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Averaging on simple windows in deterministic optimal control

A windowed averaged scheme is defined for general control systems. The same method is used to average costs in optimal control problems (OCPs). A numerical parameter α can be computed, which expresses the distance between the original system and the averaged system in a weak sense.

Then, if we use the optimal control of the averaged OCP in the original OCP, the suboptimality of the control is bounded by an expression of the form Cα 2 .

Introduction

Historically, the method of averaging was introduced to study the motion of celestial bodies by solving a simple two body equation which is perturbed by the influence of other bodies (see the section in [START_REF] Sanders | Averaging Methods in Nonlinear Dynamical Systems[END_REF] about the history of averaging). As developed in [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF], the framework was that of the perturbation of an orbit by the small influence of a periodic input. Averaging was then generalized in a geometric framework, notably in [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF][START_REF] Arnold | Geometrical Methods in the Theory o f Ordinary Differential Equations[END_REF]. A comprehensive book on the subject is [START_REF] Sanders | Averaging Methods in Nonlinear Dynamical Systems[END_REF].

All of the previous references deal with systems of ordinary differential equations, without any notion of control. In this article we apply averaging on control systems, specifically in optimal control problems (OCPs). In this context, the question is: given a control that is optimal for an averaged OCP, will it be almost optimal for the non averaged OCP? In this case, it is not efficient to average a dynamical system and then add a control. Indeed, the "optimal" control obtained this way would vary slowly. A very simple counter example on a LQ problems shows in [START_REF] Chaplais | Averaging and deterministic optimal control[END_REF] that, in order to obtain a sub optimal control, the optimal control computed in the averaged problem must include fast varying components.

An early work [START_REF] Balachandra | An averaging theorem for two-point boundary value problems with applications to optimal control[END_REF] applies averaging to two point boundary value problems, but its application to optimal control is limited to what is essentially the LQ case. In [START_REF] Chaplais | Averaging and deterministic optimal control[END_REF], the method of averaging is applied to optimal control, both in open loop (in the periodic case) and in closed loop (study of the Hamilton-Jacobi equation under an ergodicity assumption). The study of the HJB equation is improved in [START_REF] Barron | Averaging in lagrange and minimax problems of optimal control[END_REF]. Observe that, in these two references, the horizon is finite and the oscillatory input is fast. By contrast, the references [START_REF] Gaitsgory | Occupational measures formulation and linear programming solution of deterministic long run average problems of optimal control[END_REF][START_REF] Gaitsgory | Linear programming approach to deterministic long run average problems of optimal control[END_REF][START_REF] Finlay | Duality in linear programming problems related to deterministic long run average problems of optimal control[END_REF][START_REF] Finlay | Duality in linear programming problems related to deterministic long run average problems of optimal control with applications to periodic optimization[END_REF] consider an optimal control problem "in the long run" with averaging techniques. The convergence of the optimal cost is proved, but there is no study of the suboptimality of the optimal control of the averaged OCP when used in the original OCP. Optimal control of celestial objects (namely the optimal control of low thrust engines in space) have been studied from a geometric view point and in the periodic case in [START_REF] Caillau | Energy minimization of single input orbit transfer by averaging and continuation[END_REF][START_REF] Caillau | Averaging and optimal control of elliptic keplerian orbits with low propulsion[END_REF][START_REF] Bonnard | Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust[END_REF]. Averaging has also been used for similar problems [START_REF] Geffroy | Optimal low-thrust transfers with constraints-generalization of averaging techniques[END_REF][START_REF] Ch | Optimal control for engines with electro-ionic propulsion under constraint of eclipse[END_REF] in a spirit that is close to [START_REF] Chaplais | Averaging and deterministic optimal control[END_REF].

To be complete, averaging has been used is stochastic optimal control, notably of Markov chains (see for instance [START_REF] Hernández | Average cost optimal policies for markov control processes with borel state space and unbounded costs[END_REF][START_REF] Vargas | Average optimal stationary policies: convexity and convergence conditions in linear stochastic control systems[END_REF][START_REF] Tsai | Averaging, aggregation and optimal control of stochastic hybrid systems with singularly perturbed morkovian switching behavior[END_REF]). Indeed, when there exists a cycle in a discrete state Markov chain that has high transition probabilities, then this cycle is gone through very fast and averaging can be applied.

A common feature of the previous literature is that

• it relies on a periodicity or ergodicity assumption

• it only provides asymptotic results.

By contrast, here

• the averaged cost and dynamics are obtained by numerical averaging on contiguous windows over the horizon [0, T ]. These functions do not need to be periodic.

• we define a number α, which represents how close the original and averaged cost and dynamics are in a numerical "weak" sense, provided the functions are regular enough.The number α can by made small by using small windows. The number α only depends on the averaged problem solution and it can be defined for any smooth OCP.

• the number α 2 , multipied by a number that depends essentially on the regularity and the convexity of the original functions, provides an error estimate between the optimal cost of the original problem, and the original cost obtained by using the optimal control of the averaged problem. This error estimate holds for any OCP provided that α ≤ β 2k J1 . The number β is part of the convexity assumption and k J1 depends on the regularity of the original functions.

• for controls that are better than the optimal control of the averaged problem, error estimates on the trajectories and controls are exhibited and are proportionnal to α.

The paper is organized as follows. Section 2 presents the original OCP. It then presents windowed averaging for functions, differential equations and control systems. It then presents the averaged OCP that is studied in this paper. This is where α is defined. Section 3 makes formal expansions in α of the state and of the costate of the nominal problem around the state and costate of the averaged problem. Auxiliary variables are introduced there. Section 4 introduces an auxiliary problem of optimization as well as new auxiliary variables. The main assumptions (bounded derivatives and convexity) are given before we state the auxiliary problem. The main result is exposed in section 5. It is a result on the control cost, trajectories and the optimal control. Section 6 is devoted to the proof of the main theorem. A conclusion is presented is section 7.

Note that, for a fluent reading of the paper, the detailed computations are in the appendices.

2 Problem statement

Nominal Problem

We wish to minimize the following Optimal Control Problem (OCP) :

min u T 0 L(x, u, t)dt (1)
where x is is a finite dimensional state which satisfies the dynamics :

dx dt = f (x, u, t) , x(0) = χ 0 ( 2 
)
where u is an integrable finite dimensional, unconstrained, control. The assumptions on f and L are given in section 4.1.

Averaged Problem

It is well known that, if the dependency of f or L with respect to time contains fast oscillations, the nominal problem may be difficult to solve. To avoid this, we define an averaged problem with the help of a very simple low pass filter. It is an averaging method for general functions, i.e. not necessarily periodic. 

t k = k T N , k = 0..N (3) 
The averages of g on these intervals define the low pass filter LP on g:

LP [g](t) = 1 t k+1 -t k t k+1 t k g(s)ds , t ∈ [t k , t k+1 ) , k = 0..N -1 (4) 
The difference g -LP [g] defines the high pass filter HP on g:

HP = Id -LP (5) 
We then denote I[g] the function:

I[g](t) = t 0 HP [g](s)ds , t ∈ [0, T ] (6) 
The upper bound of the function I[g] is small when N is big and g is bounded.

Proposition 1. The following bound holds for any bounded function g and any t ∈ [0, T ]:

|I[g](t)| ≤ 2 g ∞ T N (7) 
Proof. Let us first prove that for any k = 0..N

t k+1 t k HP [g](t)dt = 0 Indeed: t k+1 t k HP [g](t)dt = t k+1 t k g(t)dt - t k+1 t k 1 t k+1 -t k t k+1 t k g(s)ds] dt = 0 Hence, for t ∈ [t k t k+1 [: I[g](t) = t t k HP [g](s)ds But |LP [g](s)| ≤ g ∞ , so that |HP [g](s)| ≤ 2 g ∞ . This gives finally: |I[g](t)| ≤ 2 g ∞ (t -t n+1 ) ≤ 2 g ∞ T N
Example 1 Let us suppose that g is periodical with period T N . Then LP [g] is constant equal to the mean of g over a period. The function HP [g] is a periodic signal with 0 average. The function I[g] is the periodic antiderivative of HP (g) with value 0 at 0. Its upper bound is of order T N .

Example 2 Let us suppose that g is periodical with period a small divisor of T , and N = 1. Then LP [g] is constant equal to the mean of g over the many periods in [0, T ]. The function HP [g] is a periodic signal of small period with 0 average. The function I[g] is the periodic antiderivative of HP (g) with value 0 at 0. Its upper bound is of order . This example shows that the upper bound of I[g] can be small even with a small N .

Averaging errors for ordinary differential equation

Let us consider the ordinary differential equation:

dx dt = f (x, t) , x(0) = χ 0 (8) 
with f Lipschitz with respect to x and integrable with respect to t. The averaged ODE is defined as:

dx 0 dt = LP [f ](x 0 , t) , x 0 (0) = χ 0 (9) 
with the low-pass filter on a function g(x, t) defined as:

LP [g](ξ, t) = 1 t k+1 -t k t k+1 t k g(ξ, s)ds , t ∈ [t k , t k+1 ) , k = 0..N -1 (10) 
As a summary, LP [g] averages g with respect to time on rectangular adjacent windows, leaving the state variable unchanged.

The state x 0 is well defined and bounded because f , and thus LP [f ], is Lipschitz.

Proposition 2. Let g(x, t) be bounded Lipschitz in x with a Lipschitz constant λ g , and let's suppose that f (x, t) is bounded. Let I[g, x 0 ] the function of t defined by:

I[g, x 0 ](t) = t 0 [g(x 0 (s), s) -LP [g](x 0 (s), s)] ds (11) 
where x 0 is the solution of the averaged ODE (9) Then the following bound holds:

|I[g](t)| ≤ 2( g ∞ + λ g T f ∞ ) T N (12) 
Proof. see appendix A.

Proposition 3. Let x defined by the ODE (8) and let x 0 defined by the averaged ODE [START_REF] Cohen | Wavelet bases on the interval and fast algorithms[END_REF]. Let λ the Lipschitz constant of f in x and α = sup t∈[0,T ] (|I[f ](t)|). Then the following bound holds:

x -x 0 ∞ ≤ α e λT -1 λ (13) 
Proof. We have

|x(t) -x 0 (t)| = t 0 f (x(s), s) -f (x 0 (s), s) + f (x 0 (s), s) -LP [f ](x 0 (s) ds ≤ λ t 0 |x(s) -x 0 (s)|ds + α
which leads to the result thanks to the Gronwall lemma.

Low pass filtering of a controlled system

In the scope of this article, we define, for the integer N > 0, and any functions u(t) and g(x, u(t), t), an averaged function LP

[g, u] LP [g, u](x, t) = N T (k+1)T N kT N g(x, u(s), s)ds f or t ∈ kT N , (k + 1)T N and k ∈ [0, N -1] (14) 
As a summary, LP [g] averages g with respect to time (this includes the open loop control) on rectangular adjacent windows, leaving the state (or costate) unchanged.

Statement of the averaged problem

We define the averaged OCP which minimizes the cost

J 0 (v) = T 0 LP [L, v](y(s), s)ds ( 15 
)
where y is the state defined by

dy dt = LP [f, v](y, t) , y(0) = ξ 0 (16) 
which is a well defined differential equation.

Assumption 1. The averaged OCP admits an optimal control u 0 with a corresponding trajectory x 0 .

The trajectory x 0 is defined by the ODE:

dx 0 dt = LP [f, u 0 ](x 0 , t) , x 0 (0) = ξ 0 (17) 

Stationnarity condition for the averaged problem

Theorem 1. Let H be the Hamiltonian of the nominal problem:

H(x, u, p, t) = L(x, u, t) + p f (x, u, t) (18) 
Let p 0 be the costate of the averaged problem, defined along the optimal trajectory x 0 by the ODE with final condition:

dp 0 dt = -LP ∂H ∂x , u 0 (x 0 , p 0 , t) , p 0 (T ) = 0 ( 19 
)
Then the following stationarity condition holds:

∂H ∂u (x 0 (t), u 0 (t), p 0 (t), t) = 0 a.e. ( 20 
)
where a.e. stands for almost everywhere in t ∈ [0, T ].

Proof. see appendix B

Introduction of a small α

For a function g(x, u, t), the difference g(x 0 (t), u 0 (t), t) -LP ]g, u 0 ](x 0 (t), t) is the result of high pass filtering HP ]g, u](x 0 (t), t). Let's define the antiderivative:

I[g, x 0 , u 0 ](t) = t 0 HP [g, u 0 ](x 0 (s), s)ds (21) 
Then, as a consequence of Proposition 2, the following bound holds:

|I[g, x 0 , u 0 ](t)| ≤ (2 g ∞ + λ g T f ∞ ) T N (22) 
In other words, I[g, x 0 , u 0 ] ∞ can be made small if N is large, f is bounded and g is bounded and Lipschitz.

Let's define similarly the backwards antiderivative

I T [g, x 0 , u 0 ](t) = T t HP [g, u 0 ](x 0 (s), s)ds (23) 
Then, with a similar proof, the same inequality holds:

|I T [g, x 0 , u 0 ](t)| ≤ (2 g ∞ + λ g T f ∞ ) T N (24) 
Consequently, I T [g, x 0 , u 0 ] ∞ can also be made small if N is large, f is bounded and g is bounded and Lipschitz.

Definition 2. For the rest of that document, we consider the small number α defined as:

α = sup I[f, x 0 , u 0 ] ∞ , I T ∂H ∂x , (x 0 , p 0 ), u 0 ∞ ( 25 
)
This number is small because N is big and assumption 2 below holds (bounded functions and their derivatives).

A priori expansions and definitions of auxiliary variables

3.1 Notations Definition 3. We denote the following variables from the state x (x 0 ), the control u (u 0 ) and the costate p (p 0 ): σ = (x, u) , σ 0 = (x 0 , u 0 ) w = (x, u, p) , w 0 = (x 0 , u 0 , p 0 ) Note: p is the costate of the nominal problem defined by the ODE with final condition:

dp dt = - ∂H ∂x (x, u, p, t) , p(T ) = 0 (26)
Definition 4. We denote the derivatives up to second order of functions with respect to the variables x, u or σ with indexes, on the model:

f x = ∂f ∂x H uu = ∂ 2 f ∂u 2 H σσ = H xx H xu H ux H uu

Formal expansion in α

The variable α defined by the equation ( 25) is a small quantity. We thus develop the state x and the costate p at the first order in α.

Expansion in the state variable

The state variable x is the solution of the original dynamics equation [START_REF] Arnold | Geometrical Methods in the Theory o f Ordinary Differential Equations[END_REF]. It is developed on the first order in α, as well as the original control u:

x = x 0 + αx 1 (27) u = u 0 + αu 1 (28) 
Note that the redundant definitions of x 0 and u 0 are consistent, as will be seen later.

We then distribute the coefficients in low (LP ) and high (HP ) frequencies signals:

x 0 = x0 + x0 , x 1 = x1 + x1 (29) 
Because of the equations ( 27) and (29), and because the derivative of the high frequency signal x1 is in

1 α ( 1 )
, the derivative of x has the following expansion in α:

dx dt = d x0 dt + d x0 dt + α d x1 dt + α d x1 dt (30) 
But, because x is the solution of the original dynamics equation (2), using the developments in α of x and u, and thanks to assumption 2, we have another development of dx dt at the first order in α:

dx dt = f (x 0 , u 0 , t) + α(f u (x 0 , u 0 , t)u 1 + f x (x 0 , u 0 , t)x 1 ) (31) 
Consequently, identifying the zero order terms in equations (30) and (31), we have:

d x0 dt + d x0 dt + α d x1 dt = f (x 0 , u 0 , t)
But by definition of x0 as the low frequency part of x 0 , we have:

d x0 dt = LP [f, u 0 ](x 0 , t)
Consequently, by definition of HP , we have:

d x0 dt + α d x1 dt = HP [f, u 0 ](x 0 , t)
with initial value 0, that derives in:

x0 + α x1 = I[f, x 0 , u 0 ] But I[f, x0 , u 0 ]
is of order 1 in α as x0 is of order 0. Thus x0 = 0, that gives x 0 = x0 , and thus the definitions of x 0 and u 0 are consistent. Moreover, we have a definition of x1 :

α x1 = I[f, x 0 , u 0 ] (32) so that the derivative of x1 is 1 α HP [f, u 0 ](x 0 , t), that is in 1 α .
A consequence of the definition of α x1 in (32) and α in definition 2 is that:

x1 ∞ ≤ 1 (33)

Expansion in the costate variable

The costate variable p is the solution of the costate dynamics equation with ending condition (26). We develop it at the first oder in α:

p = p 0 + αp 1 (34) 
We then distribute the coefficients in low (LP ) and high (HP ) frequencies signals:

p 0 = p0 + p0 , p 1 = p1 + p1 (35) 
Because of the equations ( 34) and ( 35), and because the derivative of the high frequency signal p1 is in 1 α , the derivative of p has the following expansion in α:

dp dt = d p0 dt + d p0 dt + α d p1 dt + α d p1 dt (36) 
On the other hand, p is the solution of the costate dynamics equation with ending condition (26). Moreover, we have defined the developments in α of x, p and u.

Thus we have another development of dp dt at the first order in α:

dp dt = -H x (x 0 , u 0 , p 0 , t) + α(-H xu (x 0 , u 0 , p 0 , t)u 1 -H xx (x 0 , u 0 , p 0 , t)x 1 -f x (x 0 , u 0 , t)p 1 ) (37) 
Consequently, identifying the zero order terms in equations ( 36) and (37), we have:

d p0 dt + d p0 dt + α d p1 dt = -H x (x 0 , u 0 , p 0 , t)
But by definition of p0 as the low frequency part of p 0 , we have:

d p0 dt = -LP [H x , u 0 ](x 0 , p 0 , t)
Consequently, by definition of HP , we have:

d p0 dt + α d p1 dt = -HP [H x , u 0 ](x 0 , p 0 , t)
with final value 0, that derives in:

p0 + α p1 = I T [H x , (x 0 , p 0 ), u 0 ]
But I[-H x , x 0 , p 0 , u 0 ] is of order 1 in α as p0 is of order 0. Thus p0 = 0, that gives p 0 = p0 , and thus the definitions of p 0 are consistent. Moreover, we have a definition of p1 :

α p1 = I T [H x , (x 0 , p 0 ), u 0 ] (38) so that the derivative of p1 is -1 α HP [H x , u 0 ](x 0 , p 0 , t), that is in 1 α .
A consequence of the definition of α p1 in (38) and α in definition 2 is that:

p1 ∞ ≤ 1 (39)
4 Auxiliary Problem

Assumptions

Assumption 2 (smoothness). The derivatives, up to the third order, of f and L with respect to x and u are bounded by some k > 0.

A consequence of that assumption is the the value α defined by equation ( 25) is well defined and small if N is sufficiently big (or the problem is periodic of small period).

Another consequence is that:

Proposition 4. f σσ (X, U, t) Y V 2 ≤ k(|Y | + |V |) 2 (40)
for any (X, U, Y, V ).

Proof.

f σσ (X, U, t) Y V 2 = |f xx (X, U, t)Y 2 + 2f xu (X, U, t)Y V + f uu (X, U, t)V 2 | ≤ k(|Y | + |V |) 2
Moreover, as p 0 is the solution of the ODE with final condition [START_REF] Strang | A Fourier analysis of the finite element variational method[END_REF], it is differentiable and thus continuous of the bounded interval [0, T ], so that it is bounded. So that another consequence of the assumption 2 is so: Proposition 5. The hamiltonian H(x, u, p 0 , t) and its derivatives up to the third order in u and x are bounded by a constant K.

Proof. Take K = (1 + p 0 ∞ )k.
A consequence of that is:

Proposition 6. H σσ (X, U, p 0 t) Y V 2 ≤ K(|Y | + |V |) 2 (41) 
for any (X, U, Y, V ).

Proof. Similar proof as for f σσ .

Assumption 3 (convexity).

There exists β > 0 so that for any (x, u), the following holds:

H uu (x, u, p 0 , t) ≥ βId (42) 
and

H xx -H xu (H uu ) -1 H ux (x, u, p 0 , t) ≥ 0 (43)
The consequence of equation ( 42) is that H uu is invertible and H -1 uu ∞ ≤ 1 β on any (x, u, p 0 ). The consequence of equation ( 43) is :

Proposition 7. H σσ (x, u, p 0 , t) ≥ 0 (44)
Proof. We make a proof by contradiction. Let's suppose that (44) is not true. Then there exists a negative eigenvalue -γ of H σσ (x, u, p 0 , t), that is there exists an eigenvector y v so that:

H σσ (x, u, p 0 , t) y v = -γ y v
This implies that the two following equations hold:

H xx (x, u, p 0 , t)y + H xu (x, u, p 0 , t)v = -γy (45) 
H ux (x, u, p 0 , t)y + H uu (x, u, p 0 , t)v = -γv (46) 
But (γId + H uu) ≥ (γ + β)Id > 0, so that it is invertible and the equation ( 46) can be solved in v, giving:

v = (γId + H uu (x, u, p 0 , t)) -1 H ux y (47) 
Then, replacing v by its value in the equation ( 45), we have:

(H xx (x, u, p 0 , t) -H xu (x, u, p 0 , t)(γId + H uu (x, u, p 0 , t)) -1 H ux (x, u, p 0 , t))y = -γy (48) 
But as γ > 0, we have the succession of inequalities:

(γId + H uu (x, u, p 0 , t)) ≥ H uu (x, u, p 0 , t) then (γId + H uu (x, u, p 0 , t)) -1 ≤ H -1 uu (x, u, p 0 , t) and then (H xx (x, u, p 0 , t) -H xu (x, u, p 0 , t)(γId + H uu (x, u, p 0 , t)) -1 H 0ux (x, u, p 0 , t)) ≥ (H xx -H xu H -1 uu H ux ) (x, u, p 0 , t) ≥ 0
Thus the equation (48) can not hold, because -γ < 0 can not be an eigenvalue, and equation ( 44) is proved by contradiction.

Auxiliary Problem Statement

Definition 5. Let's define the following notations:

H 0σσ = H σσ (w 0 , t) = H 0xx H 0xu H 0ux H 0uu and f 0x = f x (σ 0 , t) , f 0u = f u (σ 0 , t)
Then we define the auxiliary problem as the linear quadratic OCP with state y and control v:

dy dt = f 0x (y + x1 ) + f 0u v , y(0) = 0 (49) J 1 (v) = T 0 1 2 y v H 0σσ y v + p1 (f 0x y + f 0u v) dt (50) 
Proposition 8. There exists an optimal cost v 1 for the auxiliary problem.

Proof. It is a convex linear quadratic problem because H 0σσ is non-negative (equation ( 44)).

Let's denote v 1 an optimal control, y 1 the trajectory corresponding to v 1 and q 1 the corresponding costate. Then y 1 follows the dynamics of the auxiliary problem:

dy 1 dt = f 0x (y 1 + x1 ) + f 0u v 1 , y 1 (0) = 0 (51)
The hamiltonian of the auxiliary problem expands in:

H 1 (y, v, q) = 1 2 H 0xx y 2 + 2H 0xu yv + H 0uu v 2 + p1 (f 0x y + f 0u v) + q 1 [f 0x (y + x1 ) + f 0u v] (52) 
Thus the stationarity condition ∂H 1 ∂u (y 1 , v 1 , p 1 ) = 0 may be written the following way:

H 0xu y 1 + H 0uu v 1 + ( p1 + q 1 )f 0u = 0 (53)
Moreover, the costate q 1 of the auxiliary problem follows the dynamics:

dq 1 dt = -H 0xx y 1 -H 0xu v 1 -( p1 + q 1 )f 0x , q 1 (T ) = 0 (54)
Moreover, we have:

Proposition 9. y 1 , v 1 and q 1 are bounded by a constant M .

Proof. The auxiliary problem is smooth and convex.

More auxiliary variables and their upper bounds

Definition 6. For any u ∈ L 2 [0,T ] ,
x is the trajectory of the nominal dynamics (2). Let's then define the following notations:

δx = x -x 0 x = δx -α x1 δu = u -u 0 ũ = δu δσ = (δx, δu) ρ(λ, µ) = σ 0 + λµδσ
Where (u 0 , x 0 ) is a solution of the averaged problem and α x1 is I[f, x 0 , u 0 ] (equation (32)).

Upper bounds for r and v Definition 7. We define the following data:

r = x -αy 1 , v = ũ -αv 1 Z[λ, µ](t) = v + [H -1 uu H ux ](ρ(λ, µ), p 0 , t)(r + α x1 ) z 2 = 1 0 1 0 λ Z[λ, µ] 2 2 dλdµ
Definition 8. We define the following constants:

k r1 = 4k 2 T e 2k 1+ K β , k r2 = K β + 1 2 (1 + 2M ) 2 α 2 1 + K β 2 e k 1+ K β -1 2 k v1 = 6 2 + K 2 T k r1 β 2 , k v2 = 6K 2 T (k r2 + 1) β 2
with:

-k is introduced in assumption 2 abound the bounded derivatives of f (x, u, t) and L(x, u, t).

-K = (1 + p 0 ∞ )k -M
is the upper bound of the optimal trajectory of the auxiliary problem introduced in section 4.2 (proposition 9).

-α is the small quantity defined in equation ( 25).

-β is the convexity constant of H uu introduced in equation ( 42).

Proposition 10. The following inequalities hold:

r 2 ∞ ≤ k r1 z 2 + k r2 α 2 (55) 
and:

v 2 2 ≤ k v1 z 2 + k v2 α 2 (56) Proof. see appendix C.1
Upper bounds for r -r 1 and r 1 Definition 9. r 1 is defined by the following dynamics:

dr 1 dt = f (r 1 + x 0 + α( x1 + y 1 ), v + u 0 + αv 1 , t) -f (x 0 + α( x1 + y 1 ), u 0 + αv 1 , t) , r 1 (0) = 0 (57)
Definition 10. We define the following constants:

k r5 = T 2 (1 + 2M ) 2 (e kT -1) , k r3 = 2k r1 , k r4 = 2(k r2 + k 2 r5 α 2 )
with k, K and M as in definition 8.

Proposition 11. The following inequalities hold:

r -r 1 ∞ ≤ k r5 α 2 (58) and r 1 2 ∞ ≤ k r3 z 2 + k r4 α 2 (59) 
Proof. see appendix C.2

Main theorem

Definition 11. We define the following constants:

k J1 = 4 √ 3KM T k r1 + 3k 2 + KM T k r3 + 3k 2 + (2 √ 3 + 1)KM k v1 k J2 = 2 √ 3KT k r5 + k(1 + 2M ) + 2KT M (M + 1) + 3k 2 T k r2 + kM + 4 √ 3KM T k r4 + 3k 2 + (2 √ 3 + 1)KM k v2 k J0 = e kT -1 + K 2k 2 T e kT -1 2 + k 2 α k J = k J2 + k J0 k x = 2 2k J k r1 β + k r2 + (M + 1) 2 k u = 2 2k J k v1 β + k v2 + T 2 M 2
where:

-k, K, M , α and β are as in definition 8.

-k r1 , k r2 , k v1 and k r2 are defined in definition 8 -k r3 , k r4 and k r5 are defined in definition 10.

Note that these constants depend only of k, K, M , α, β, and the horizon T .

Assumption 4. α ≤ β 2k J1
Theorem 2 (Main Theorem). Considering the nominal problem in section 2.1, let H(x, u, p, t) its Hamiltonian, and let J * = inf u J(u) be its infimum cost.

Let u 0 a solution of the averaged problem described in section 2.2.4 with its trajectory x 0 . Such a solution exists by assumption 1.

Let α be the small quantity defined in equation ( 25) and let β be the constant introduced in assumption 3.

Let the set of constants (k J1 , k J , k x , k u ) introduced in definition 11. Then, under the set of assumptions listed in section 4.1 and the assumption 4, the following inequalities hold:

-the suboptimality of the real system commanded by u 0 is limited to:

J * ≤ J(u 0 ) ≤ J * + k J α 2 (60) 
-any trajectory x of the nominal problem for a u better than u 0 (J(u) ≤ J(u 0 )), is close to (x 0 , u 0 ), with:

x -x 0 ∞ ≤ k x α (61) u -u 0 2 ≤ k u α (62)
6 Proof of the main result

Proof Process

To prove the main theorem, we proceed the following way. The section 6.2 is devoted to the search of a lower bound of any real cost J(u) of the nominal problem. That lower bound contains two integral terms that do not depend on u, a term in z 2 that is the only one depending on u, and a term in α 2 , that dos not depend on u either.

The section 6.3 is devoted to the search of an upper bound of the real cost J(u 0 ) of the nominal problem controlled by u 0 . That upper bound contains the same two integral terms as in the lower bound of J(u) and a term in α 2 .

Then the section 6.4.1 uses the assumption α ≤ β k J1 to obtain a lower bound of J(u) independent of u, so that it is also a lower bound for J * . That lower bound is combined with the upper bound of J(u 0 ) to prove the suboptimality in α 2 of L(u 0 ) stated in the equation (60) of the first part of the main theorem 2.

Then the section 6.4.1 uses the stronger assumption α ≤ β 2k J1 to obtain, for any u better than u 0 , i.e. so that J(u) ≤ J(u 0 ), an upper bound of z 2 . With that bound of z 2 , upper bounds for x -x 0 ∞ and u -u 0 2 are found in the equations ( 61) and (62) of the second part of the main theorem, with the help of the definitions and bounds of r and v in section 4.3.

6.2 Lower bound on the real cost of the nominal problem 6.2.1 Expansion of the real cost J(u) Proposition 12. The cost J(u) = T 0 L(x, u, t)dt for any command u ∈ L 2 [0,T ] expands the following way:

J(u) = T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt + T 0 HP [H x , u 0 ](x 0 , p 0 , t)xdt + T 0 1 0 1 0 λH σσ (ρ(λ, µ), p 0 , t)(δσ) 2 dλdµdt (63)
Proof. see appendix D.

Lower

Bound of the third term of the expansion of J(u) in equation ( 63) Proposition 13. The following inequality holds:

T 0 HP [H x , u 0 ](x 0 , p 0 , t)xdt ≥ α T 0 p1 [f 0x r 1 + f 0u v]dt - 3k 2 (T k r3 + k v1 )αz 2 (64) 
-2KT k r5 + k(1 + 2M ) + k 2 (3(T k r4 + k v2 ) + 4T (1 + 2M ) 2 )α α 2
Proof. See appendix E.

Lower

Bound of the fourth term of the expansion of J(u) in equation ( 63) Proposition 14. The following inequality holds:

T 0 1 0 1 0 λH σσ (ρ(λ, µ), p 0 , t)(δσ) 2 dλdµdt ≥ -2KM T M + √ 3(2T k r2 + k v2 + T (M 2 + 2))α α 2 + β -2 √ 3KM (2T k r1 + k v1 )α z 2 +α T 0 p1 [y 1 , v 1 ] H 0σσ r + α x1 v dt (65) 
Proof. see appendix F.

6.2.4

Bound in absolute value for the sum of the integral terms of the right hand sides of equations ( 64) and (65) Proposition 15. Let's define R as the sum of the integral terms of the right hand sides of equations ( 64) and (65):

R = α T 0 p1 f 0x r 1 + f 0u v + [y 1 , v 1 ] H 0σσ r + α x1 v dt
Then the following inequality holds:

|R| ≤ KM [T k r3 + k v1 ] + [2KT M + (2KT M k r5 + kT M k r4 + kM k v2 )α]α 2 (66) 
Proof. see appendix G.

6.2.5 Lower Bound of the real cost J(u) Lemma 1. A lower bound of the cost J(u) of the nominal system for any control u is given by:

J(u) ≥ T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt + (β -k J1 α)z 2 -k J2 α 2 (67)
where k J1 and k J2 are defined in definition 11.

Proof. This is a consequence of equations ( 64), ( 65) and (66)

6.3 Upper bound on the cost of the nominal system controlled by u 0 6.3.1 Expansion of the cost J(u 0 ) Definition 12. Let x 0 be the trajectory of the nominal problem controlled by u 0 . It is defined by the dynamics:

dx 0 dt = f (x 0 , u 0 , t) , x 0 (0) = χ 0 ( 68 
)
For that trajectory, we set the notations:

δx 0 = x 0 -x 0 x0 = δx 0 -α x1 ρ 0 (λ, µ) = x 0 + λµ δx 0
Where (u 0 , x 0 ) is the solution of the averaged problem and α x1 is I[f, x 0 , u 0 ] (equation ( 32)).

Proposition 16. The cost J(u 0 ) = T 0 L(x 0 , u 0 , t)dt for the optimal command u 0 of the averaged problem expands the following way:

J(u 0 ) = T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt + T 0 HP [H x , u 0 ](x 0 , p 0 , t)x 0 dt + T 0 1 0 1 0 λH xx (ρ 0 (λ, µ), u 0 , p 0 , t)(δx 0 ) 2 dλdµdt (69)
Proof. It is a consequence of proposition 12 with u = u 0 , so that δu = 0.

6.3.2 Comparison of x 0 and x 0 Proposition 17. The following inequality hold for δx 0 = x 0 -x 0 :

|δx 0 | ≤ α kT e kT -1 (70) 
Proof. As δx 0 = x 0 -x 0 , x 0 follows the dynamics (68) and x 0 follows the averaged dynamics (17), we have the following integral equation:

δx 0 = t 0 [f (x 0 , u 0 , t) -LP [f, u 0 ](x 0 , t)]dt = t 0 [f (x 0 , u 0 , t) -f (x 0 , u 0 , t)]dt + t 0 [f (x 0 , u 0 , t) -LP [f, u 0 ](x 0 , t)]dt
Thus the following inequality holds:

|δx 0 | ≤ f x ∞ t 0 |δx 0 |ds + |I[f, x 0 , u 0 ](t)| ≤ kT t 0 |δx 0 |ds + α
Equation (70) follows from Gronwall lemma. 

T 0 HP [H x , u 0 ](x 0 , p 0 , t)x 0 dt ≤ e kT -1 + k 2 α α 2 (71)
Proof. By definition of x0 , we have x0 = x 0 -x 0 -α x1 , so that:

dx 0 dt = f (x 0 + δx 0 , u 0 , t) -LP [f, u 0 ](x 0 , t) + HP [f, u 0 ](x 0 , t) = f (x 0 + δx 0 , u 0 , t) -f (x 0 , u 0 , t)
Thus, by Taylor expansion of f (x 0 , u 0 , t) with integral remainder, we have:

dx 0 dt = f x (x 0 , u 0 , t)δx 0 + 1 0 1 0 λf xx ((x 0 + λµ(δx 0 ), u 0 , t)(δx 0 ) 2 dλdµ
Thus, thanks to proposition 17, we have:

dx 0 dt ≤ (e kT -1)α + k 2 α 2 (72) 
But an integration by part, together with the fact that HP [H x , u 0 ](x 0 , p 0 , t) = -α d p1 dt and that x0 (0) = p1 (T ) = 0 leads to: 

T 0 HP [H x , u 0 ](x 0 , p 0 , t)x 0 dt = α T 0 p1 dx 0 dt dt (73) 
λH xx (ρ 0 (λ, µ), u 0 , p 0 , t)(δx 0 ) 2 dλdµdt ≤ K 2k 2 T e kT -1 2 α 2 (74) 
Proof. This is a consequence of the proposition 17.

Upper Bound of J(u 0 )

Inserting equations ( 71) and (74) into equation (69 leads to:

Lemma 2. An upper bound of the cost J(u 0 ) of the nominal system controlled by u 0 is given by:

J(u 0 ) ≤ T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt + k J0 α 2 (75)
where k J0 is defined in definition 11.

Proof of the main theorem

The main theorem is proved in two steps. The first step compares the costs to estimate the suboptimality of the real system cotrolled by u 0 . The second step compares the trajectories and controls better than u 0 to estimate how close they are from the trajectory and control dealed by u 0 .

6.4.1 Comparison of the real cost controlled by u 0 and the infimum cost of the real system Let's now use the assumption α ≤ β 2k J1 of the first part of the Main Theorem 2 into the equation (67) of Lemma 1. The term in z 2 is then non negative, and we get the lower bound independent of u:

J(u) ≥ T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt -k J2 α 2
As that lower bound holds for any u, it is also a lower bound for the infimum cost J * = inf u J(u):

J * ≥ T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt -k J2 α 2 so that: T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt ≤ J * + k J2 α 2
Inserting this equation into the equation (75) of Lemma 2, together with the fact that J(u 0 ) ≥ J * , by definition of J * , proves the suboptimality equation (60) in he Main Theorem 2, since k J = K J0 + k J2 .

Comparison of the controls and trajectories with and without u = u 0

Let's consider a control u better than u 0 , i.e. such that J(u) ≤ J(u 0 ).

Let's now use in a stronger manner the assumption α ≤ β 2k J1 of the second part of the Main Theorem 2 into the equation (67) of Lemma 1. The coefficient z 2 is then lower than β 2 , and we get the lower bound dependent of z 2 , that depends on u:

J(u) ≥ T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt + β 2 z 2 -k J2 α 2
Thus, together with the equation (75) of Lemma 2, we have the list of inequalities:

T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt + β 2 z 2 -k J2 α 2 ≤ J(u) ≤ J(u 0 ≤ T 0 L(x 0 , u 0 , t)dt + α T 0 H 0x x1 dt + k J0 α 2
So that, with the definition of k J = K J0 + k J2 , we have

z 2 ≤ 2k J β α 2 (76) 
On the other hand, by definition of r, we have:

x -x 0 = r + α( x1 + y 1 )
so that, together with the equation (55): 76) into that equation leads to equation (61) of the second part of the Main Theorem 2. Now let's consider the fact that, by definition of v: 76) into that equation leads to equation (62) of the second part of the Main Theorem 2.

x -x 0 2 ∞ ≤ 2 r 2 ∞ + α 2 (1 + M ) 2 ≤ 2 k r1 z 2 + (k r2 (1 + M ) 2 )α 2 Introducing equation (
u -u 0 = v + αv 1 so that: u -u 0 2 2 ≤ 2 v 2 2 + α 2 T 2 M 2 ≤ 2 k v1 z 2 + (k v2 T 2 M ) 2 α 2 Introducing equation (

Conclusion

We have shown that the method of averaging can be used very simply by performing averages of the dynamics on adjacent intervals. Its efficiency, notably in optimal control, is measured by α and by the convexity β of the cost function. Using α as a measure of the efficiency of averaging amounts to saying that, from this point of view, the simple integrator acts as reference for all state space models. An important point is that, provided that α ≤ β 2k J1 , the estimates (60,61,62) in the main theorem 2 hold for any system.

This method of averaging has been applied to the guidance of a low thrust satellite in the non keplerian case [START_REF] Goumri | Transfert orbital d'un engin à faible poussée[END_REF]. In this case, we cannot use periodic averaging on orbits because of the influence of the sun and of the moon, which have different periods.

A Proof of Proposition 2 about the upper bound of I[g, x 0 ](t) I[g, x 0 ](t) is defined by equation ( 11) and x 0 is the solution of the averaged ODE ( 9).

Let's fix t and let K be so that t ∈ [t K , t K+1 ). Then we have:

I[g, x 0 ](t) = K-1 k+0 I k [g, x 0 ](t k+1 ) + I K [g, x 0 ](t) ( 77 
)
where I j [g, x 0 ](τ ) is defined for τ ∈ [t j , t i+1 ) as:

I j [g, x 0 ](τ ) = τ t j g(x 0 (s), s) - 1 t j+1 -t j t j+1 t j g(x 0 (s), σ)dσ ds
We can develop the terms I k [g, x 0 ](t k+1 ) and I K g, x 0 (t) in subtracting and adding the values at t k .

I k [g, x 0 ](t k+1 ) = t k+1 t k g(x 0 (t k , s) + 1 t k+1 -t k t k+1 t k g(x 0 (t k ), σ)dσ ds + t k+1 t k [g(x 0 (s), s) -g(x 0 (t k ), s)]ds + 1 t k+1 -t k t k+1 t k t k+1 t k [g(x 0 (s), σ) -g(x 0 (t k ), σ)]dσds
The first term is equal to 0.

The terms integrated once and twice in the second and third terms are both lower or equal to λ g x 0 (s) -x 0 (t k because g is Lipschitz in x, with Lipschitz constant λ g .

Moreover, because x 0 is the solution of the averaged ODE (9), we have:

x 0 (s) -x 0 (t k ≤ f ∞ (s -t k )
Thus, we have:

|I k [g, x 0 ](t k+1 )| ≤ 2λ g f ∞ t k+1 t k (s -t k )ds
That is:

|I k [g, x 0 ](t k+1 )| ≤ 2λ g f ∞ T N 2 (78) 
Let's now develop I K [g, x 0 ](t) in an analog way starting from t K :

I K [g, x 0 ](t) = t t K g(x 0 (t K , s) + 1 t K+1 -t K t K+1 t K g(x 0 (t K ), σ)dσ ds + t t K [g(x 0 (s), s) -g(x 0 (t K ), s)]ds + 1 t K+1 -t K t t K t K+1 t K [g(x 0 (s), σ) -g(x 0 (t K ), σ)]dσds
The first term is not 0 here, but it is lower or equal to 2 g ∞ T N , and the other terms are bounded as the ones of I k [g, x 0 ](t k+1 ).

Thus we have:

|I K [g, x 0 ](t)| ≤ g ∞ T N + 2λ g f ∞ T N 2 (79) 
Finally, because K + 1 ≤ N , the inequations ( 78) and ( 79) yield to the proposition 2.

B Proof of the stationarity condition of the averaged problem B.1 Averaged two boundaries problem

Let u 0 be the optimal control of the averaged problem ( 16) and let x 0 be the corresponding trajectory. x 0 is defined by the ODE with initial condition [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF]. Let p 0 be the costate of the optimal trajectory, defined by the ODE with final condition [START_REF] Strang | A Fourier analysis of the finite element variational method[END_REF], with H the hamiltonian [START_REF] Sanders | Averaging Methods in Nonlinear Dynamical Systems[END_REF].

The system constituted of the of equations ( 17) and ( 19) is a two boundaries problem. It is defined as the two boundaries problem corresponding to the averaged optimal control problem.

B.2 First variation in the direction of δu

Let δu ∈ L 2 [0,T ] a scalar square integrable function on [0, T ]. Let > 0 and let u = u 0 + δu the variation of u 0 in the direction of δu. As J 0 (u 0 ) = min u (J 0 (u), the following stationarity condition holds:

∀ δu ∈ L 2 [0,T ] , dJ 0 (u ) d =0 = 0 (80)
Let x be the trajectory corresponding to u , defined by the dynamics equation 16 with v = u :

dx dt = LP [f, u ](x , t) , x (0) = ξ 0 (81)
Let δx be the variation trajectory corresponding to the direction δu given by δx = dx d =0 . Lemma 3. δx respects the following dynamics function:

d(δx) dt = LP ∂f ∂x , u 0 (x 0 , t)δx + LP ∂f ∂u δu, u 0 (x 0 , t) (82) Proof. d(δx) dt = d dt dx d =0 = d d dx dt =0 = d d LP [f, u 0 + δu](x , t) =0
Let k be so that [t k , t k+1 )). Then:

d(δx) dt = d d 1 t k+1 -t k + t k+1 t k f (x (t), u 0 (s) + δu(s), s)ds =0 = 1 t k+1 -t k + t k+1 t k d d (f (x (t), u 0 (s) + δu(s), s)) =0 ds = 1 t k+1 -t k t k+1 t k ∂f ∂x
(x 0(t),u 0 (s),s δx(t) + ∂f ∂u (x 0(t),u 0 (s),s δu(s) ds

= LP ∂f ∂x , u 0 (x 0 , t)δx + LP ∂f ∂u δu, u 0 (x 0 , t)

B.3 Proof of the stationarity result

Let's make use of Equation (80) in developing dJ 0 (u )

d =0
for a given δu.

Lemma 4. The derivative at 0 of J 0 (u ) in is related to the hamiltonian by the following equation:

dJ 0 (u ) d =0 = T 0 LP ∂H ∂u δu, u 0 (x 0 , p 0 , t)dt (83) 
Proof. Let's use the equation ( 15) and then commute the differentiation and integration:

dJ 0 (u ) d =0 = d d T 0 LP [L, u ](x , t)dt =0 = T 0 d d [LP [L, u ](x , t)] =0 dt
For any k ∈ [0, N -1] and for any t ∈ [t k , t k+1 ), we have the definition [START_REF] Gaitsgory | Occupational measures formulation and linear programming solution of deterministic long run average problems of optimal control[END_REF] of LP :

LP [L, u ](x , t) = 1 t k+1 -t k t k+1 t k L(x (t), u (s), s)ds
Thus if we commute again the integration and the differentiation:

d d [LP [L, u ](x , t)] =0 = 1 t k+1 -t k t k+1 t k dL(x (t), u (s), s) d =0 ds
But by definition of x , u , δx and δu, we have:

dL(x (t), u (s), s) d =0 = ∂L ∂x (x 0 (t), u 0 (s), s)δx(t) + ∂L ∂u (x 0 (t), u 0 (s), s)δu(s)
Thus by averaging on [t k , t k+1 ], the result is (LP is linear):

d d [LP [L, u 0 ](x , t)] =0 = LP ∂L ∂x , u 0 (x 0 (t), t)δx(t) + LP ∂L ∂u δu, u 0 (x 0 (t), t)
But because of the dynamics (19) of the averaged costate p 0 , we have, with the definition (18) of the Hamiltonian:

LP ∂L ∂x , u 0 (x 0 (t), t) = - dp 0 dt -p 0 LP ∂f ∂x , u 0 (x 0 (t), t) Thus integrating d d [LP [L, u 0 ](x , t)] =0
between 0 and T , we obtain:

dJ 0 (u ) d =0 = T 0 - dp 0 dt δx- T 0 p 0 LP ∂f ∂x , u 0 (x 0 (t), t)δx(t)dt+ T 0 LP ∂L ∂u δu, u 0 (x 0 (t), t)dt (84) 
Let's make an integration by part for the first term of that equation:

T 0 - dp 0 dt δx = -[p 0 δx] T 0 + T 0 d(δx) dt p 0
The variation of p 0 δx between 0 and T is null because δx(0) = 0 and p 0 (T ) = 0. Thus, with the dynamics of δx given by the Lemma 3, the following holds:

T 0 - dp 0 dt δx = T 0 p 0 LP ∂f ∂x , u 0 (x 0 , t)δx(t)dt + T 0 p 0 LP ∂f ∂u δu, u 0 (x 0 , t)dt
Let's insert this equation in the first term of equation ( 84).It results in:

dJ 0 (u ) d =0 = T 0 LP ∂L ∂u δu, u 0 (x 0 , t) + p 0 LP ∂f ∂u δu, u 0 (x 0 , t) dt
This proves the equation ( 83) by definition of the Hamiltonian.

Let's now make use of equation ( 83). Let's first fix t and let k be so that t ∈ [T k , t k+1 ). Then we have:

LP ∂H ∂u δu, u 0 (x 0 , p 0 , t) = 1 t k+1 -t k t k+1 t k ∂H ∂u (x 0 (t), u 0 (s), p 0 (t), t)δu(s)ds
Let's specialize δu as a "needle variation":

δu = t k+1 -t k η 1 [t,t+η] δv
with η > 0 so that t + η < t k+1 and δv ∈ L 2 [0,T ] . Then we have:

LP ∂H ∂u δu, u 0 (x 0 , p 0 , t) = 1 η t+η t
∂H ∂u (x 0 (t), u 0 (s), p 0 (t), t)δv(s)ds a.e.

-→ η → 0 ∂H ∂u (x 0 (t), u 0 (t), p 0 (t), t)δv(t)

More precisely, the limit is the value of the function at t everywhere the function is continue, that is for any t possibly except for a countable number of "jumps". As any countable set is negligible, the limit holds almost everywhere. Thus, because of the equations ( 80) and (83), we have:

T 0 ∂H ∂u (x 0 (t), u 0 (t), p 0 (t), t)δv(t) = 0
and this is true for any δv ∈ L 2 [0,T ] . This proves the stationnarity result:

∂H ∂u (x 0 (t), u 0 (t), p 0 (t), t) = 0 a.e.
C Proof of the inequalities on r, v, r -r 1 and r 1 

dr dt = f (r + x 0 + α( x1 + y 1 ), v + u 0 + αv 1 , t) -f (x 0 + α( x1 + y 1 ), u 0 + αv 1 , t) (85) 
+α 2 1 0 1 0 λf σσ (x 0 + λµα( x1 + y 1 , v + u 0 + αv 1 , t) x1 + y 1 v 1 2 dλdµ
Proof. By definition of r and v, we have:

r = x -x 0 -α( x1 + y 1 ), so that : x = r + x 0 + α( x1 + y 1 ) v = u -u 0 -v 1 , so that : u = v + u 0 + v 1
Moreover:

dr dt = dx dt - dx 0 dt -α d x1 dt -α dy 1 dt = f (r + x 0 + α( x1 + y 1 ), v + u 0 + v 1 , t) -LP [f, u 0 ](x 0 , t) -HP [f, u 0 ](x 0 , t) -α[f 0x (y1 + x1 ) + f 0u v 1 ] = f (r + x 0 + α( x1 + y 1 ), v + u 0 + v 1 , t) -f (x 0 , u 0 , t) (86) 
-α[f 0x (y1 + x1 ) + f 0u v 1 ]
But a Taylor expansion of f (x 0 + α( x1 + y 1 ), u 0 + αv 1 , t) is so:

f (x 0 ( x1 + y 1 ), u 0 + αv 1 , t) = f (x 0 , u 0 , t) + α[f 0x (y1 + x1 ) + f 0u v 1 ] (87) +α 2 1 0 1 0 λf σσ (x 0 + λµα( x1 + y 1 , v + u 0 + αv 1 , t) x1 + y 1 v 1 2 dλdµ
Introducing equation (87) in equation ( 86) proves equation ( 85).

Proposition 21. The following inequality holds:

r ∞ ≤ ke k 1+ K β √ T Z(λ, µ) 2 + T K β + 1 2 ((1 + 2M ) 2 α α (88) 
Proof. Equation (40) about the upper bound of f σσ leads to:

f σσ (x 0 + λµα( x1 + y 1 , v + u 0 + αv 1 , t) x1 + y 1 v 1 2 ≤ k(| x1 + y 1 | + |v 1 |) 2 ≤ k(| x1 | + |y 1 | + |v 1 |) 2
Hence:

f σσ (x 0 + λµα( x1 + y 1 , v + u 0 + αv 1 , t) x1 + y 1 v 1 2 ≤ k(1 + 2M ) 2 (89) 
Moreover, the function f is Lipschitz in x and u with Lipschitz constant the bound of the derivatives k, so that:

|f (r + x 0 + α( x1 + y 1 ), v + u 0 + αv 1 , t) -f (x 0 + α( x1 + y 1 ), u 0 + αv 1 , t)| ≤ k(|r| + |v|) (90) 
The equations ( 89) and (90) in the equation (85) give, together with the fact that r(0) = 0 the following inequality:

|r(t)| ≤ t 0 (|r(s)| + |v(s)|)ds + kT 2 (2M + 1) 2 α 2 (91) 
But by definition of Z[λ, µ], we have:

v = Z[λ, µ] -[H -1 uu H ux ](ρ(λ, µ), p 0 , t)(r + α x1 ) (92) so that: |v(s)| ≤ |Z[λ, µ](s)| + H -1 uu ∞ H ux ∞ (|r(s)| + α| x1 (s)|)
But the assumption 3 proves that H uu is invertible and that H -1 uu is bounded by 1 β , so that:

|v(s)| ≤ |Z[λ, µ](s)| + K β (|r(s)| + α) (93) 
Including equation(93) in equation ( 91) leads to:

|r(t)| ≤ k 1 + K β t 0 (|r(s)|)ds + kKT β α + kT 2 (2M + 1) 2 α 2 + k T 0 |Z[λ, µ](t)||dt (94) 
But Cauchy property leads to:

T 0 |Z[λ, µ](t)||dt ≤ √ T Z(λ, µ)] 2 (95) 
Including equation (95) in equation ( 94) lead to:

|r(t)| ≤ k 1 + K β t 0 (|r(s)|)ds + k √ T Z(λ, µ) 2 + kT K β + 1 2 (2M + 1) 2 α α (96) 
Equation ( 96), together with Gronwall lemma, proves equation (88).

Proof of Equation (55) Let's take the square of equation ( 88):

r 2 ∞ ≤ 2k 2 e 2k 1+ K β T Z(λ, µ) 2 2 + T 2 K β + 1 2 ((1 + 2M ) 2 α 2 α 2
Let's now multiply by λ and integrate relatively to λ and µ between 0 and 1:

1 2 r 2 ∞ ≤ 2k 2 e 2k 1+ K β T z 2 + 1 2 T 2 K β + 1 2 ((1 + 2M ) 2 α 2 α 2
Multiplying by 2 that equation proves Equation (55).

C.1.2 Upper bound for v

Let's apply the triangular inequality for the L 2 norm to the expression of v (92):

v 2 ≤ Z[λ, µ] 2 + [H -1 uu H ux ](ρ(λ, µ), p 0 , t)(r + α x1 ) 2 But: [H -1 uu H ux ](ρ(λ, µ), p 0 , t)(r + α x1 2 ≤ √ T [H -1 uu H ux ](ρ(λ, µ), p 0 , t)(r + α x1 ) ∞ ≤ K √ T β ( r ∞ + α x1 ∞ )
Thus, taking the squares:

v 2 2 ≤ 3 Z[λ, µ] 2 + K 2 T β 2 ( r 2 ∞ + α 2 x1 2 ∞ )
Let's multiply by λ and integrate relatively to λ and µ between 0 and 1:

1 2 v 2 2 ≤ 3 z 2 + K 2 T 2β 2 ( r 2 ∞ + α 2 ≤ 3 1 + K 2 T k r1 2β 2 z 2 + K 2 T 2β 2 (1 + k r2 )α 2
Multiplying by 2 that equation proves Equation (56).

C.2 Proof of proposition 11

r follows the dynamic (85) with r(0) = 0 and r 1 follows the dynamic (57). Thus r -r 1 follows the dynamics:

d(r -r 1 ) dt = f (r + x 0 + α( x1 + y 1 ), v + u 0 + αv 1 , t) -f (r 1 + x 0 + α( x1 + y 1 ), v + u 0 + αv 1 , t) +α 2 1 0 1 0 λf σσ (x 0 + λµα( x1 + y 1 , v + u 0 + αv 1 , t) x1 + y 1 v 1 2 dλdµ
Thus, in a similar way than for the upper bound of r, the following inequality holds:

|r(t) -r 1 (t)| ≤ k t 0 |r(s) -r 1 (s)|ds + kT 2 (2M + 1) 2 α 2
The equation (58) follows from Gronwall lemma. The equation ( 59) is then the consequence of equations ( 55) and ( 58), together with:

r 1 2 ∞ ≤ 2( r 2 ∞ + r -r 1 2 ∞ )
D Proof of the expansion of the real cost (proposition 12)

Proposition 22. L(x, u, t) expands the following way:

L(x, u, t) = L(x 0 , u 0 , t) + L x (x 0 , u 0 , t)δx + L u (x 0 , u 0 , t)δu + 1 0 1 0 λL σσ (ρ(λ, µ), t)(δσ) 2 dλdµ (97) 
Proof. It is a Taylor expansion of L(x, u, t) with integral remainder.

Proposition 23. The dynamics dx dt of x expands the following way:

dx dt = f x (x 0 , u 0 , t)δx + f u (x 0 , u 0 , t)δu + 1 0 1 0 λf σσ (ρ(λ, µ), t)(δσ) 2 dλdµ (98)
Proof. By definition of x, we have x = x -x 0 -α x1 , so that:

dx dt = f (x 0 + δx, u 0 + δu, t) -LP [f, u 0 ](x 0 , t) + HP [f, u 0 ](x 0 , t) = f (x 0 + δx, u 0 + δu, t) -f (x 0 , u 0 , t)
The equation (98) follows by Taylor expansion of f (x, u, t) with integral remainder.

Proposition 24. L(x, u, t)) rewrites the following way:

L(x, u, t) = L(x 0 , u 0 , t) + H 0x (x + α x1 ) -p 0 dx dt + 1 0 1 0 λH σσ (ρ(λ, µ), p 0 , t)(δσ) 2 dλdµ (99)
Proof. We have the following identities: δx = x + α x1 and:

L x (x 0 , u 0 , t) = H 0x -p 0 f x (x 0 , u 0 , t)
Moreover, because of the stationary condition of the averaged problem, we have:

L u (x 0 , u 0 , t) = -p 0 f u (x 0 , u 0 , t)
Finally we change the integral remainder of the expansion of L(x, u, t) in equation ( 97) with:

L σσ (ρ(λ, µ), t) = H σσ (ρ(λ, µ), p 0 , t) -p 0 f σσ (ρ(λ, µ), t)

Thus equation (97) leads to:

L(x, u, t) = L(x 0 , u 0 , t + H 0x (x + α x1 ) -p 0 [f x (x 0 , u 0 , t) + f u (x 0 , u 0 , t) + 1 0 1 0 λf σσ (ρ(λ, µ), t)](δσ) 2 dλdµ + 1 0 1 0 λH σσ (ρ(λ, µ), p 0 , t)(δσ) 2 dλdµ
Inserting equation (98) in this equation proves proposition 24.

Proposition 25. The following equality holds:

T 0 -p 0 dx dt dt = - T 0 LP [H x , u 0 ](x 0 , t)xdt (100) 
Proof. Let's make an integration by part:

T 0 -p 0 dx dt dt = -[p 0 x] T 0 + T 0 dp 0 dt xdt
This leads to the equation (100) because x(0) = 0, p 0 (T ) = 0 and:

dp 0 dt = -LP [H x , u 0 ](x 0 , t)
Now inserting the equation (100) in the equation (99) integrated between 0 and T leads to equation (63), which ends the proof of proposition 12.

E Proof of the lower bound of the third term (Proposition 13)

Proposition 26. The following inequality holds:

T 0 HP [H x , u 0 ](x 0 , p 0 , t)xdt ≥ -(2KT k r5 + k(1 + 2M ))α 2 + α T 0 p1 dr 1 dt dt (101) 
Proof. By definition of r, we have:

x = r + αy 1 = (r -r 1 ) + (r 1 + αy 1 ) So that T 0 HP [H x , u 0 ](x 0 , p 0 , t)xdt = T 0 HP [H x , u 0 ](x 0 , p 0 , t)(r -r 1 )dt + T 0 HP [H x , u 0 ](x 0 , p 0 , t)(r 1 + αy 1 )dt
But because of equation (58), we have

T 0 HP [H x , u 0 ](x 0 , p 0 , t)(r -r 1 )dt ≤ T HP [H x , u 0 ] ∞ k r5 α 2 ≤ 2KT k r5 α 2
Moreover, by definition of α p1 , we have:

HP [H x , u 0 ](x 0 , p 0 , t) = -α d p1 dt (t)
So that the following inequality holds:

T 0 HP [H x , u 0 ](x 0 , p 0 , t)xdt ≥ -2KT k r5 α 2 -α T 0 d p1 dt ( x1 + αy 1 )dt
If we make an integration by part and use the fact that p1 (T ) = x1 (0) = y 1 (0) = 0, we get:

T 0 HP [H x , u 0 ](x 0 , p 0 , t)xdt ≥ -2KT k r5 α 2 + α T 0 p1 d x1 dt + α dy 1 dt dt
y 1 follows the dynamics (51) and p1 ∞ ≤ 1, so that:

α 2 T 0 p1 dy 1 dt dt ≤ kα 2 ( y 1 + x1 ∞ + v 1 ∞ ≤ k(2M + 1)α 2
So that the inequality (101) is proved.

Proposition 27. The dynamics of r 1 expands the following way:

dr 1 dt = [f 0x r 1 + f 0u v] + 1 0 1 0 λf σσ (x 0 + λµ(r 1 + α( x1 + y 1 )), u 0 + λµ(v + αv 1 ), t) r 1 + α( x1 + y 1 ) v + αv 1 2 dλdµ -α 2 1 0 1 0 λf σσ (x 0 + λµα( x1 + y 1 ), u 0 + λµαv 1 , t) x1 + y 1 αv 1 2 dλdµ (102) 
Proof. The dynamics of r r 1 (equation ( 57)) is the difference between the quantities f (r 1 + x 0 + α(x 1 + y 1 ), v + u 0 + αv 1 , t) and f (x 0 + α(x 1 + y 1 , u 0 + αv 1 , t).

Let's make the Taylor expansions of these quantities at (x 0 , u 0 ):

f (r 1 + x 0 + α(x 1 + y 1 ), v + u 0 + αv 1 , t) = f (x 0 , u 0 , t) +f 0x (r 1 + α(x 1 + y 1 )) + f 0u (v + αv 1 ) + 1 0 1 0 λf σσ (x 0 + λµ(r 1 + α( x1 + y 1 )), u 0 + λµ(v + αv 1 ), t) r 1 + α( x1 + y 1 ) v + αv 1 2 dλdµ and f (x 0 + α(x 1 + y 1 ), u 0 + αv 1 , t) = f (x 0 , u 0 , t) +α[f 0x (x 1 + y 1 )) + f 0u v 1 ] +α 2 1 0 1 0 λf σσ (x 0 + λµα( x1 + y 1 ), u 0 + λµαv 1 , t) x1 + y 1 v 1 2 dλdµ
The simplifications between the two expansions while we take their differences gives the dynamics of r 1 (102).

The consequence of that dynamics expansion is that:

α T 0 p1 dr 1 dt dt = α T 0 p1 [f 0x r 1 + f 0u v]dt +α T 0 p1 1 0 1 0 λf σσ (x 0 + λµ(r 1 + α( x1 + y 1 )), u 0 + λµ(v + αv 1 ), t) r 1 + α( x1 + y 1 ) v + αv 1 2 dλdµ dt -α 3 T 0 p1 1 0 1 0 λf σσ (x 0 + λµα( x1 + y 1 ), u 0 + λµαv 1 , t) x1 + y 1 v 1 2 dλdµ dt (103) 
Proposition 28. Let's define the terms:

R 1 = α T 0 p1 1 0 1 0 λf σσ (x 0 + λµ(r 1 + α( x1 + y 1 )), u 0 + λµ(v + αv 1 ), t) r 1 + α( x1 + y 1 ) v + αv 1 2 dλdµ dt and R 2 = α 3 T 0 p1 1 0 1 0 λf σσ (x 0 + λµα( x1 + y 1 ), u 0 + λµαv 1 , t) x1 + y 1 v 1 2 dλdµ dt
Then the following inequalities hold:

|R 1 | ≤ 3k 2 [(k r3 T + k v1 ]αz 2 + [(k r4 T + k v2 + T (1 + 2M ) 2 ]α 3 (104) and |R 2 | ≤ kT 2 (1 + 2M ) 2 α 3 (105) 
Proof. Equation (40) about the upper bound of f σσ leads to:

f σσ (x 0 + λµα( x1 + y 1 ), u 0 + λµαv 1 , t) r 1 + α( x1 + y 1 v + αv 1 2 ≤ 3k[|r 1 + α( x1 + y 1 )| + |v + αv 1 |] 2 ≤ 3k[|r 1 | + |v| + α(| x1 + y 1 | + |v 1 |)] 2 ≤ 3k[r 2 1 + v 2 + α(| x1 + y 1 | + |v 1 |) 2 ]
Thus, together with the fact that p1 ≤ 1, we have:

|R 1 | ≤ 3kα 2 [ r 1 2 2 + v 2 2 + α 2 T (2M + 1) 2 ] |R 1 | ≤ 3kα 2 [ r 1 2 ∞ + v 2 2 + α 2 T (2M + 1) 2 ]
Equations ( 59) and (56) then lead to equation (104). Equation (40) about the upper bound of f σσ leads also to: Proof. Let's use the fact that:

δσ = r + α x1 v + α y 1 v 1
to expand H σσ (ρ(λ, µ), p 0 , t)(δσ) 2 :

H σσ (ρ(λ, µ), p 0 , t)(δσ) 

≤ 2M K 2r 2 + 2α 2 + M 2 α 2 3(r 2 + v 2 + α 2 ) ≤ 2M K √ 3 (2r 2 + v 2 + (M 2 + 2)α 2 )
Thus, with a triple integration after multiplication by λ, we get:

|J 41 | ≤ 4 √ 3KM α T r 2 ∞ + T 2 v 2 2 + ((M 2 + 2)α 2
Then, using equations (55) and (56) lead to equation (113).

Applying propositions 29 and 30 lead to: That proves proposition 14 because H 0σσ = H σσ (w 0 , t) does not depend on λ and µ.

6. 3 . 3 Proposition 18 .

 3318 Upper Bound of the third term of the development of J(u 0 ) (69) The following inequality holds:

  Including equation (72) and the fact that p1 ∞ ≤ 1 into equation (72) proves equation (71) 6.3.4 Upper Bound of the fourth term of the development of J(u 0 ) (69) Proposition 19. The following inequality holds:

C. 1 Proof of proposition 10 C. 1 . 1

 11011 Upper bound for r Proposition 20. The dynamics of r is the following:

f 1 v + αv 1 2 ≤

 12 σσ (x 0 + λµα( x1 + y 1 ), u 0 + λµαv 1 , t) r 1 + α( x1 + y k(| x1 + y 1 | + |v 1 |) 2 ≤ k(1 + 2M ) 2That proves equation (105) by triple integration and multiplication by α 3 .The equations (104) and (105) included in equation (105) (103) lead to:0x r 1 + f 0u v]dt -3k 2 (k r2 T + k v1 )M az 2 -k 2 [3(k r4 T + k v2 ) + 4T (1 + 2M ) 2 ]α 3Introducing that equation into equation (101) leads to equation (64) and thus the proposition 13.

F0λ [y 1 , v 1 ]

 11 Proof of the lower bound of the fourth term (Proposition 14) Proposition 29. The following inequality holds:λH σσ (ρ(λ, µ), p 0 , t)(δσ) 2 dλdµdt ≥ -2KT M 2 α 2 + βz 2 H σσ (ρ(λ, µ), p 0 t) r + α x1 v dλdµdt

0 2 + β - 2 √λ

 22 λH σσ (ρ(λ, µ), p 0 , t)(δσ) 2 dλdµdt ≥ -2KM T M + √ 3(2T k r2 + k v2 + T (M 2 + 2))α α 3KM (2T k r1 + k v1 )α z 2 [y 1 , v 1 ] H σσ (w 0 , t) r + α x1 v dλdµdt

  2 = H σσ (ρ(λ, µ), p 0 , t) r + α x1 vThe second term is easily upper bounded in absolute value (equation (41) about the upper bound of H σσ ):≤ K(|y 1 | + |v 1 |) 2 ≤ 4KM 2 -1 uu H ux ](ρ(λ, µ), p 0 , t)(r + α x1 to expand the terms in v and v 2 : 2(r + α x1 )H xu (ρ(λ, µ), p 0 , t)v = 2(r + α x1 )H xu (ρ(λ, µ), p 0 , t)Z[λ, µ] -2[H ux H -1 uu H xu ](ρ(λ, µ), p 0 , t)(r + α x1 ) 2(110)andH uu (ρ(λ, µ), p 0 , t)v 2 = H uu (ρ(λ, µ), p 0 , t)Z[λ, µ] 2 +[H ux H -1 uu H xu ](ρ(λ, µ), p 0 , t)(r + α x1 ) 2 (111) -2(r + α x1 )H xu (ρ(λ, µ), p 0 , t)Z[λ, µ]Because of assumption 3 on the convexity, this proves that:H σσ (ρ(λ, µ), p 0 , t) r + α x1 v , v 1 ] [H σσ (ρ(λ, µ), p 0 t) -H σσ (w 0 , t)] Proof. Let's expand [y 1 , v 1 ] [H σσ (ρ(λ, µ), p 0 t)H σσ (w 0 , t)] r + α x1 v into its coordinates: [y 1 , v 1 ] [H σσ (ρ(λ, µ), p 0 t)H σσ (w 0 , t)] r + α x1 v = y 1 [H xx (ρ(λ, µ), p 0 t) -H xx (w 0 , t)](r + α x1 )But the second derivatives of H(x, u, p 0 , t) are Lipschitz in (x, u) of Lipschitz constant K because the third derivatives of H(x, u, p 0 , t) are bounded by K. Thus with the definition of ρ(λ, µ) and w 0 , equation (114) leads to:|[y 1 , v 1 ] [H σσ (ρ(λ, µ), p 0 t)H σσ (w 0 , t)] r + α x1 v ≤ λµK (r + α x1 ) 2 + α 2 v2 1 (|y 1 ||r + α x1 | + |y 1 ||v| + |v||r + α x1 | + |v 1 ||v| ≤ K (r + α) 2 + α 2 M 2 (2M (|r| + α) + 2M |v|)

	2 dλdµdt ≤ 2KT M 2 + α 2 H σσ (ρ(λ, µ), p 0 , t) +2α[y 1 , v 1 ]H σσ (ρ(λ, µ), p 0 , t) r + α x1 v H σσ (ρ(λ, µ), p 0 , t) y 1 v 1 2 T 0 1 0 1 0 H σσ (ρ(λ, µ), p 0 , t) y 1 v 1 2 To upper bound the first term, let's expand it in its components: so that: H σσ (ρ(λ, µ), p 0 , t) r + α x1 v ≥ βZ[λ, µ] 2 so that: T 0 1 0 1 0 H σσ (ρ(λ, µ), p 0 , t) r + α x1 v 2 dλdµdt ≥ βz 2 Including equations (113) and (108) into equation (107) leads to equation (106). Proposition 30. Let's denote: J 41 = 2α T 0 1 0 1 0 λ [y 1 r + α x1 v dλdµdt y 1 v 1 Then the following bound holds: Introducing 2 |J 41 | ≤ 4 √ 3KM α (T k r1 + 1 2 k v1 z 2 + T k r2 + 1 2 k v2 + T 2 (M 2 + 2) α 2	2	(107) (108) (112) (113)

2

= H xx (ρ(λ, µ), p 0 , t)(r

+ α x1 ) 2 + 2(r + α x1 )H xu (ρ(λ, µ), p 0 , t)v +H uu (ρ(λ, µ), p 0 , t)v 2 (109) Now let's use the definition of Z[λ, µ](t) = v + [H equations (

110

) and (111) in equation (

109

) leads to:

H σσ (ρ(λ, µ), p 0 , t) r + α x1 v 2 = [H xx -H ux H -1 uu H xu ](ρ(λ, µ), p 0 , t)(r + α x1 ) 2 +H uu Z[λ, µ] 2 +y 1 [H xu (ρ(λ, µ), p 0 t) -H xu (w 0 , t)]v (114) +v 1 [H ux (ρ(λ, µ), p 0 t) -H ux (w 0 , t)](r + α x1 )

+v 1 [H uu (ρ(λ, µ), p 0 t) -H uu (w 0 , t)]v

The integral of HP is in α, so we consider that the derivative of HP is formally in 1 α

G Proof of Bound in absolute value for the sum of the integral terms of the right hand sides of equations ( 64) and (65)

Thanks to the fact that r + α x1 = r 1 + ((r -r 1 ) + α x1 ), we have R = R 3 + R 4 , where R 3 and R 4 are defined as:

Proposition 31. The following inequality holds:

Now let's use the costate dynamics (54) of the auxiliary problem, together with its stationarity condition (53). Then we get:

An integration by parts, together with the fact that r 1 (0) = q 1 (T ) = 0 leads to:

But r 1 follows the dynamics (57), so that a Taylor expansion of f (r 1 + x 0 + α( x1 + y 1 ), v + u 0 + αv 1 , t) at (x 0 + α( x1 + y 1 ), u 0 + αv 1 ) leads to:

so that, thanks to equation (40) about the bound of f σσ :

An integration on [0, T ] and a multiplication by α leads to

That equation, together with the bounds on r 1 (59) and v (56) lead to equation (115).

Proposition 32. The following inequality holds:

Thus, thanks to the bound on r -r 1 (58), its absolute value can be bounded:

An integration between 0 and T and a multiplication by α lead to equation (116).

Proof of equation (66) This is a consequence of equations ( 115) and ( 116), together with the fact that R = R 3 + R 4 .