∇ ·wh)Ω − (p′,∇ ·wh)Ω = (f ,wh)Ω , ∀wh ∈ Vh,0
(∇ ·vh, qh)Ω + (∇ ·v′, qh)Ω = 0, ∀qh ∈ Qh.

(15)
Then, integrating by parts the third term in the first equation and the

second term in the second equation of (15) and substituting the expressions of
both the fine-scale pressure and the fine-scale velocity of (10), the large-scale
system reads:

ρ (∂tvh,wh)Ω + (ρvh · ∇vh,wh)Ω −
∑

K∈Th (τKRM, ρvh∇wh)K + (2µεεε(vh) : εεε(wh))Ω

− (ph,∇ ·wh)Ω −
∑

K∈Th (τCRC,∇ ·wh)K = (f ,wh)Ω , ∀wh ∈ Vh,0
(∇ ·vh, qh)Ω −

∑
K∈Th (τKRM,∇qh)K = 0, ∀qh ∈ Qh

(16)
Finally, substituing the residuals of the momentum equation and develop-

ping all the additional terms, we obtain a modified coarse scale formulation
expressed exclusively in terms of coarse scale variables. The new modified
problem for linear tetrahedral elements can now be decomposed into four
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main term: the first one is the standard Galerkin contribution, the second
and the third terms take into account the influence of the fine-scale velocity
on the finite element components and the last term models the influence of
the fine-scale pressure onto the large-scale problem. We finally get:

ρ (∂tvh + vh.∇vh,wh)Ω + (2µεεε(vh) : εεε(wh))Ω − (ph,∇.wh)Ω + (∇.vh, qh)Ω − (f ,wh)Ω

+
∑
K∈Th

τK (ρ(∂tvh + vh.∇vh) +∇ph − f , ρvh∇wh)K

+
∑
K∈Th

τK (ρ(∂tvh + vh.∇vh) +∇ph − f ,∇qh)K

+
∑
K∈Th

(τC∇ ·vh,∇ ·wh)K = 0 ∀wh ∈ Vh,0 , ∀qh ∈ Qh

(17)
Compared to the standard Galerkin method, the proposed stable formu-

lation involves additional integrals that are evaluated element-wise. These
additional terms represent the stabilizing effect of the sub-grid scales and are
introduced in a consistent way in the Galerkin formulation. They make it
possible to avoid instabilities caused by both dominant convection terms and
incompatible approximation spaces.

3. A posteriori error estimation on solution’s subscales

In this paper, the first objective is to compute an a posteriori subscales
error estimator for the incompressible Navier-Stokes equation. To do so, we
will use two different approach. The first one is based on the computation
of the stabilizing parameters proposed in the previous section. The second
one however, is based on the building of high order bubble functions on the
element.

3.1. Computation of the error estimator with the stabilizing parameters ap-
proach

The stabilizing parameter approach for the a posteriori error estimator
computation consists in using the assumptions made in Section 2.2.2. In
fact, the application of the VMS approach leads to an approximation of the
sub-grid variables v′ and p′ using an explicit expression taking into account
the residuals and the stabilizing parameters (see Eq. 10). Therefore, it is
possible to compute an element-wise expression of the sub-grid variables.
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Considering v′, for all K ∈ Th, we have:

v′|K ≈ τKRM

v′|K ≈ τK × (f − ρ∂tvh − ρvh · ∇vh −∇ph)

v′|K ≈
[(

2ρ‖vh‖K
hK

)2

+
(

4µ
h2K

)2
]− 1

2

× (f − ρ∂tvh − ρvh · ∇vh −∇ph)
(18)

For here, we can compute 3 different type of norms for v′|K . We denote
these 3 norms Lr with r = 1, 2, ...,∞. In practice, as referred in [5], it is
recommend to take r = 1, 2. We thus get:

‖v′‖Lr(K) ≈

∥∥∥∥∥
[(

2ρ‖vh‖K
hK

)2

+
(

4µ
h2K

)2
]− 1

2

× (f − ρ∂tvh − ρvh · ∇vh −∇ph)

∥∥∥∥∥
Lr(K)

‖v′‖Lr(K) ≈
[(

2ρ‖vh‖K
hK

)2

+
(

4µ
h2K

)2
]− 1

2

× ‖ (f − ρ∂tvh − ρvh · ∇vh −∇ph) ‖Lr(K)

(19)
If we take, for example r = 2, we get:

‖v′‖Lr(K) ≈

[(
2ρ‖vh‖K
hK

)2

+

(
4µ

h2
K

)2
]− 1

2

×
√
|K|×

√ ∑
16i6Ninterp

‖(f − ρ∂tvh − ρvh · ∇vh −∇ph) (xi)‖2

(20)
where (xi)16i6Ninterp

are the interpolation points of the element and Ninterp

is the number of interpolation points.

In the same way, considering p′ we have:

p′ ≈ τCRC

p′ ≈ τC × (−∇ ·vh)

p′ ≈
[(

µ
ρ

)2

+
(
c2‖vh‖K
c1hK

)2
] 1

2

× (−∇ ·vh)
(21)

Taking the Lr norm, we get:

‖p′‖Lr(K) ≈

∥∥∥∥∥
[(

µ
ρ

)2

+
(
c2‖vh‖K
c1hK

)2
] 1

2

× (−∇ ·vh)

∥∥∥∥∥
Lr(K)

‖p′‖Lr(K) ≈
[(

µ
ρ

)2

+
(
c2‖vh‖K
c1hK

)2
] 1

2

× ‖(−∇ ·vh)‖Lr(K)

(22)
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In the same way, taking for example r = 2, we get:

‖p′‖Lr(K) ≈
[(

µ
ρ

)2

+
(
c2‖vh‖K
c1hK

)2
] 1

2

×
√
|K| ×

√∑
16i6Ninterp

‖(−∇ ·vh) (xi)‖2

(23)
where (xi)16i6Ninterp

are the interpolation points of the element and Ninterp

is the number of interpolation points.

Finally, we obtain two subscales error estimators ‖v′‖Lr(K)‖ and p′‖Lr(K)

in the Lr norm for the subscales variables v′ and p′ respectively. These error
estimators are computed thanks to the stabilizing parameters τK and τC.
Furthermore, they are both computed element-wise and can be used as such
in mesh adaptation.

3.2. Computation of the error estimator with the high order bubbles functions
approach

Another way to compute the a posteriori error estimates for the incom-
pressible Navier-Stokes equation is by using the error analysis developed by
Hauke et al. in [5]. In this paper, Hauke et al. derive three different er-
ror estimators: the standard, the naive, and the upper bound. It is applied
to multidimensional linear systems and in particular, to the incompressi-
ble Navier-Stokes equations. Therefore we will adopt the notation taking
Y : Ω −→ Rneq the solution vector with neq the number of equations of the
system (which coincides with the number of unknowns). In our case, in a 3D
computation, we have:

Y(x) =


vx(x)
vy(x)
vz(x)
p(x)

 (24)

Using the variational multiscale method, as before, we introduce a sum
decomposition of the exact solution Y(x) into the finite element solution
(coarse scale) Yh(x) and the error (or subscales) Y′(x). We do likewise for
the weighting function. We have:

Y(x) = Yh(x) + Y′(x) (25)

Then, the method consists first in the splitting of the subscales error
into two component stemming from the element interior residuals and the
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boundary element residuals, namely:

Y′(x) = Y′int(x) + Y′bnd(x) (26)

Using the triangle inequality, we can write for each component [5]:

‖Y′i(x)‖ 6 ‖Y′i, int(x)‖+ ‖Y′i, bnd(x)‖ (27)

Using the same assumptions than in Section 2.2.1 for highly convective regi-
mes, and considering the small scale variables as bubble functions vanishing
on the element boundaries, we can write:

‖Y′i, bnd(x)‖ ≈ 0 (28)

Therefore, we have:
‖Y′i(x)‖ 6 ‖Y′i, int(x)‖ (29)

As referred in [5] the naive approach concerning the a posteriori error
estimates gives local efficiencies close to unity. Therefore, we choose this
approach to estimate the error. According to Hauke et al., we have:

‖Y′i, int(x)‖ ≈ meas(K)1/r
∑
j

τeLr,ij ‖Rj(x)‖L∞(K) (30)

with:

R(x) =


RM,x(x)
RM,y(x)
RM,z(x)
RC(x)

 (31)

and:

τeLr =
1

meas(K)1/r
‖Be

0(x)‖Lr(K) (32)

where Be
0 is a matrix residual-free bubble defined in [? ? ? ].

For example, if we take i = x, we get:

‖v′x, int(x)‖ ≈ meas(K)1/r ×
(
τeLr,xx ‖RM,x(x)‖L∞(K) + τeLr,xy ‖RM,y(x)‖L∞(K) + τeLr,xz ‖RM,z(x)‖L∞(K) + τC,x‖RC(x)‖L∞(K)

)
(33)
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