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
 

Abstract— This paper presents a methodology for estimating 

the optimal amount of automatic Frequency Restoration Reserve 

provided by an aggregation of renewable power plants. The 

increasing penetration of distributed weather-dependent 

renewable generation presents a challenge to grid operators. 

Wind and photovoltaic power plants are technically able to 

provide ancillary services, but their stochastic behavior currently 

hinders their integration into reserve mechanisms. In the 

methodology developed a Quantile Regression Forest model is 

used to forecast the aggregated production and a copula-based 

approach integrates the dependence between prices and 

renewable production. We then propose and compare three 

strategies to derive an optimal quantile of the combined 

production forecasts that can be used as basis to provide a 

reliable ancillary service to the System Operator. The 

methodology is evaluated using historical prices for energy and 

automatic Frequency Restoration Reserve along with production 

measurements from several renewable power plants. 

 

Index Terms— Aggregation, Ancillary services, Flexibility, 

Forecasting, Photovoltaic power systems, Smart grids, Virtual 

power plant, Wind energy 

NOMENCLATURE 

Indices 

 ,   
Upward reserve , Downward reserve 

emp  Empirical copula 

k  Forecast horizon 

kurto  Kurtosis of weather variable over grid points around plant 

k  Product length of aFRR capacity 

skew  Skewness of weather variable over grid points around plant  
t  Forecast runtime 
  Index of tree in Quantile Regression Forests 
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W , PV  Wind and Photovoltaic plants 

Sets 

X̂  Numerical Weather Predictions  

S  Portfolio of plants in the Virtual Power Plant 

Decision variables 

R  Nominal value of the quantile selected for reserve 

R
opt  Nominal value of the optimal quantile for reserve 

k,tÊ  Day-ahead energy offer [MW] 

k,tR̂   Day-ahead symmetrical reserve offer [MW] 

Parameters 

Râ
 

Expected activation probability for aFRR 

h̂
 

Estimated mean in imbalance price regimes, for hour h 

*
ii ,

 
Lagrange multipliers of Support Vector Regression (SVR) 

b
 

Affine coefficient of functional in SVR 

V  Coefficient of exogenous variable in day-ahead price model 

ĉ , Ĉ
 

Copula density, Copula cumulative distribution function 

RE̂  
Expected day-ahead price spread between energy and reserve 
[€/MW.h] 

REP  
Random variable: day-ahead price spread between day-ahead 

energy and reserve [€/MW.h] 

*
RE̂  

Expected real-time price spread between net penalties for energy 

and reserve [€/MW.h] 

*
REP 

Random variable: real-time price spread between net penalties for 
energy and reserve [€/MW.h] 

t  White noise on day-ahead price moving average, at time t 

1

XY
F̂  Inverse cumulated density function of aggregated production 

forecast [MW] 

i  Auto-regression coefficient of day-ahead price at lag i 

m  Steepest gradient at iteration m of Gradient Boosting Tree  

K
 

Kernel of Kernel Density Estimator Copula 

L̂ , M̂
 

Load and Margin forecast at market level 

hp̂  
Estimated unconditional probability of  imbalance energy price 
regime, for hour h 

*
E̂  

Expected net energy imbalance price [€/MWh] 

E
̂

 
Expected energy price on day-ahead market [€/MWh] 

bIm
E̂  Expected energy imbalance price [€/MWh] 

RE̂  Expected price for energy activated aFRR reserve [€/MWh] 

R̂  Expected capacity price on day-ahead aFRR market [€/MW.h] 
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
R

ˆ
 

Expected average symmetrical aFRR price including capacity and 

activation [€/MW.h] 

*
R̂ 

Expected net aFRR reserve penalty price for reserve deficit 

[€/MW.h] 

RERˆ 
 

Expected average aFRR price (capacity+ activation energy) 
[€/MWh] 


 m,REP

q
 
Estimated quantile of price spread at iteration m 

iR  
Infra-marginal reserve capacity at index i in the merit-order list 
[MW] 

 aFRR demand activated by the TSO at each time-step [MW] 

ŝ h2

 
Estimated log-normal variance of imbalance energy drop/spike 
price regime, for hour h 

 
Moving-average coefficient of day-ahead price regression residual 

at lag j 

 Regression tree of loss gradient at iteration m of Gradient Boosting 

Tree  

 Regression tree of quantile response variable at iteration m of 

Gradient Boosting Tree 

TS Thresholds in distribution of spike/drop imbalance energy prices 

U Cumulated distribution function of production 

V Cumulated distribution function of price spread 

 Weight function of regression tree for learning set index i 

Ŵ
 

Wind power forecast at market level 


 

Number of trees in the Quantile Regression Forests model 

X
 

Multivariate explanatory variable for production forecast 

REPX
 

Multivariate explanatory variable for price spread forecast 

 Installed aggregated active power capacity [MW] 

 
Random variable: aggregated power production [MW]  

 Indicator function 

I. INTRODUCTION 

UE to their inherent dependency on weather conditions, 

the intermittent production of wind and photovoltaic 

(PV) power plants impacts the way power systems are 

operated, with consequences on the system stability and 

quality of service. However, studies have identified that wind 

and photovoltaic (PV) power plants show technical 

capabilities to provide Ancillary Services (AS) such as 

frequency support to the grid [1]. Moreover, Transmission 

System Operators (TSO), like that of Ireland, are starting to 

integrate specific regulations for frequency control from wind 

power plants into their grid codes [2]. Studies of the French 

TSO show that participation of wind power in downward 

reserve and balancing could generate a global economic 

revenue of 3 k€/MW.year [3].  

Automatic Frequency Restoration Reserve (aFRR) is the 

second level of frequency control, deployed after Frequency 

Containment Reserve to restore frequency to its nominal 

value. Experiments conducted within the project 

Kombikraftwerk 2 in Germany have shown that aggregated 

renewable plants controlled by a Virtual Power Plant (VPP) 

can regulate their output according to aFRR signals, but with 

transient excursions outside the tolerance bands defined by 

TSOs‟ prequalification schemes [4]. Market conditions for 

aFRR are still heterogeneous in Europe, but regulators are 

moving towards advanced levels of harmonization to reach 

more liquid markets of balancing and reserve. The draft 

regulation on electricity balancing published by the European 

Commission [5] requires TSOs to develop market 

methodologies based on pay-as-cleared pricing. Current 

discussions within ENTSO-E propose a minimal aFRR bid 

size of 1 MW, and that only integer values should be accepted 

[6]. The German regulator is considering shortening the lead-

time of its aFRR tender from one week to one day, with a 

product length shortened to blocks of 4 hours [7]. Such a 

product length is coherent with the duration of consumption 

peaks and valleys. It is also likely to increase the opportunity 

for wind and PV to offer substantial reserve capacities. 

Several studies have looked into AS offer strategies from 

renewables, including technical and economic constraints. A 

Belgian experiment [8] issued day-ahead offers of downward 

aFRR capacities for product lengths of 15 minutes. Forecasted 

production below a capacity dead-band (10-20% of installed 

capacity) was discarded for potential offers, because the 

quality of pitch-based power regulation was found to 

deteriorate in these low wind speed conditions. In case of 

sufficient forecasted production, volumes of 5 to 10 MW were 

proposed for the existing reserve market without affecting the 

market clearings. The observed reliability of the offer (defined 

as the difference in volume between offered reserve capacity 

and measured feed-in, compensated for any reserve activation) 

is 99.3%. In [9] Jansen models reserve bids based on 

opportunity costs or profit maximization. Capacity volumes 

are chosen from a forecast quantile, whose nominal value 

matches the observed reliability of reserve offers by 

conventional plants (99%-99.994%). The profit maximization 

bids use perfect price forecasting to place reserve offers at the 

marginal capacity price of the merit-order list, hence 

delivering an upper bound of revenues for a given offered 

volume. An analytical model of optimal quantiles for a joint 

day-ahead offer of primary reserve and energy is proposed by 

[10] for a wind power plant in Denmark: the expected revenue 

is found to increase from  3% to 12% depending on the 

methodology chosen. While the combination of renewables 

and storage for aFRR provision has been investigated, see for 

instance wind/pumped hydro in [11], aFRR offers originating 

from an aggregation of wind and PV have not been treated 

frequently in the literature. The interest of combining wind 

and solar power plant within the same VPP comes primarily 

from the industry itself since aggregators often develop 

portfolios integrating both technologies. This is the case 

developed within the frame of the EU demonstration project 

REstable, where a VPP of an aggregated capacity in the order 

of 100 MW is developed to provide aFRR [12]. The 

combination of Wind and PV to supply AS is valid in various 

climate zones, and may be a leading option for regions where 

hydro, which is a conventional renewable-based provider of 

AS, has limited resources.  The interest of a VPP based solely 

on wind power and PV is also to propose a solution with 

reduced upfront investment costs compared to thermal plants, 

hydro plants and electrochemical storage: the marginal costs 

of wind power and PV are close to zero, and the required 

investment in control and software to meet with technical 

demand
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qualification standards is comprised between 5% and 13% of 

the total investment for a wind farm [1]. The aFRR offer of a 

small VPP composed of wind power and PV, derived from the 

aggregated production forecast, was compared in [13] with 

aFRR offers issued separately by the wind and PV plants 

making up the VPP. In this case the aggregation permits to 

capture the dependence between production uncertainties of 

wind power and PV, and leads to higher reserve capacities 

than in the case of separate offers by each plant. 

Precise production forecasts are a necessary input in reserve 

offering strategies. For the forecasting horizon of interest in 

the present paper (day-ahead, look-ahead time from 12h to 

48h), the forecast of wind and PV production relies on 

Numerical Weather Predictions (NWP) [14]. An exhaustive 

review of the state of the art on existing methods is given in 

[15]. Among the existing models, in this work we consider the 

Quantile Regression Forests (QRF) model, which is a well-

established probabilistic model for wind and PV power 

forecasting, and figures among the best performing models for 

both wind and PV forecasting [16]. Almeida et al. found that a 

training period shorter or equal to 15 days was sufficient for 

QRF prediction of PV power  [17]. They also proposed to 

filter the training data by days showing an empirical 

distribution similar to the distribution of the NWP on the day 

to forecast, which improves performance. More advanced 

models applicable to both wind and PV are available but 

generally involve a higher computational burden or greater 

complexity, see for instance the approaches using gradient 

boosting proposed by Huang and Perry for PV [18] and Nagy 

et al for wind [19]. The forecast of aggregated solar or wind 

production is an emerging topic in the literature (see [20]–

[22]). To our knowledge, little has been published on the 

aggregated forecasting of both wind and PV plants. The 

production forecast of a VPP combining wind and PV plants 

proposed in [13] is based on a model combining k-Nearest 

Neighbors and a bivariate Kernel Density Estimator. This 

model is adapted to aggregations where plants featuring the 

same technology experience similar weather conditions (i.e. 

located within the same region).  

Having considered the state of the art of AS offer strategies 

and the forecasting of renewable energy production, this paper 

makes the following original contributions: 

- A probabilistic forecast of the aggregated production of 

geographically dispersed PV and wind power plants, 

- A methodology to derive optimal day-ahead offers of 

aFRR and energy using probabilistic forecasts of 

production and price spreads, 

- A non-parametric copula that models the non-linear 

dependence between price spreads and VPP production, 

to adjust the reserve offer when renewable production is 

likely to affect prices, 

- a comparison of the impact on revenue of using 

deterministic or probabilistic price forecasts. 

To the best of the authors‟ knowledge, these topics have 

only marginally been treated together. The proposed 

integrated approach deals with the challenges of each part of 

the complex modelling chain.  

We begin by formulating the problem of optimal offers of 

aFRR and energy in Section II. The proposed methodology is 

presented in Section III and the methodology for production 

forecasting is detailed in Section IV. Strategies to derive offers 

are developed in Section V, simulated in Section VI and tested 

on a real-world case study in Section VII. We conclude in 

Section VIII. 

II. PROBLEM STATEMENT 

The objective of this work is to derive an optimal day-ahead 

offer of aFRR at 30-min resolution, provided by a VPP 

aggregating photovoltaic and wind power plants located in the 

same Control Area. The problem poses two main challenges:  

1. We need to estimate a precise probabilistic forecast 

for the aggregated production of the VPP.  

2. From this forecast, we need to derive reliable 

volumes of reserve that can be proposed on the existing 

ancillary services markets. To do this, we need to forecast 

day-ahead prices for energy and aFRR, but also aFRR 

activation probabilities and imbalance prices for energy. The 

interdependence between these prices and the renewable 

production could give useful information on when it is 

favorable for the VPP to offer aFRR. Considering that 

deterministic forecasting of imbalance energy prices and 

aFRR activation can be of limited value given the associated 

uncertainties, a probabilistic forecasting of the price spreads 

could lead to more robust decisions with respect to these 

uncertainties.  

The modeling of a third logical step, i.e. the step involving 

disaggregation of the activated flexibility to individual power 

plants in the VPP, is not addressed in detail in this paper. For 

reference on this topic, see for instance the leader-following 

control strategy proposed by [23] for the coordination of 

aggregators offering AS. Finally, it is assumed that variations 

in technical characteristics among PV plants or wind plants 

(e.g. turbine technology for wind, panel/inverter technology or 

panel inclination for PV) do not significantly influence 

production forecasts and aFRR capacity offers. 

III. OVERVIEW OF PROPOSED METHODOLOGY 

A new methodology is proposed here to solve the 

aforementioned problem. The workflow is summarized in Fig. 

1. It relies firstly on the probabilistic forecasting of the VPP 

aggregated production, based on Numerical Weather 

Predictions (NWP) and historical production records. The 

forecasting model is presented and discussed in Section 0. In 

the next step, an offer of symmetrical aFRR for the VPP is 

issued following the methodology proposed in Section V and 

taking the aggregated production forecast as input. Three 

alternative strategies to derive aFRR offers are proposed and 

compared.  

1. Reliability-maximizing offers: these offers aim at 

respecting a high level of reliability in the provision of 

aFRR. They rely on a very low quantile of the aggregated 
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production forecast. The nominal value of this quantile is 

set to a constant that is close to the acceptable failure rates 

defined by TSOs when sizing AS (typically 0.006%-1% 

[9]). 

2. Revenue-maximizing offers, independent from production: 

these offers maximize the revenue of energy and reserve 

by deriving an optimal quantile for reserve. This 

derivation is presented in Subsection V.A. It uses 

deterministic forecasts of reserve and energy prices which 

are presented in Subsection V.A.2. The introduction of a 

specific variable, the aFRR activation probability, is 

discussed in Subsection V.A.1. We describe this approach 

as “independent from production” to underline that the 

obtained quantile values do not depend on the production 

of the VPP. We compare these quantiles with quantiles 

based on a deterministic persistent price forecast and on 

perfect knowledge of price. The persistent price is 

expected to have a similar climatology to the perfect 

price, but with lower discrimination hence lower revenue 

from aFRR than for perfect knowledge of price.  

3. Revenue-maximizing offers, dependent from production: 

Deterministic price forecasts and their errors are used as 

inputs in a probabilistic forecasting model of price 

spreads between energy and reserve. The dependence 

between these spreads and the production is modeled by 

non-parametric copulas described in Subsection V.B. 

Finally, the optimal quantile for reserve is obtained from 

the expected price spreads conditional on the VPP 

production. 

In the last step, revenues and penalties for deployed energy 

and aFRR are simulated on a test period as described in 

Section VI. Realizations of the VPP operation (production 

forecast, measured production) over the test period are 

sampled. We simulate the net revenue for all operation 

samples available at a given time unit, similar to the Monte 

Carlo simulation proposed by [24]. 

 
Fig. 1.  Methodology flowchart 

IV. PROBABILISTIC FORECASTING OF AGGREGATED 

PRODUCTION 

Given that probabilistic forecasts are required for VPP 

production, making individual forecasts for wind and PV 

production, which is standard practice in applications, is no 

more convenient since these cannot be easily added. As a 

function of weather conditions or time of day, the percentages 

of wind and PV production may vary from null to nominal 

capacity within the mix. Given that different explanatory 

variables are needed to forecast each process, a highly 

adaptive forecasting approach is required to deal with the 

aggregation of both.  

The NWP forecasts w
WX̂  and p

PVX̂  for each wind power 

plant w of the wind portfolio WS and each plant p of the PV 

portfolio PVS respectively are merged in (1) into a 

multivariate explanatory variable tX used for the regression of 

the aggregated production:  

    
PVSp

p
t,PVWSw

w
t,Wt X̂,X̂


X  (1) 

The explanatory variable )l(X̂ associated with a given plant 

of index l  in (2) comprises: weather forecasts at the site of 

each plant at a horizon k, the same weather forecasts at 

horizon k-1 hour and k+1 hour, and statistical moments 

(standard deviation, skewness, kurtosis) of the distribution of 

weather variables over the grid points neighboring each plant. 

These statistical moments are considered as input to test 

whether higher diversity in NWP improves the aggregated 

production forecast. 
              l

kurto,k
l
skew,k

l
sd,k

l
k

l
k

l
k

l X̂,X̂,X̂,X̂,X̂,X̂X̂ 11   (2)  
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Recent measurements of power production are not 

considered as explanatory input here since previous studies 

[15] have shown that they contribute for horizons up to 6 

hours ahead and do not improve the forecast model on the 

day-ahead horizon that is of interest in this paper. The 

aggregated wind and PV production is forecasted using a QRF 

model. This model evaluates in (3) a conditional distribution 

of the power production 1

 tXktY
F̂ weighted by the explanatory 

variables, which are randomly selected by a parameter  in 

each tree of index   and tested within aggregated decision 

trees [24]. Each split at a node of the tree is carried out to 

maximize the diversity of variance within the subspace lS  of 

the learning set defined by a leaf l. The number of trees grown 

  must be sufficiently large to fit several times each training 

point i identified by the indicator function  yiY 1 . The 

regression performance is usually quite insensitive to the 

number of variables randomly selected at each split, if it is 

higher than the recommended value for regression (1/3 of the 

number of explanatory variables) [24]. 

 (3) 

QRF has been chosen for its ability to perform regression 

on multivariate inputs of large dimensions [24] and for its 

proven performance for individual wind [25] and PV [17] day 

ahead forecasting. Finally, the decorrelation of the explanatory 

variables obtained in the QRF by bagging and random variable 

selection is an interesting feature for differentiating various 

plants of the same typology. To validate the use of the QRF 

model, we benchmark it against a quantile linear regression 

model (QLR), fitted only on weather variables to avoid 

singularities in the covariance matrix due to high correlations 

between weather variables and their lagged counterparts or 

statistical moments. We also compare QRF with a gradient 

boosting tree (GBT) to serve as a non-linear benchmark. The 

GBT builds shallow decision trees improved iteratively by 

boosting. It is trained on a quantile loss function for each 

quantile of the distribution. 

V. STRATEGIES FOR DAY-AHEAD OPTIMAL OFFER OF 

ENERGY AND AFRR 

Every day, a decision has to be made for the day ahead 

regarding the share of aggregated forecast production that will 

be dedicated to reserve. The remainder will be traded on the 

energy market. The target share dedicated to reserve is 

considered here as a quantile of the probabilistic production 

forecast given by (3), at nominal value R . In the case of 

reliability-maximizing offers, the nominal value R equals a 

minimal risk of failure to provide the forecasted capacity. In 

both cases of revenue-maximizing offers, this nominal value is 

determined as a function of price forecasts (see Subsection 

V.A). The reserve capacity offer ktR ,
ˆ  is then chosen in (4) as 

the minimum value of the aggregated production quantile 

forecast   R

tXktY
F̂ 



1 at runtime t, over an horizon interval k. 

This interval could be the entire day or a subset of shorter 

length.  

 R

tXktY
kk

k,t F̂minR̂  




1  (4) 

The energy offer ktÊ  at horizon k is given in (5) 

considering that the balancing market is operated following a 

single-price paradigm. In this case the theoretical optimal bid 

consists in offering the installed capacity if the forecasted day-

ahead price is higher than the price for imbalance, and zero 

otherwise to maximize the arbitrage opportunity between the 

day-ahead market and the balancing market [26]. Considering 

the high uncertainties regarding the imbalance price for the 

day ahead, we choose here a more conservative bid which 

hedges the offer against imbalance penalties: the VPP will bid 

the mean of its production forecast, limited by the installed 

capacity maxy and the reserve offer, which has priority over 

energy. This approach is in line with the risk-constrained 

energy offer proposed by [26] in a single-price balancing 

market, which is also set with reference to the mean of the 

forecasted production. 

ktÊ  =  k,tmax R̂ymin  , 𝔼  ktY   (5) 

A. Production-independent Optimal Quantile for aFRR 

We consider now that the aim of the VPP is to formulate 

revenue-maximizing offers on day-ahead markets for both 

energy and aFRR. It is assumed that the decisions of the VPP 

have no temporal dependence over a sequence of time steps. 

This assumption is justified here by the lack of decisions 

impacting the available production, such as trading in the 

intraday market or use of storage, between the day-ahead offer 

and the deployment of energy and reserve. This simplifies the 

problem of maximizing the summed daily revenue as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

maximizing the expected revenue over each time unit [27].  

This type of problem can be solved analytically and boils 

down to the derivation of an optimal quantile [10], following 

the theory of terminal linear losses [28]. We show in Section 

A.1 of the Annex how to obtain the optimal quantile for aFRR, 

looking for an optimum of the expected opportunity loss, and 

using Leibniz‟s rule to compute the derivative with respect to 

the amount of reserve offered. We assume at this stage that the 

prices involved in the energy and reserve market are estimated 

by a deterministic forecast. The derivation assumes the 

following market conditions: 

- The VPP acts as a price taker in the day-ahead market, 

and is awarded the marginal price in the reserve auction; 

- The decisions taken by the VPP are risk-neutral; 

- The energy opportunity cost for upward activated reserve 

is remunerated by the TSOs; 

- The VPP pays the TSOs for the energy not produced 

during activation of downward reserve. 

The optimal quantile is given in (6) for symmetrical 

aFRR, based on expected prices for energy and reserve. The 

 
  

     






 



 


N

i

yiY
l

,xlS

ktY .
,xS:jCard

x,yF̂

1 1

1 1
1

jt,

it,X

tX
X

R

opt
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forecast of these expected prices (noted below with ̂  is 

explained in the next subsection.  
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In the equation above R stands for reserve, E for energy, 

RE for energy associated with reserve activation.
Râ is the 

expected probability of the VPP being activated among 

bidders present in the merit-order list, for upward and 

downward aFRR. In summary, the optimal quantile represents 

the balance between the lost gain opportunity (proportional to 

the revenue price spread RE̂ ) and the increase in penalty 

losses (proportional to the penalty price spread *
RE̂ ) when 

reserve is more expensive than energy. As demonstrated in 

(6), estimating the optimal quantile involves forecasting two 

types of quantity, i.e. the probability that the VPP will be 

activated and market conditions. The proposed methodology 

to derive and forecast these quantities is presented in the 

following two subsections. 

1) Estimation of aFRR Activation Probability 

Equation (6) implies forecasting the probability that the 

VPP will be activated for aFRR. Here, we present how this 

probability is estimated based on historical data from aFRR 

auction settlements and activations, while in the next sub-

section we present how it is forecasted. We assume that the 

position of the VPP on the merit-order list (MOL) has a 

uniform probability. Although the low marginal costs of the 

renewable plants within the VPP would probably induce a low 

marginal price from the VPP, it is hazardous to assume that 

the VPP will be systematically selected among the cheapest 

offers, at least in aFRR markets that are penetrated by hydro 

or that integrate large amounts of wind and PV. Therefore, the 

VPP is considered as equally likely to be located anywhere in 

the merit-order. The activation probability is then estimated 

based on (7) and is valid for both upward and downward 

activation. At each activation time step, the activation 

probability equals the sum of infra-marginal reserve capacities  

that are situated below the reserve activated by the TSO   in 

the merit-order list (for these capacities, the indicator function  

returns 1, 0 otherwise), divided by the sum of the allocated 

reserve as a result of the aFRR auction. 

 
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








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j

MOLi
demandRiRi

R
R
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a
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 (7) 

The model proposed here is based on the available history 

of reserve activations for all reserve suppliers. However, we 

can tune the model to the historical activation records of the 

VPP itself, if such data are available, in order to predict the 

VPP‟s actual probability of activation. This is expected to be 

the case in the future, when intermittent renewable VPPs enter 

the aFRR market. An alternative model for activation 

probability proposed by [29] is based on the density of the 

wind forecast error. This was devised for sizing reserve and 

does not include tendered reserve volumes. It is therefore less 

adapted to the forecast of aFRR market conditions than our 

model in (7).   

The activation probability obtained from this approach 

regarding the tendered and activated capacities on the aFRR 

market in Germany shows a high variability and discrepancies 

between upward and downward activation. In Fig. 2 this 

activation probability is averaged on a rolling daily mean to 

show tendencies more clearly. The probability of a reserve 

being activated has an impact on the potential revenue of the 

VPP. A downward reserve paid for capacity (after being 

selected in the tender) that is rarely activated (no need to 

curtail the production and day-ahead energy offer, no payment 

to TSO for downward energy activation), is the best-case for 

the VPP profitability. Conversely, an upward reserve paid for 

capacity that is rarely activated is likely to constitute the 

worst-case for profitability, as production is curtailed and the 

day-ahead energy offer has to be reduced. 

Forecast errors on load and renewable production are 

correlated to the probability of reserve activation: in a scenario 

of high penetration of renewable energy, an evaluation of the 

activation probability should consider renewable production 

forecast errors as an important factor. The diagram on the left 

of Fig. 3 shows that the aFRR activation probabilities (January 

2015-December 2016, 30-min resolution) are correlated with 

load forecast errors. Large negative load forecast errors, where 

grid operators require less reserve power than forecasted to 

ensure balance, are usually associated with significant reserve 

activation probability comprised between 0% and 40%. We 

observe that large positive load forecast errors, where load has 

been largely underestimated, are relatively rare. As expected 

in this case, only upward reserve is activated to supply more 

power to the grid. Low activation probabilities for large 

deviations could indicate that balance was mainly attained via 

services other than aFRR. 

 
Fig. 2.  Activation probability computed on German data. Downward 

aFRR in red, upward aFRR in blue. January to March 2016 
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The relation with wind generation forecast errors (at the 

control area level) shown onthe right diagram of Fig. 3 is less 

pronounced, and the activation probabilities are distributed 

rather uniformly on the scale of wind forecast errors. Still, 

large negative wind forecast errors seem to trigger more 

upward reserve activation than positive errors do for 

downward activation. The downward activation probabilities 

are slightly lower than the upward probabilities, and the same 

goes for load forecast errors: this may indicate that the upward 

reserve is dimensioned with a higher margin than its 

downward counterpart for the specific dataset used.  In a 

scenario of very high penetration of wind power in this 

electricity market, the forecast of wind power at market level 

could benefit from the aggregation effect and reduce its 

overall error range on average. Meanwhile, the frequency of 

large or extreme forecast errors could increase when 

forecasting models propagate systematic errors on the zone‟s 

wind farms. To conclude, it appears that regional or national 

wind forecasts and their errors can be valuable explanatory 

variables for forecasting aFRR activation probability. 

 
Fig. 3: Observed aFRR activation probabilities and forecast errors on load 

and wind production for Germany (data 2015-2016). 

2) Forecast of Market Conditions 

As explained in the previous section, in order to derive an 

optimal quantile for aFRR through (6) we need a forecast of 

the price spreads between energy and reserve. This involves 

forecasting the following expected market conditions which 

compose the price spreads: 

- day-ahead and imbalance energy prices, 
E̂  bIm

E̂ , 

- aFRR capacity price and average price (capacity + 

activation energy) R̂ , 
RERˆ  , 

- aFRR activation probability Ra . 

We decide to forecast each price separately instead of 

directly forecasting price spreads because each price exhibits 

specific market dynamics. A state-of-the art forecasting 

technique is implemented for each price, when available. As 

the scope of this paper is mainly focused on the technical 

capacity of the VPP to offer ancillary services, price forecasts 

are developed here only to test the methodology. The forecast 

models of the different market conditions are presented in 

Section B of the Annex. 

B. Optimal Quantile Dependent on Renewable Production 

In a context of very high penetration of renewables, it is 

likely that VPP production will show some correlation with 

energy and reserve prices. The idea is that the VPP production 

profile would present some similarity with the aggregated 

Wind+PV production at market level, as has been observed in 

the case of wind power plants [36]. To obtain the optimal 

quantile for reserve (see Section A.2 in the Annex), we 

evaluate as in (8) the expected price spreads conditional to the 

(forecast) VPP production, 𝔼  YPRE  and 𝔼  YP*
RE  being 

for the day-ahead and the imbalance respectively:   

𝔼    





 df̂ŷYP

ŷYREPRE  (8) 

The problem is analytically tractable if the joint densities of 

prices and production are modeled with simple approaches 

such as bivariate normal distribution, which are of limited use 

in practice because renewable production and prices are not 

normally distributed [36]. A regression approach could be 

employed to derive these conditional expected price spreads, 

for instance using a bivariate kernel density estimation. We 

choose here a density-based regression using a non-parametric 

copula. Copulas have the advantage of decoupling the 

dependence model from the marginal distributions, which can 

be forecast with various approaches without any impact on the 

dependence model. Copulas also deliver a probabilistic 

description of the dependence between production and prices. 

They give for instance the most likely price spreads 

conditioned by renewable production forecast. If the VPP 

production is high, there will be probably a high share of 

renewable in the market, therefore-a high probability of low 

day-ahead energy price. Finally, this gives a high probability 

of favorable day-ahead spread for reserve. In (9) we use the 

Kernel Density Estimation (KDE) copula [37] to evaluate the 

conditional density of the price spread REP  with respect to 

VPP productionY . The Epanechnikov Kernel is used for price 

spread and power production. An alternative not tested here 

could be to use the Beta Kernel for the production, which is 

well suited to bounded variables [37]. The two smoothing 

bandwidths    and    are chosen following the Scott rule: 

           ,F,ŷFĉ.f̂f̂
REPYREPŷYREP ℝ 

 

 

(9) 

The goodness of fit of dependence is quantified in (10) by a 

Cramér-Von Mises statistic CvM [38] comparing the 

distribution of the copula  v,uĈ  with the distribution of the 

empirical copula  v,uĈemp . 
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(10) 

The distribution of price spread is obtained by a gradient 

boosting tree model trained on the feature vector 
t,

REP
X  

gathering in (11) the deterministic forecast of the prices 

composing the spread and the associated errors. 

 t,RE
*

t,REt,REt,RE
*

t,REt,REt,
REP

ˆ,ˆ,ˆ,ˆ 


X  (11) 

The estimated quantile of level  
 m,REPq  is obtained in 

(12) after m iterations by the iteratively built regression tree 

m,qt  based on the steepest gradient m of the quantile loss 

function L .  
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(12) 

Note that we do not model the tails separately as for 

instance in [39], because we consider a risk-neutral VPP and 

therefore accept forecast errors on the rare extreme price 

spreads.  

VI. EVALUATION OF VPP NET REVENUE FROM ENERGY 

AND AFRR 

The optimal offer of energy and aFRR generates revenue 

for the VPP on the day-ahead markets of energy and aFRR. 

This revenue is computed using observed prices for energy 

and aFRR capacity. The penalties and revenues occurring in 

real-time are computed using observed aFRR activation 

probabilities and prices for upward and downward reserve, 

and observed imbalance energy prices. If the VPP production 

in real-time is lower than the summed offer of aFRR capacity 

and energy, the amount of energy delivered is reduced and 

energy penalties are paid to avoid failure on reserve 

deployment. The VPP net revenue sums up revenues and 

penalties from the day-ahead stage and the real-time stage. 

The obtained revenue at a given time unit is computed for a 

single combination of prices and VPP operation. The VPP 

operation is defined by the forecasted and measured 

production. To increase the robustness of our revenue 

evaluation, we sample realizations of the VPP operation and 

compute revenues at each time unit on a set of operation 

samples, with the prices observed at that time unit. 

VII. CASE STUDY 

A. Description of the Case Study  

The methodology is evaluated on a real-world case study of 

a VPP, which jointly offers energy and symmetrical aFRR on 

a day-ahead auction with an aFRR product length of 4 hours. 

Real production data covering the period September to 

December 2015 are used to tune the forecasting models, while 

data from January to March 2016 are employed to evaluate 

them.. 

The VPP‟s offers have to be placed before gate closure 

time at 9h00 UTC, each day and are evaluated over the 3 

month testing period (January-March). The VPP combines 

wind and PV plants operating in France, with a total capacity 

of 42.3 MW and a 24% share of PV. The distance between 

any two power plants varies between 30 km and 700 km. 

These relative high distances imply that spatiotemporal 

correlations in the production are rather low. This is an 

interesting feature for the present application, i.e. the more 

diverse the production profiles are within the VPP, the less 

variable its power output will be, and likely with higher 

minima. 

B. Aggregated Production Forecast  

Probabilistic forecasts are generated using historic 

production data and NWPs from the European weather 

forecasting center ECMWF. The NWPs used are the 

predictions published at 00h00, in order to consider delivery 

delay and have sufficient time to process the forecast before 

gate closure. The training period covers 5 months (September-

December). A QRF model is trained on the NWPs and the 

historical production data. The explicative value of NWP 

variables is evaluated by the model via an “importance” 

factor, which quantifies the increase in regression error when 

values of the selected variable are randomly permuted and 

tested against out-of-bag samples [40]. The variables with 

higher importance are listed in Table I. We note that weather 

variables have similar importance levels among plants of the 

same technology. The spatial distribution coefficients were 

found to improve the aggregated forecast for PV plants only. 

1) Reliability 

The forecast model is evaluated over the testing period 

stipulated above. The rank histogram of the probability 

integral transform (PIT) of the forecast shows in Fig. 4 an 

over-dispersive behavior on low quantiles and under-

dispersive behavior on 20%-50% quantiles. The reliability is 

marked by the sampling effect created by the short duration of 

the validation period and by the errors of the QRF model.  

2) Quantile Score 

We select the Quantile Score (QS) as a forecasting skill score 

given that it is a probabilistic score widely used by the 

forecasting community [16]. The monthly-averaged QS of the 

QRF forecast is comprised between 0.023 and 0.026 over the 

test period, with an improvement of -55% and -30% against 

the QLR model and GBT model respectively (Table II). The 

GBT model has been trained with 2000 trees of depth 3 and 
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shrinkage of 0.01, the optimal number of trees for each 

quantile is obtained by 5-fold cross-validation. The 

performance of QRF is worse than the best forecasts on single 

wind or PV plants (maximum monthly-average QS of 0.022 

for [18] and [19]) but in line with satisfactory wind power 

forecasts (monthly-average QS of 0.030-0.045 for [41], [42]). 

For this VPP dominated by wind power, the highest forecast 

errors of the QRF model in terms of Continuous Ranked 

Probability Score (CRPS) seem to take place at periods with 

significant solar radiation, which are located in the middle 

zone of the forecast horizon (Fig. 5). The gradient boosting 

model interestingly performs similarly to QRF when PV and 

wind produce both at daytime, but is worse at night when 

wind is the only source of power. Considering the context 

close to operational conditions, we find that the forecasting 

performance is sufficient for the present application. 
TABLE I 

FEATURES WITH MOST IMPORTANCE FOR QRF FORECAST 

Variables PV Wind 

NWP  SSRD, Temp U100,V100,W100 

Lagged NWP  
SSRD.k-1/k+1 

Temp.k-1 

U100.k-1, 

V100/W100.k-1/.k+1 

Spatial distribution 

NWP  

Temp.sd, 

Temp.skewness 
- 

Legend:  

- SSRD: solar surface radiation downwards 

- U100/V100/W100: zonal/meridional/absolute wind speed at 100 m 

- Temp: air temperature at  2 m 

- k-1: previous hour  

 

 
Fig. 4.  PIT rank histogram of aggregated forecast 

 
TABLE II 

MONTHLY-AVERAGE QUANTILE SCORE [P.U.], 

AGGREGATED FORECAST 

Model January February March 

QRF 0.023 0.026 0.024 

GBT 0.031 0.033 0.032 

QLR 0.049 0.057 0.054 

 
Fig. 5.  Continuous Ranking Probability Score (CRPS) as a function of the 

forecast horizon for the QRF and the benchmarks QLR and GBT 

C. Day-ahead Joint Offer of aFRR and Energy 

The VPP simultaneously offers energy and symmetrical 

aFRR before noon of the previous day, using the QRF 

aggregated production forecast, and price forecasts in the case 

of a revenue-maximization strategy. The probabilistic forecast 

of the VPP production and the associated aFRR offers are 

illustrated in Fig. 6. 

1) Deterministic Price Forecasts 

We forecast energy and reserve prices at 00h00 the day before 

(horizon of 24h to 48h). All price forecasts are based on a 

sliding window of 150 days for training data. The forecasts are 

evaluated on a testing dataset of German prices [33] spanning 

from January to March 2016. The reserve penalty is assumed 

here to be 5 times the reserve capacity price, as currently set 

by the French TSO [43]. We use error metrics that scale the 

forecast error by the error of daily persistence, i.e. the Mean 

Absolute Standard Error (MASE), and the Root Mean Square 

Scaled Error (RMSSE) [32]. If the scaled error is lower than 1, 

the forecast shows improvement against persistence. Price 

forecast errors are reported in Table III. The error levels for 

the energy price are coherent with similar studies based on 

auto-regressive or ARIMA models ([31], [30]). The forecast 

of aFRR capacities shows lower errors because daily 

persistence is strongly penalized on the first days of the week, 

which reproduce the valley-hour prices of the weekend. The 

error on imbalance price is lower than persistence mainly 

because the forecast has less bias than persistence. There is 

still significant room for improvement in capturing the 

variance correctly.   
TABLE III 

FORECAST ERRORS FOR ENERGY AND aFRR PRICES 

Price 

Model 

MASE 

[p.u.] 

RMSSE 

[p.u.] 

Energy Day-ahead Price 

ARIMAX(2,1,1)(1,0,1)24 

0.85 0.86 

Energy Imbalance Price 

MRS(3,1) 
0.72 0.73 

aFRR upward capacity 

Random Forest 
0.70 0.66 

aFRR downward capacity 

Random Forest 
0.74 0.62 

aFRR upward activation probability 0.77 0.82 
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PCA+SVR 

aFRR downward activation probability 

PCA+SVR 
0.74 0.77 

aFRR upward average price 

SVR 
0.84 0.87 

aFRR downward average price 

SVR 
0.84 0.82 

2) Probabilistic Forecast of Price Spreads 

A training period of 60 days was found sufficient for the 

gradient boosting model, using 5000 trees and a shrinkage 

parameter of 0.01. The forecast of the spread for revenue 

prices is reliable on low quantiles (deviation of nominal rate 

below 3%), and underestimates higher quantiles (not 

surprising considering that the deterministic forecasts do not 

capture spikes). The quantile scores improve between 20% 

and 45% compared to climatology for quantiles lower or equal 

to 70%. Above this nominal value, the improvement is scarce 

which is in line with the findings for reliability. 

 

 
 

Fig. 6.  Aggregated production probabilistic forecast with QRF, confidence intervals in shades of blue/purple. Measured production in black. Risk-

minimization aFRR offer in gray. Revenue-maximization aFRR offers in red based on the copula dependence, in blue based on deterministic price forecast, in 

green based on persistence price forecast. 

 

Fig. 7 shows that spreads observed over a 60-days period 

(February-March) fall on average within the central part of the 

forecast distribution, with a slightly positive spread. If we look 

at maximum spreads for a given hour of day (red curve), we 

observe spikes located outside the average forecast envelope 

during the two consumption peaks at mid-day and early 

evening. These are due to rare activation peaks where plants 

with a higher marginal price enter the merit-order. The 

minimum observed spreads for each hour of day (green curve) 

have lower levels during the daytime, and remain within the 

forecast envelope: the forecast model correctly captures low 

day-ahead prices. 

 

Fig. 7: Day-ahead probabilistic forecast of revenue price spread between 

reserve and energy, obtained by a gradient boosting tree model. Prediction 

intervals between 20% and 90%. Forecasts averaged at same hour of day. 

3) Dependence between Price Spreads and Production 

The KDE copulas are built on the VPP production and price 

spreads observed during the training period. The resulting 

copula density in the upper plot of Fig. 8  indicates that high 

VPP production is frequently associated with high price 

spreads on revenue, whereas low production levels are mostly 

linked with average spreads. This nonparametric copula 

detects asymmetrical tail dependences (high density for high 

quantiles, low density for low quantiles) and dissymmetrical 

densities for low price spreads and low production. The high 

price spreads on revenue occur when energy prices are low or 

the reserve activation price is high. High renewable production 

at very low marginal cost is known to produce low prices on 

energy markets, so the dependence structure detected by the 

copula in this zone is in line with practical experience. We 

also observe that medium levels of VPP production occur 

most frequently when revenue spreads are low, which usually 

occurs during the day.  

To compare with the nonparametric copula, we fit 

parametric copulas by maximum likelihood estimation using 

the function “BiCopSelect” of the R package “VineCopula” 

[44]. A Joe-Frank copula (mostly symmetrical density and 

light upper-tail dependence) is selected for the dependence 

between day-ahead price spread REP and production Y, while 
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a Tawn 2 copula is selected for the dependence between 

imbalance price spread *
REP and production (asymmetrical 

density and asymmetrical tail dependences). The Cramér-von 

Mises statistic of the parametric copulas is higher than the 

KDE copulas (3.4 times higher for  Y,REP  and 2.3 times 

higher for  Y,*
REP ), and thus the KDE copula is closer to the 

observed dependence structure in the learning data. Does this 

tighter fit lead to overfitting on the estimated quantile for 

aFRR? Although the parametric copulas partly detect the tail 

behaviors in the dependences, they tend to put more weight on 

the central part of the price distribution than the KDE copula, 

hence delivering higher quantiles for aFRR. The mean 

absolute error on the forecast of the optimal quantile for aFRR 

is 4.3% for the KDE copula, lower than the 5.0% for the 

parametric copulas. 

The lower plot in Fig. 8 represents the copula density with a 

modified VPP portfolio where PV accounts for 75% of the 

installed capacity. In this case the dependence between high 

productions and high spreads is less pronounced; it is now 

higher with low spreads (typically when the sun shines during 

the daytime). 

4) Optimal Quantile and Net Revenue 

The cumulative density function (CDF) of optimal quantiles 

for aFRR obtained from the different price forecasts is 

presented in Fig. 9. The nominal value is most frequently zero, 

when the revenue price spread is negative (occurs e.g. at high 

energy prices, or for large activations of downward reserve). 

We see that the optimal quantiles are distributed on low values 

(0%-40%). The distribution of deterministic price forecast is 

close to the distribution of perfect price in the 0%-10% range 

of nominal values, but does not capture the high tail of optimal 

quantiles. The copula-based forecast issues less dispersed 

quantiles, influenced by the forecast of VPP production. 

Finally, we set at 1% the constant quantile value of the 

reliability-maximizing offer (ref. Section V), 1% being the 

maximum failure risk that a TSO is supposed to tolerate.  

We evaluate the failure risk for each offer strategy by a Rate 

of Under-Fulfillments (RUF) criterion [13], defined as the 

frequency of timestamps for which the measured VPP 

production is inferior to the offered reserve capacity over the 

test period. The offer strategies have a RUF of between 0.1% 

and 2%, mostly due to the reliability of the probabilistic 

production forecast and the low values of quantiles dedicated 

to reserve. The RUF of the reliability-maximizing strategy is 

1.3%. The highest RUF is 1.9% for the offer with persistence 

price forecast, and the lowest RUF is 0.1% for the strategy 

with the optimal quantile dependent on production, the latter 

having few under-fulfillments because its highest quantile 

values are lower than for the other strategies.  This evaluation 

is limited by the available temporal resolution of production 

time series (here 30-min averaged). It also does not consider 

technical constraints that may impede a reliable regulation of 

power at low levels (wind turbines shutdowns were observed 

while down-regulating for a frequency response test in the 

Kombikraftwerk 2 project [4]). 

We sample realizations of the VPP operation during the test 

period to evaluate the revenues of each strategy for diverse 

VPP operation conditions. The number of samples of VPP 

operations is 40 for each market time unit. Prices of the test 

period are characterized in Table IV. Results of the revenue 

calculation in Table V show an increase in net revenues when 

offering jointly aFRR and energy, reaching a maximum mean 

daily net revenue of 34.91 €/MW.h. The reliability-

maximizing offer yields a similar net revenue to the revenue-

maximizing offers based on deterministic forecasts (26.43 

€/MW.h and 26.33 €/MW.h). The Conditional Value at Risk at 

1% (CVar1%) is lower when offering both energy and reserve 

instead of energy only for all approaches. This indicates that 

adding aFRR increases the risk on net revenue, and advocates 

offering methods that are more risk conservative. 

 
Fig. 8: Normalized density of copulas modelling dependence between price 

spread for revenue and VPP production:75% capacity from Wind, by KDE 

Copula (top left), 75% capacity from Wind, by Joe-Frank copula (1.39,0.95) 

(top right), 75% capacity from PV, by KDE Copula (bottom) 
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Fig. 9: CDF of aFRR optimal quantile 

 

 

 
 TABLE IV 

 CHARACTERISTIC PRICES DURING TEST PERIOD 

 Day-ahead 
energy 

price 

[€/MWh] 

Imbalance 
energy 

price  

[€/MWh] 

aFRR 
Upward 

average 

price 
[€/MW.h] 

aFRR 
Downward 

average 

price 
[€/MW.h] 

Average 

Price 
23.7 20.7 41.5 0.9 

Minimum 
Price 

-20.0 -630.6 33.8 -152.7 

Maximum 

Price 
53.5 634.5 239.9 11.3 

 
 TABLE V 

 RESULTS OF THE OFFER OF ENERGY AND aFRR 

Mean daily net revenue for energy only is 25.05 €/MW.h 

 Average 
reserve 

offered 

Mean daily 
net revenue 

Energy + 

aFRR 

Mean daily 
net revenue 

variation 

Energy + 
aFRR vs 

Energy 

CVar1%  
net revenue 

variation 

Energy + 
aFRR vs 

Energy 

Units 
% of 

MWp 
€/MW.h % €/MW.h 

Reliability-
Maximizing 

Strategy 

0.103 26.43 +5.5% -25 

Revenue-

Maximizing 
Strategy, 

production-

independent 

0.040 26.33 +5.1% -138 

Revenue-

Maximizing 

Strategy, 
production-

dependent 

0.038 26.40 +5.4% -8 

Benchmarks for Revenue-Maximizing Strategy, production-independent 

Perfect price 
forecast 

0.057 34.91 +36% -18 

Persistent 

price forecast 
0.055 27.50 +10% -12 

 

 
TABLE VI 

SENSITIVITY ANALYSIS ON  

PRODUCT LENGTH AND ENERGY PRICES (NO SAMPLING) 
APPROACH WITH DETERMINISTIC PRICE FORECAST 

 Mean daily net revenue 
variation 

Energy + aFRR  

vs Energy 

Unit % 

Reference Energy Price- varying product length 

4 hours +5.1% 

1 day +3.9% 

Product Length of 4 hours – varying energy price 

Reference Energy price 
- 10% 

+8.2% 

Reference Energy price 

- 20% 
+9.2% 

Reference Energy price 
- 30% 

+10.2% 

Reference Energy price 

- 40% 
+11.4% 

Reference Energy price 
- 50% 

+12.5% 

 

5) Sensitivity Analysis 

Energy markets are oriented towards lower prices due to the 

penetration of renewable energy at near-zero marginal costs 

and other factors. To test the sensitivity of the present method 

in a context of high penetration of renewables, we linearly 

reduce the energy prices (revenue price and penalty price), 

while keeping the reserve prices constant. We assume that 

reserve, being a product of high added value with limited 

availability, will see its price remain stable. We then compute 

offers based on deterministic price forecasts and the original 

(not sampled) VPP production and its forecast.  

The optimal quantile for aFRR increases as energy prices 

decrease. Table VII shows that the additional mean net 

revenue increases linearly with decreasing energy prices. An 

aFRR product length of 1 day instead of 4 hours leads to a 

lower increase in net revenue. 

VIII. CONCLUSIONS AND DISCUSSION 

This paper proposes a novel methodology for the joint day-

ahead offer of aFRR and energy by a VPP composed of wind 

and PV plants located in different climatic zones. It is based 

on an aggregated forecast of the VPP production based on a 

QRF model that is shown to have satisfactory performance 

over the testing period. The monthly-averaged QS ranges from 

0.023 to 0.026.  

The operator of the VPP can then opt either for a strategy 

offering aFRR with a minimal risk of underfulfilment, or 

strategies aiming at a higher combined revenue from aFRR 

and energy. Offers of aFRR in the revenue-maximizing 

strategies are derived by an optimal quantile using price 

forecasts. Prices are forecasted with deterministic models, the 

MASE is comprised between 0.70 and 0.85, which shows 

moderate improvement relative to persistence. Energy offers 

are adjusted as a function of aFRR offers and expected 
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production. No use of the intraday energy market (i.e. for 

hedging forecast errors) has been investigated. The mean daily 

revenue increases from 25.05 €/MW.h when offering energy 

only to 26.33 €/MW.h (+5.1%) when offering both energy and 

aFRR, if offers use deterministic price forecasts. In the test 

case, revenue-maximizing offers based on a forecasted 

optimal quantile generate similar net revenue than reliability-

maximizing offers based on a constant quantile (here 1%). 

Similar increases in average revenues can be obtained with 

different average volumes (4% to 10% of installed capacity), 

which shows the interest for producers to implement the most 

economically efficient strategies for aFRR deployment. The 

reliability-maximizing strategy has two advantages: simplicity 

and higher reserve volumes, because offers depend only on the 

uncertainty in production. As such it can be a compromise 

between the economic expectation of the renewable producers 

and the need to fulfill the reserve demand for grid operators. 

The strategy with optimal quantile independent from 

production leads to the highest risk for net revenue (highest 

decrease in conditional Value-at-risk at 1%). The high risk is 

due to forecast errors on several prices which give the wrong 

incentive for reserve (offering reserve when it pays less than 

energy). We observe the same behavior if daily persistent 

price is used instead of deterministic price forecasts, especially 

because it can lead to high reserve volumes one day after it 

would have been effectively needed. The aFRR capacity 

prices used in this study are highly persistent as they come 

from a weekly auction. This characteristic contributes to 

higher average increase in revenue than the other price-based 

strategies which tend to offer less. However with persistence 

price forecast the rate of underfulfilment is the highest of all 

tested strategies (1.9%), which is an important drawback for 

practical implementation. All strategies of joint offer and 

energy increase the financial risk compared to offering energy 

only, mostly because we choose to avoid penalties in the 

reserve market by allowing large energy imbalances. 

The operator of the VPP may wish to hedge against the 

price uncertainty while taking into account the uncertainty on 

production. This is the purpose of the strategy with optimal 

quantile dependent on production. Here a dependence model 

using a KDE copula has been proposed to capture the 

interaction between price spreads and VPP production. A 

Gradient Boosting Tree model generates probabilistic 

densities of the price spreads, which are combined with the 

conditional spread densities originating from the copula 

models. We obtain the optimal quantile conditional on VPP 

production by numerical minimization of the losses based on 

the expected conditional spreads. The offer based on the 

copula model focuses on events where forecast production is 

expected to coincide with favorable price spreads. This model 

seems more robust to large losses than deterministic 

approaches (lowest decrease in CVar1%) because it combines 

the uncertainty of prices and production, neglecting separate 

spikes forecasted for either prices or production.  

These results rely on the assumption that penalties paid for 

failed reserve are linear with the reserve failure. It may be 

more pertinent for the secure operation of grids to consider 

higher penalties for large deviations, for instance via a 

quadratic cost or an exponential utility function.  

The product length of aFRR has a major impact on the level 

of capacity that can be offered and the associated revenue. The 

case study results indicate that aFRR product lengths equal or 

superior to one day reduce the amount of capacity that can be 

offered and reduce the increase in revenue due to the 

combined offer of aFRR and energy. 

APPENDIX  

A. Derivation of the Optimal Quantile 

We assume that the VPP is a price-taker in the energy and 

aFRR market. This does not imply that the power quantity 

offered must be independent from the prices, but rather that 

the VPP‟s possible offers would have no influence on the 

clearing prices. 

1) Derivation of Optimal Quantile for Uncertain Production 

and Certain Prices 

The net penalty for offering both energy and reserve can be 

formulated by the following terminal loss function (13), 

dependent on the available power production y, the offered 

energy quantity E and the offered reserve quantity R. This loss 

can be decomposed as the sum of three terms: the loss 

associated to the offered energy quantity, the loss associated 

with the value of perfect information on the reserve quantity, 

and the linear loss associated with the cost of under- and over-

estimating of the offered reserve quantity. 
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We are looking for the optimal reserve quantity, and so the 

only loss concerned by an action on reserve is the third loss. 

As per the certainty equivalent theory, it is sufficient to search 

for the minimum of the loss expectation rather than its entire 

distribution. At this stage we consider the expectation with 

respect to an uncertain production Y with its associated 

probability density function, and prices without uncertainty.  
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(14) 

Then we refer to (15) for the amount of reserve minimizing 

the expected loss.  
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
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(15) 

 

Using the Leibniz rule to derive with respect to reserve, we 

obtain from (16) the optimal quantile formulation for the 

reserve quantity: 
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2) Derivation  of Optimal Quantile  for Uncertain Production 

and Uncertain Prices 

We now consider uncertainty on production Y as well as on 

the day-ahead price spread and the imbalance price spread. If 

we assume that production and prices are independent, then 

the derivative of the expected loss gives an analytical solution 

similar to the previous section, and in (17) spread prices equal 

the expectation of the two spread price random variables: 

 RE
ˆ 𝔼  REP ,  *ˆ

RE 𝔼  *
REP  (17) 

If we consider dependence between price spreads and VPP 

production, the expected linear loss associated with the reserve 

offer becomes: 

𝔼   




R

y

Rl

0

𝔼     dy)y(fyR.yYP Y
*
RE 

 






1

Ry

𝔼     dy)y(fRy.yYP YRE   

 

(18) 

The minimum of the loss expressed in (18) can be found by 

sampling the density function of the forecast production using 

quantiles, and then constructing the discretized gradient of the 

loss on these quantiles [33]. The production level with the 

gradient closest to zero is selected as the optimal reserve offer.  

B. Forecast of Market Conditions 

The day-ahead energy price  is forecast in (19) at 

runtime t and horizon k with a seasonal Auto-Regressive 

Integrated Moving Average with eXogenous variables 

(ARIMAX) model. We choose this model because it is 

validated for short-term prediction of electricity prices [30], it 

can be constructed through simple assessment of the 

autocorrelation and partial-autocorrelation diagrams of the 

time series and using the Akaike‟s Information Criterion. The 

integrated part of the model improves the hour-to-hour 

stationarity of the series by differentiating with respect to the 

first lag with the lag operator of order d. A seasonal part 

without differentiation is added to reflect the daily 

periodicities observed in prices. Finally, volumes exchanged 

on the market during the previous day are an 

exogenous variable, which helps us measure the effect of 

demand on price. 

 

 

(19) 

The imbalance energy price shows frequent jumps which 

are difficult to forecast with ARIMA models [31]. We choose 

to forecast the imbalance energy price with a Markov Regime 

Switching (MRS) to reproduce the apparent price regimes 

with two main advantages [32]: it integrates the mean-

reverting behavior observed in regulation markets, and it 

allows for consecutive spikes or drops. 

Considering the occurrence of largely negative values in 

this market, we infer parameters and transition probabilities 

for 3 price regimes: base, spikes and drops. The day-ahead 

forecast is issued by binding 24 distinct MRS models 

calibrated on each hour h of the day using the Expectation-

Maximization algorithm. The base regime includes a mean-

reverting factor , while drops and spikes obey a log-

normal distribution around manually-defined thresholds

, . The forecast imbalance price bIm
kt,E

ˆ


  is 

obtained in (20) by combining the forecasts of each regime 

weighted by their respective inferred probability. 
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Prices relative to aFRR are not frequently forecasted in the 

literature. In this paper, we use aFRR capacity and energy 

activation prices settled by a weekly auction closed on 

Tuesday of the previous week [33]. To maintain a consistent 

day-ahead decision framework, we assume that the VPP must 

forecast these prices the day before delivery. The capacity 

prices for downward and upward aFRR are forecasted in (21) 

with a Random Forest regression model using lagged values of 

capacity prices on the learning dataset of length N as features  

( ) and a random vector for feature 

selection in the K trees grown.  

𝔼

 

(21) 

Forecasts of aFRR activation prices are challenging and to 

our knowledge not very developed. We forecast the aFRR 

average price (capacity and activation energy) and aFRR 

activation probability with a Support Vector Regression 

(SVR) model (see application of SVR for day-ahead 

electricity price forecast in [34]). Another approach could be 

to directly forecast the aFRR activation energy price if it is 

publicly available. The SVR approach is chosen for its ability 

to generalize non-linear relationships between response 

variable and features. These relationships are of interest in the 

context of aFRR activation which results from a sum of 

complex decisions on the energy and reserve markets. The 

feature vector of dimension d gathers in (22) variables 

influencing the aFRR market, i.e. lagged aFRR demand, 
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lagged aFRR activation price, forecasted wind power , 

forecasted load and forecasted system margin . System 

margin forecast helps detect imbalances in the energy market, 

which are likely to impact the activation price. We define the 

system margin forecast as the ratio between load forecast and 

generation forecast [30].   

 (22) 

The forecast of average activation price is 

obtained in (23) by maximizing the dual objective function of 

an epsilon-SVR in the feature space through a functional f  

built with an ANOVA Kernel k [35]. The kernel k here takes 

the form of a multivariate Gaussian Kernel to separately 

capture the proximity in each of the features. The activation 

probability forecast is obtained through the same 

process and with the same features. 

   

 

 

(23) 

For the price forecast we tuned the cost coefficient to 

enlarge the margin and reach support vectors that explain 

moderate spikes, while deliberately ignoring large spikes, 

mostly induced by peaks of reserve activation. These peaks 

are generally shorter than the aFRR product length. The 

forecast of the activation probability is found to improve with 

building one model per hour of the day and with applying 

Principal Component Analysis (PCA) on the input variables. 

We understand that for the activation probability, which is a 

bounded response variable with steady mean values, the 

uncorrelated principal components focus their share of 

variance on their respective ANOVA Kernel. The obtained 

support vectors seem to better map the information on 

variance contained in the feature space.  

To conclude this section, the prices forecasted above give in 

(24) the price spread forecasts for revenues  and 

penalties . Reserve penalties are assumed to equal 5 

times the reserve capacity revenues as explained in Section 

V.A. 

 

 

 

 

 

(24) 

The performance of the market conditions forecasts are 

discussed in the case study, see Section VII.  
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