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Stochastic Operation of Home Energy Management Systems Including Battery Cycling
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aMINES ParisTech, PSL-Research University, PERSEE -Processes, Renewable Energies and Energy Systems-, 06904 Sophia Antipolis, France

Abstract

The present work proposes a stochastic approach for Day-Ahead operation of Home Energy Management Systems when batteries,
solar photovoltaic resources and Electric Water Heaters are considered. The optimization problem minimizes the operation costs
formed by energy procurement in the wholesale market and the equivalent cycling aging cost of the batteries, and also includes the
uncertainty of the PV production and the load. The complete two-stage stochastic formulation results in a Mixed-Integer Nonlinear
Programming problem that is decomposed using a Competitive Swarm Optimizer to handle the calculation of the battery cycling
aging cost. A Storage Disaggregation Algorithm based on Lagrangian relaxation is used to reduce the problem size and to allocate
individual State of Charge for the batteries. In addition, the advantages of considering a stochastic approach are shown by means of
the Value of the Stochastic Solution. This methodology has been developed in the context of the Horizon 2020 project SENSIBLE
as part of the tasks related to a use case that considers an aggregator that participates in the electricity market with a portfolio of
prosumers with active demand capability.
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Nomenclature

Abbreviations

BESS Battery Energy Storage System

CSO Competitive Swarm Optimizer

DOD Depth of Discharge

DR Demand Response

EWH Electric Water Heater

HEMS Home Energy Management System

HEV Hybrid Electric Vehicle

MPC Model Predictive Control

PCC Point of Common Coupling

PV Photovoltaic

RCA Rainflow Counting Algorithm

RES Renewable Energy Sources

SDA Storage Dissaggregation Algorithm

SOC State of Charge

SRB Smart Residential Building

TES Thermal Energy Storage

∗Corresponding author. carlos−adrian.correa florez@mines−paristech.fr

VSS Value of Stochastic Solution

Indices

h index for household, h = 1, 2, ...,N

j index for depths of discharge found with the rainflow
counting algorithm and associated with a certain SOC,
j ∈ Ω

s index for scenario, s = 1, 2, ..., S

t index for time step, t = 1, 2, ...,T

Parameters

H̄h TES device maximum power [kW]

P̄ch
h Battery’s maximum charging power [kW]

P̄dch
h Battery’s maximum discharging power [kW]

X̄h Battery’s maximum SOC [kWh]

Ȳh TES device maximum SOC [kWh]

ηc Battery’s charging efficiency

ηd Battery’s discharging efficiency

µ+
t Positive imbalance price [EUR/kWh]

µ−t Negative imbalance price [EUR/kWh]

πt Spot price [EUR/kWh]

Xh Battery’s minimum SOC [kWh]

Yh TES device minimum SOC [kWh]
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Ch Thermal capacitance of TES device

Pmax
h Maximum contracted power for house h

Pmin
h Minimum contracted power for house h

ps Probability of scenario s

Qt,h,s Thermal load

Rh Thermal resistance of TES device

Variables

λ
agg
t,s Lagrange multiplier associated with each constraint

(19)

Xh,s Vector [X1,h,s, ..., XT,h,s]T

Xagg
t,s Aggregated SOC

Ht,h,s EWH input [kW]

I+
t,s Positive imbalance [kWh]

I−t,s Negative imbalance [kWh]

Pct
h Customer’s contracted power[kW]

Pch
t,h,s Battery charging power [kW]

Pdch
t,h,s Battery discharging power

Pnet
t,h,s Customer’s net power [kW]

Pg
t Day-ahead energy commitment in the wholesale mar-

ket

ut,h,s Binary variable. Equals “1” if battery is charging, “0”
otherwise

vt,h,s Binary variable. Equals “1” if battery is discharging,
“0” otherwise

Xt,h,s Battery SOC [kWh]

Yt,h,s SOC of TES device [kWh]

1. Introduction

The increasing penetration of decentralized renewable gen-
eration in the medium- and low-voltage grid is motivating de-
velopment of new tools in order to face the challenges imposed
by this new paradigm. These trends push even further, reach-
ing the building and home level, and leading to the develop-
ment of concepts such as Home Energy Management Systems
(HEMS) [1]. In the smartgrid context, the flexibility features of
renewables, storage technologies, demand response (DR) and
interaction with the grid [2], can be exploited by different mar-
ket agents to minimize operation costs. In the concrete case
of the present work, the aim is to analyze the interaction be-
tween thermal and electric storage for an aggregation of smart
homes including uncertainties in load and PV production, and
also considering battery aging.

1.1. Current research
1.1.1. Battery cycling in smart home applications

The aging of storage devices is a complex process that de-
pends on chemical reactions with electrode interfaces, and the
degradation of materials caused by cycling and aging of non-
active components [3, 4]. This process can be analyzed and
modeled by tracking the cycling patterns, the respective Depth
of Discharge (DOD) and the rate at which this process occurs
[5].

Some research has been published in recent years that in-
cludes this process in the HEMS operation. For example, [6]
evaluates the impacts of peak shaving by means of active de-
mand and different storage technologies in a single household.
To include cycling of the storage device, a set of values of the
energy that can be cycled are predefined and analyzed.

In [7], a degradation model is used to optimize the operation
of an off-grid system with a single PV and battery. The pro-
posed linear model identifies lower and higher State of Charge
(SOC) and charging/discharging cycles, and assigns a linear
cost.

The work in [8] presents a model for a smart energy com-
munity in which storage depreciation is calculated based on a
predefined lifespan of 10 years and 3000 cycles for a li-ion Bat-
tery Energy Storage System (BESS). The model then calculates
a proportional cost with the net energy input. This calculation
method disregards partial cycling of the BESS, and thus can
lead to an underestimation of the actual depreciation cost. A
model considering voltages and currents produced by differ-
ent levels of DOD is analyzed in [9], for serving the purpose
of managing resources in a residential microgeneration system
composed of a single house with a PV-battery array.

A more detailed [10] electro-thermal battery model is used
for determining savings in the secondary reserve market for a
system-operator owned BESS. This model includes a variable
dispatch cost for batteries through parameter-fitting analysis,
including terminal voltage, currents, temperature and SOC. Al-
though this is a more detailed model of the internal interactions
in the BESS, this approach would require parametrization for
each storage unit analyzed.

1.1.2. Battery cycling in other power systems applications
The authors of [11] develop a short-term cost model for a

utility-scale BESS, in order to solve a 24h resource-scheduling
problem. The number of cycles and the DOD for a given time
horizon are explicitly included in the optimization problem.
Given that the relation of DOD and life cycles is nonlinear, the
operation costs of the BESS are based on linearization by seg-
ments, and by assigning a charging cycle variable and constant
cost. In this case, the resulting Mixed-Integer Linear Program-
ming (MILP) is solved using a commercial solver. A Similar
linearization-based modeling is used in [12] by approximating
the slope of battery life as a function of the number of cycles but
excluding the effects of DOD and solving the resulting MILP
with a commercial solver. Paper [13] includes a vehicle battery
degradation model consisting on piecewise linear approxima-
tion and including the effects of DOD. This research also uses
a MILP solver to perform the optimization.
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Following the same logic as the previous work, the re-
search [14] presents an explicit cost function that models bat-
tery degradation, which is used to implement a Model Pre-
dictive Control (MPC) peak shaving algorithm including a 1
MW BESS. The authors achieve the explicit formulation of
the degradation costs by detecting transitions between charg-
ing/discharging and idle mode by state representation. In this
way, they identify a quadratic cost function that captures cy-
cling stress in terms of power, DOD and SOC. One advantage
of this approach is the possibility of embedding a quadratic-
approximated aging model into an optimization problem, with-
out adding major complexity in terms of non-linear equations.

In [15], authors propose a model for wind-based network
planning, and analyze the economic impacts of changing initial
SOC and the non-linear inverse relation of DOD and life-cycles.
Another interesting model which considers explicit cycling by
counting state transition in the case of Hybrid Electric Vehi-
cles (HEV), is presented in [16]. Quadratic explicit modeling
is proposed in [17] to calculate battery degradation costs. This
expression does not consider state transitions and is only de-
pendent on the power profile as a sum of a linear and quadratic
function. An approach using a linear cost term is also used in
[18] and [19], to model cycling costs of electric vehicles and
BESS, respectively, by considering the state changes in the bat-
teries and the initial battery price to account for degradation.

Cycling aging is considered in [20] to complement a bidding
strategy for Day-Ahead (DA), spinning reserve and regulation
markets. By identifying local adjacent extreme energy points
extracted from the SOC curve, the energy difference between
these points is assumed as the DOD at which half cycle occurs.
After this, with each DOD, an equivalent cycling is calculated
for a complete day.

Depending on the final structure of the problem and the inclu-
sion of binary variables, the mathematical optimization meth-
ods may vary. For example, commercial solvers are used in
[11–13]. On the other hand, user developed techniques such
as Stochastic Dynamic Programming (SDP) [21] and General-
ized Benders Decomposition (GBD) [22] can also be used. The
selection of a certain technique is not straightforward and de-
pends on the approximations made to model the degradation of
the battery, the complete mathematical model and the objectives
that are pursued.

1.1.3. Rainflow Counting Algorithm for battery cycling
Another way of taking into account battery aging is by using

the rainflow counting algorithm (RCA) [23] originally proposed
by Downing in [24] to calculate metal fatigue cycles. This
method captures a more complete behavior of the aging process
because it can include non-linear relation of equivalent cycling
versus DOD. An inherent drawback the difficulty of embedding
a mathematical representation into an optimization process.

RCA was recently used in [25] for counting complete and
incomplete cycling of batteries that provide fast and slow re-
sponse to offset wind power variation. The use of RCA al-
lows assessment of the lifetime depreciation for the provided
services. It is important to note that this method is not embed-
ded into an optimization model but is used after a specific SOC

is obtained. A similar approach is presented in [26] for bat-
tery life estimation with an additional step for equivalent life
estimation due to incomplete cycles.

RCA is also used in [27] for calculating the capacity loss of a
battery acting as a backup for a telecommunication facility fed
by other RES. RCA can be used to calculate the DOD occurring
at specific full and half cycles; and the equivalent cost due to the
capacity decrease is then added offline to the overall investment
cost.

Authors in [28] consider a hybrid storage system and a vari-
ation of RCA to quantify BESS lifetime extension. The single
home system includes one micro CHP, one battery, supercon-
ducting magnetic energy storage, power converters and the de-
motic load. A set of rules, instead of an optimization problem,
is defined to establish a control strategy to feed loads in the
household.

Other recent research, attempts to mathematically mirror the
state transition identification and counting of the RCA, to find a
tractable and convex equivalent model, so as to embed the for-
mulation and solve electricity related problems [29, 30]. These
contributions represent an important tool to overcome the dif-
ficulty of including the RCA logic in optimization problems in
future research.

1.1.4. Thermal and electric energy storage coordination
Regarding management models for joint thermal and elec-

tric storage technologies at the residential level, approaches in-
clude the one presented in [31], which proposes a residential
microgrid in which thermal and electric storage make it possi-
ble to shave the demand peak and enhance the system’s self-
sufficiency. The approach in [32] presents a methodology for
intraday management of PV and Electric Water Heaters (EWH)
in an LV network, with the EWH acting as a flexible load in
order to achieve minimum operation costs.

Reference [33] presents an optimization problem for the
day-ahead market that minimizes retailer costs represented by
imports/exports, and gas costs, along with expected balanc-
ing costs in real-time operation. The model does not include
BESS, but does include thermal load and electro-thermal stor-
age, which can generate or consume power.

Sizing and operation of storage devices in smart buildings
is presented in [34], including electrical and thermal storage.
This study concludes that thermal storage is crucial to reduce
energy costs. However, it does not take into account cycling
aging and points out that batteries might not be economical due
to investment costs and short lifetime.

A recent paper [35] presents a cooperative scheme of Smart
Residential Buildings (SRB) for optimal management of re-
sources, considering batteries, thermal storage and electric ve-
hicles. Although cycling is not taken into account, this study
constitutes an interesting benchmark given that different net-
work configurations are presented, showing the importance of
exploiting operational flexibilities when various interactions are
analyzed.

A multi-energy microgrid was recently proposed in [36], in
which thermal and electrical storage, and heat sources are used
to reduce operation costs and alleviate network capacity issues
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at the PCC. Although it accounts for neither battery cycling nor
uncertainties, this paper presents a thorough modeling of dif-
ferent energy sources and their interactions, and is tested on a
system comprising 300 households.

Although this review is not exhaustive, it does illustrate the
trends related to the topics in discussion and shows that the cur-
rent literature leaves room for significant development regard-
ing the integration of storage technologies in HEMS, including
battery cycling.

1.2. About the present work

Continuing the track of the above-mentioned literature, this
research intends to pursue the issue of flexibility related to
BESS and Thermal Energy Storage (TES). Hence, the objective
of the present paper is to contribute with a framework to opti-
mally manage HEMS resources by integrating several aspects
such as: Electric/Thermal load and storage, battery degrada-
tion costs, home/building level management, uncertainties re-
garding PV and load. These aspects are analyzed from the
standpoint of an aggregator participating in DA and imbalance
markets. In particular, to the best of the authors’ knowledge,
home level management of electric and thermal storage with
load and RES uncertainties has not been addressed in combi-
nation with a metaheuristic that can capture the non-linearities
of battery degradation by means of RCA. This proposed joint
approach permits a more realistic overall modelling of the prob-
lem adapted to real implementation.

For the present work, an HEMS comprising data for the
25 real life households in Evora, Portugal, is presented as the
testbed. PVs, batteries and EWHs are considered to minimize
an aggregator’s operational costs and determine the set points
for the appropriate devices. The work presented here was per-
formed within the EU Horizon 2020 project SENSIBLE (Stor-
age Enabled Sustainable Energy for Buildings and Communi-
ties), as a part of the use case ”Flexibility and demand side
management in market participation”. This case assumes a re-
tailer, or other energy service company, aggregates a number of
customers, and participates in a market in order to optimize its
electricity costs and add value to the flexibilities that customers
can offer.

The main contributions of this paper are the following:
1) Interactions of electrical and thermal storage are analyzed

in the context of HEMS under uncertainty, and the advantages
of coordinated operation are shown;

2) The battery’s cycling aging cost is included by using a
novel Storage Disaggregation Algorithm (SDA) based on La-
grangian relaxation and the RCA. This method is presented for
the first time in the literature and allows handling the complex
cycling behavior and reducing the optimization search space;
and finally,

3) A decomposition strategy complemented by a competi-
tive swarm optimizer is proposed. This approach allows solv-
ing separately the battery cycling problem solved by the SDA
and the day-ahead scheduling of resources. This problem sep-
aration logic for scheduling resources in microgrids, has never
been used by any previous research in order to solve the re-

sulting two-stage stochastic non-linear/non-analytic optimiza-
tion model.

In addition, the following assumpions were made to carry out
the optimization process: 1) the power exchange at the points of
common coupling does not jeopardize distribution network; 2)
we suppose no market barriers for participation regarding min-
imum bid volumes; 3) the aggregator has communication and
control capabilities with the devices at the home level. There
exist the necessary IT and communication platform, so that the
aggregator controls devices at the home level and decides over
their set-points, 4) the proposed microgrid does not have market
power, hence acts as a price taker; and 5) distribution network
operation is part of DSO’s responsibilities and is not part of the
aggregators capabilities.

The present work is organized as follows: section 2 presents
the mathematical formulation of the HEMS. Next, section 3
sets out the solution algorithm used for the energy management.
The results obtained are given in section 4 and finally, conclu-
sions are drawn in section 5.

2. Home Energy Management System Mathematical Model

The proposed system is composed of solar panels, li-ion bat-
teries, heat storage devices, a connection to to the main grid
and a number of households. Each household comprises a total
electrical base load to be supplied and a thermal load that has
to be met by an EWH, which also stores energy in the form of
heat.

In general, EWH input and electrical load during the 24h pe-
riod can be met by the main grid, the solar panels, and the power
injected from the batteries. The idea is to achieve a minimum
operation cost by adjusting the setting of the devices in order
to optimally manage resources. The diagram of the proposed
aggregation of resources is shown in figure 1.
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Figure 1: Schematic diagram of the proposed HEMS

One feature of the proposed HEMS is the possibility to in-
dependently control the BESS and TES. This means that the
secondary grid does not directly feed the thermostatic load. In
other words, this load is fed by the available stored energy in
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the TES, and the input for the EWH is seen as a load from the
secondary network.

2.1. Electrical load and PV forecasts
The SENSIBLE project [37] explores integrating available

technologies into the local power grid through three European
demonstrators. The Evora demonstrator develops energy man-
agement applications and has therefore deployed smart-meters
in a localized neighborhood in the city of Evora, Portugal. This
smart meter roll-out features forecasting models developed to
predict the electrical load demand and PV production of indi-
vidual households.

To predict the electrical demand of one household for the
next day, the model uses the demand during the previous week
and the outside temperature predicted for the next day. By
means of quantile smoothing spline fitting [38], it is possible
to predict day-ahead demand D̂t at instant t, as the sum of three
functions:

D̂t = f1(Dt−24) + f2(D̄t) + f3(T̂t), (1)

where Dt−24 is the demand 24 hours before the instant to be
predicted, D̄t the median demand of the previous week and T̂t

the predicted temperature. After quantile regression, a set of
forecast quantiles is obtained. Instead of a single-point value,
10%, 20%, . . . , 90% values can be obtained and respectively
associated with a 10%, 20%, . . . , 90% chance of measuring a
lower actual demand at the instant predicted. This probabilis-
tic forecasting of electrical demand is a point of interest in the
literature [39]. For further details readers are advised to review
reference [38].

The PV production forecasting model takes into account so-
lar irradiance forecasts. Parameters such as the orientation of
the PV panels, shadowing effects and other meteorological fac-
tors are estimated depending on the time frame.

Probabilistic forecasts were generated for each time of day
covering the entire distribution of PV production. These
quantile forecasts are given in steps of the nominal proba-
bility, hence obtaining PV forecasts associated with quantiles
10%, 20%, . . . , 90% in a similar fashion to the load forecast.
For more details on the PV forecast method, reference [40] is
suggested as complementary reading. The forecasts are gener-
ated using the methods described above and based on data col-
lected from smart meters and Numerical Weather Predictions
from ECMWF (European Centre for Medium-Range Weather
Forecasts).

2.2. Scenario generation
The results of the quantile forecast are used to select a cen-

tral value for both PV and load, by specifically using the me-
dian (quantile 50%) as this central forecast. To avoid defining
arbitrary values of deviations from the central forecast to create
scenarios, quantiles 10% and 90% are taken as the lower and
upper bounds of forecast values. In this way, all central and
deviated values of PV and load are combined to form a set of
nine scenarios, representative of all potential combinations of
minimum, maximum and central values according to realistic

information from measurements and predictions and assuming
uncorrelation between demand and PV forecasts. These nine
scenarios (s1-s9), shown in table 1 are used as input data for the
second stage formulation or recourse problem defined in the
next section.

Table 1: Scenarios included in the stochastic scheme
Scenario s1 s2 s3 s4 s5 s6 s7 s8 s9

Load quantile 10 10 10 50 50 50 90 90 90
PV quantile 10 50 90 10 50 90 10 50 90

An example for a typical day of the normalized aggregated
values for PV and load, containing the central, upper and lower
values is shown in figure 2.

5 10 15 20
0

0.5

1

1.5

time[h]

p.
u.

load 10% load 50% load 90%
PV 10% PV 50% PV 90%

Figure 2: Normalized load and PV curves for each of the quantiles needed for
scenario generation

It is important to emphasize that three groups can be identi-
fied from the nine scenarios described in 1: 1) a conservative
group: formed by the scenarios featuring high load and low PV
quantiles (i.e. s4, s7 and s8); 2) an equilibrated group: formed
by scenarios with similar quantiles for both load and PV (i.e.
s1, s5 and s9); and 3) and optimistic group: with scenarios fea-
turing low demand and high PV quantiles (i.e. s2, s3 and s6).

The presence of these three groups of scenarios in the
stochastic framework, allows a balance of optimality and ro-
bustness in the obtained solution, by combining the robustness
introduced by the conservative group which generally leads to
higher costs, but balanced by the potential low costs associated
to optimistic scenarios, and complemented by the balance cre-
ated resulting from the equilibrated scenarios. This set of nine
scenarios, allow feasible and robust operation of the HEMS in
the interval of extreme quantile realizations of demand and PV
production, and allows exploitation of the probabilistic forecast
methodology described in the previous subsection.

A visual representation of the aggregated net load (load mi-
nus PV) resulting from the nine scenarios for a typical day, can
be seen in figure 3. The plot shows that curves s7 ( ), s4
( ) and s8 ( ) tend to have higher neat load during most
of the 24 h horizon, which can be more clearly seen during the
daytime when PV has values different from zero. In addition,
s7 and s8 have also higher net load during nightime given that
they are formed by using the 90% load quantile. This is a logic
outcome, provided that these three scenarios (s4, s7 and s8) are
indeed the ones classified in the conservative group. These sce-
narios will push the stochastic formulation to higher expected
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costs, in order to supply the required energy to be purchased in
the market of injected from stored energy in the batteries.

Following the same logic, the optimistic scenarios can be
identified as s2 ( ), s6 ( ) and s3 ( ), with a clear ten-
dency of low comparative values of net load, and even negative
values for some time steps, meaning that available PV produc-
tion is higher that the demand to be supplied. This situation
could lead the stochastic formulation to take advantage of this
available energy to store energy, supply load or sell back to the
market.

5 10 15 20
−1

0

1

2

time[h]

p.
u.

s1 s2 s3 s4 s5
s6 s7 s8 s9

Figure 3: Normalized neat load per scenario

2.3. Mathematical model
The proposed two-stage stochastic optimization model min-

imizes the expected HEMS day-ahead operation cost by
scheduling the batteries’ power charge and discharge, and the
power injected into the EWHs, the TES pattern, and exchanges
with the energy market.

2.3.1. Objective function
As shown in Eq. (2), the proposed two-stage stochastic op-

timization model minimizes the expected DA operation cost, in
which the first-stage decision is associated with the DA pur-
chase commitment (Pg

t ), and second-stage (recourse) expected
costs are related to the import/exports (I−t,s/I

+
t,s) imbalance and

the expected cycling cost ( f cyc
h (·)) for the batteries installed in

each house h, which is a function of the SOC vector (Xh,s).

min
T∑

t=1
πtP

g
t +

S∑
s=1

ps

{
T∑

t=1
(µ−t I−t,s − µ

+
t I+

t,s) +
N∑

h=1
f cyc
h (Xh,s)

} (2)

All of the terms in the objective function are linear, except the
one related to the cycling. This term includes the corresponding
nonlinearities associated with the chemical reactions occurring
in the batteries due to temperature changes. This terms creates a
complication in the model given the impossibility of accurately
expressing this phenomenon. The way of tackling this issue is
explained in section 3.1.

2.3.2. Load balance constraints
Constraint (3) represents power balance, in which the virtual

exchange with the wholesale market should meet the net re-
quired power by each customer of the portfolio, as also shown

in figure 1.

Pg
t + I−t,s − I+

t,s + ∆t
H∑

h=1

Pnet
t,s,h = 0,∀t,∀s (3)

Pnet
t,s,h = PPV

t,h,s − Pch
t,h,s + Pdch

t,h,s − Dt,h,s − Ht,h,s,∀t,∀h,∀s (4)

Pmin
h ≤ Pnet

t,s,h ≤ Pmax
h ,∀t,∀s,∀h (5)

It is important to note that the net power in each house, as per
(4), considers the battery flows, the PV injection, the electrical
load and the power required by the EWH, and this net power
constraint is limited by the contracted power (constraint 5) of
each customer with the distribution company at the point of
physical connection. In addition, if a household is not provided
with a TES device, the variable H becomes the same thermal
load. Equation (3) creates a link between the first stage vari-
ables and the recourse decisions, by relating day-ahead com-
mitment with the imbalance and setting of devices for each sce-
nario.

2.3.3. Devices’ constraints
Constraints (6) - (13) describe the energy state for the BESS

and the TES. Binary variables ut,h,s and vt,h,s are introduced
to avoid charging and discharging batteries at the same time.
Hence, constraints (8)-(10) introduce a mixed integer charac-
teristic into the model. Constraint (7) and (13) ensure the con-
tinuity of the storage devices from one day to another. It is
important to mention that the term including R and C (ther-
mal resistance and capacitance, respectively) in equation (12),
represents the energy dissipation in the EWH as a measure of
energy loss, as proposed in [33].

Xt,h,s = Xt−1,h,s + ηc∆tPch
t−1,h,s

−∆tPdch
t−1,h,s/η

d,∀t, t , 1,∀h,∀s (6)

X1,h,s = XT,h,s,∀h,∀s (7)

ut,h,s + vt,h,s ≤ 1 (8)

0 ≤ Pch
t,h,s ≤ P̄ch

h · ut,h,s (9)

0 ≤ Pdch
t,h,s ≤ P̄dch

h · vt,h,s (10)

Xh ≤ Xt,h,s ≤ X̄h (11)

Yt,s,h = Yt−1,s,h + ∆tHt−1,s,h
−Yt−1,s,h/RhCh − ∆tQt−1,s,h,∀t, t , 1,∀s,∀h (12)

Y1,s,h = YT,s,h,∀s,∀h (13)

Y t,h,s ≤ Yt,h,s ≤ Ȳt,h,s (14)

0 ≤ Ht,h,s ≤ H̄t,h,s (15)

Function f cyc
h (·) in equation (2) is non analytic, given that the

shape of this cost function can only be determined after ascer-
taining the SOC and the corresponding equivalent cycling, and
then determining the DOD at which each equivalent cycle oc-
curs. Hence it is difficult to model and express this non-analytic
MINLP problem, and solve it with a commercial off-the-shelf
software/solver.

The next section will explain how this phenomenon is treated
so as to reshape and decompose the mathematical formulation
in a more simple and tractable way.
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3. Solution Methodology

3.1. Battery degradation costs

Battery life in general can be expressed in terms of the actual
lifespan of the device (calendar life) or the number of achiev-
able charge and discharge cycles (cycle life) [5]. As already
mentioned, the aging process is complex and depends on the
cycling patterns, rates of charging/discharging, and consequent
chemical reactions resulting in an accumulated history of volt-
ages, currents and temperatures[3], and detailed analysis of this
set of interactions is beyond the scope of this paper. This pa-
per considers battery degradation costs as a function of the cy-
cle life intrinsic behaviour and as a function of the DOD. In
general, the maximum number of charge/discharge cycles for a
battery at a certain value d of DOD, is given by the following
expression [20]:

nd = n100d−kp (16)

where kp is a constant that depends on the life cycle - DOD
curve given by the manufacturer, and can be extracted from
curve fitting. The quantity n100 is the equivalent number of cy-
cles before failure for d = 100%.

Cycle counting for a specific DOD is identified from local
extreme points based on the SOC curve (X), and equivalent half
or full cycles are defined. This is carried out following the logic
of the Rainflow Counting Algorithm (RCA), which is explained
in detail in [23].

Once the number of cycles and their DODs for the 24h pe-
riod have been calculated, an equivalent cycling cost is obtained
according to the following expression:

f cyc(X) = Ccyc(d j) =
∑
j∈Ω

L j
Cini

n100
dkp

j (17)

where Ω is the set of DODs for the analyzed period, and Cini is
the initial cost of the battery. The information of full or half cy-
cles for each d j is given by L j, taking values of 1 or 0.5 respec-
tively. The obtained Ccyc for a specific SOC is the equivalent
cost due to the battery’s aging process, and should be added to
the total dispatch cost.

Given the impossibility of mathematically embedding the
transitions/cycling counting of the RCA that results in (17),
the problem formulated in (2)-(15) is solved with a Compet-
itive Swarm Optimizer (CSO), in which the decision variable
is the batteries’ SOC so that each time a solution is analyzed,
the RCA can be applied to calculate an equivalent degradation
cost and iteratively achieve an optimal solution. If SOCs are
generated employing this metaheuristic logic, the problem can
be decomposed into two subproblems: one of them analyzes
batteries’ SOC proposals and calculates the corresponding cy-
cling aging equivalent cost; the second subproblem calculates
the day-ahead cost due to the procurement of energy in the
wholesale market and the settings for the remaining HEMS re-
sources. Once the two subproblems are solved, the total cost
can be obtained by simply adding both results (day-ahead and
cycling cost).

Given that using a decision variable that explicitly contains
the SOC for each of the batteries would yield a T×S ×N dimen-
sional search space, in this paper we perform a virtual aggrega-
tion of the batteries in the system so as to reduce the search
space to T × S . With this approach, the dimension will be the
same even if the system contains a high number of batteries.
Given that an infinite number of possibilities exist to allocate
individual SOCs, when an aggregated SOC is proposed, there
should be a cost-efficient disaggregation/allocation of charge
for each of the batteries, and this is carried out by applying a
Storage Disaggregation Algorithm (SDA), as explained in the
next section.

3.1.1. Cycling cost subproblem, the storage disaggregation al-
gorithm

When a certain SOC (Xagg
t,s ) is determined by the CSO logic,

it has to be optimally allocated/dissagregated in each battery.
This depends on each battery’s cycling aging characteristics and
the associated SOC. This subproblem can be mathematically
formulated as follows:

min w =
S∑

s=1

N∑
h=1

f cyc
h (Xh,s) (18)

s.t.
Xagg

t,s =
∑
h

Xt,h,s,∀t,∀s (19)

When applying Lagrangian relaxation to this optimization
problem, one multiplier appears for each time step in each sce-
nario (λt,s), as shown in the function:

L =

S∑
s=1

N∑
h=1

f cyc
h (Xh,s) +

S∑
s=1

T∑
t=1

λt,s(X
agg
t,s −

∑
h

Xt,h,s) (20)

After applying optimality conditions to the langrangian func-
tion (20) (i.e., derivative with respect to Xt,h,s and λt,s), the equa-
tions obtained are:

∂L

∂Xt,h,s
=
∂ f cyc

h (Xh,s)
∂Xt,h,s

+ λt,s = 0,∀t,∀h,∀s (21)

∂L

∂λt,s
= Xagg

t,s −
∑

h

Xt,h,s = 0,∀t,∀s (22)

From equation (21) it is concluded that the derivative for each
time step and scenario is battery invariant. This is a very impor-
tant condition given that, in other words, the derivative of each
battery should be the same for any given t and s:

∂ f cyc
1 (X1,s)
∂Xt,1,s

= · · · =
∂ f cyc

h (Xh,s)
∂Xt,h,s

= · · ·

· · · =
∂ f cyc

N (XN,s)
∂Xt,N,s

= −λt,s,∀t,∀s (23)

To calculate the derivative adn given that there is no analytic
function to express f cyc

h , numerical differentiation is used in or-
der to iteratively find the Xt,h,s that leads to (23) while satisfying
(22):
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λ(h)
t,s ≈

f cyc
h (Xh,s) − f cyc

h (Xh,s + ∆Xt,h,s)
∆Xt,h,s

(24)

Superindex (h) is introduced to denote that a multiplier λ(h)
t,s

should be calculated for each battery h, and the iterative process
should correct the values Xt,h,s until the multiplier is the same
for all batteries (until λ(1)

t,s = ... = λ(N)
t,s = λt,s).

This disaggregation algorithm is initialized by selecting a
Xt,h,s in such a way that eq. (19) (same as eq. 22) is met. After
this, λ(h)

t,s are calculated by using (24). Given that Xt,h,s, in each t
and s, needs to be updated to achieve equal λ(h)

t,s for all batteries,
a deviation for each (h) is calculated by:

∆λ(h)
t,s = λ(h)

t,s − λ̄t,s (25)

where,

λ̄t,s =
∑

h

λ(h)
t,s /N (26)

Equation (25) measures the deviation of each battery’s
derivative with respect to the mean, hence, a simple heuristic
rule is used to update SOC values according to:

Xnew
t,h,s = Xold

t,h,s + φ · ∆λ(h)
t,s (27)

where φ is a tuning parameter. Once the SOC is updated for
each battery, eq. (24) is used again and the process is repeated
until all deviations for each t and s are lower than a tolerance
threshold. One very important feature of the presented method
is that in this iterative process, optimality condition (22) (equiv-
alent to constraint (19)) is always ensured, given that

∑
∆λ(h)

t,s =

0. This allows the aggregation of all batteries to equal the ag-
gregated SOC at any time and scenario.

The outline of the proposed disaggregation algorithm is
shown in figure 4. If any of the Xt,h,s exceed the boundaries
at a certain point of the SDA (to ensure constraint 11), a correc-
tion procedure is applied to maintain the feasible operation of
devices. The correction algorithm is detailed in the appendix.

3.2. Day-ahead thermal subproblem
When a certain SOC is generated with the CSO and then

disaggregated by means of the SDA, the problem in equations
(2)-(15) has to be reformulated. This subproblem is called the
Thermal Subproblem, given that once an SOC is known, the re-
maining set points that need to be determined in each household
are those associated with the TES.

First, Pch
t,h,s and Pdch

t,h,s can be easily determined by applying
the following rule:

Pch
t,h,s =

(Xt,h,s − Xt−1,h,s)/ηc, if Xt,h,s − Xt−1,h,s > 0
0, otherwise

(28)

Pdch
t,h,s =

(Xt−1,h,s − Xt,h,s)ηd, if Xt−1,h,s − Xt,h,s ≥ 0
0, otherwise

(29)

START Read input SOC: 𝑋𝑡,𝑠
𝑎𝑔𝑔

 

END 

Calculate derivative 

𝜆𝑡,𝑠
(ℎ)

 eq. (23) 

s = 1  

t = 1  

h = 1  

Use RCA to calculate 

𝑓ℎ
𝑐𝑦𝑐

𝐗ℎ,𝑠  and 

𝑓ℎ
𝑐𝑦𝑐

𝐗ℎ,𝑠 + ∆𝑋𝑡,ℎ,𝑠
  

h = N?  Calculate 𝜆 𝑡,𝑠, ∆𝜆𝑡,𝑠
(ℎ)

  

Update 𝑋𝑡,ℎ,𝑠
  with (26) 

Max{∆𝜆𝑡,𝑠}≤ 𝜀? s = S?  

s = s +1 

t = t +1 

h = h +1 

Initialize 𝑋𝑡,ℎ,𝑠
  

complying with (21)   

t = 24?  

YES 

NO 

YES 

YES 

YES 

NO 

NO 
NO 

 𝐗ℎ,𝑠 ≤ 𝐗ℎ,𝑠 ≤ 𝐗 ℎ,𝑠 YES NO 

Correct 𝜆𝑡,𝑠
(ℎ)

  

Figure 4: Flowchart of the SDA

It is worth noting that constraint (7) implies that both Pch
t,h,s and

Pdch
t,h,s have to be zero for the last time frame (t = T ) in order

to match the SOC for the first time frame of the following day.
Thus, equations (28) and (29) are valid for t : {1, ...,T − 1}.

In addition, this simple rule eliminates the Mixed-Integer
Non-Linear nature of the complete problem expressed in con-
straints (6)-(11), given that equations (28)-(29) avoid charging
and discharging at the same time, which is the reason why bi-
nary variables (ut,h,s and vt,h,s) were necessary in the initial com-
plete formulation.

Once Pch
t,h,s and Pdch

t,h,s have been ascertained, a verification of
these values is needed to determine if they are higher than the
nominal power. If so, the analyzed SOC is infeasible and a
penalization of this proposal is required. This penalization is
calculated as follows:

Z =
S∑

s=1

N∑
h=1

T∑
t=1

[(Pch
t,h,s − P̄ch

h ) · H(Pch
t,h,s − P̄ch

h )−

(Pdch
t,h,s − P̄dch

h ) · H(Pdch
t,h,s − P̄dch

h )]

(30)

where H(·) denotes the Heaviside step function. From (30),
whenever Pch

t,h,s or Pdch
t,h,s are outside the boundaries, Y measures

the proportion of the limit violation; and if feasible operation is
achieved, then Z = 0.

Once the values of Xt,h,s, Pch
t,h,s, Pdch

t,h,s and Z are known, the
model (2)-(15) can be rewritten in the following way as a linear
programming problem:
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min z =
T∑

t=1
πtP

g
t +

S∑
s=1

ps

{ T∑
t=1

(µ−t I−t,s − µ
+
t I+

t,s)
}

+ βZt
(31)

s.t.
Constraints : (3) − (5), (12) − (15) (32)

where β is a penalization factor.
For each specific SOC proposal generated by the metaheuris-

tic, the corresponding fitness function is calculated by adding
the results from (18) and (31):

f itness = w + z (33)

where w is obtained after using the SDA and z after solving
(31)-(32). In order to iteratively find an SOC that returns the
minimum cost, the CSO metaheuristic is used. This is because
of its ability to handle real variables and its convenience for in-
tegrating the two subproblems described in the previous para-
graphs.

It is worth noting that the two-stage characteristic is main-
tained in both subproblems, given that the variable for the CSO
contains the SOC for each of the recourse decisions, and that
the thermal subproblem is a two-stage linear problem contain-
ing the information for the remaining second stage variables.

3.3. Competitive Swarm Optimizer

The CSO algorithm is a metaheuristic optimization technique
based on population behavior, first proposed in 2015 [41] and
suitable for large optimization problems, following some of the
principles of Particle Swarm Optimization. The algorithm as-
sumes the existence of M particles. These particles move itera-
tively in an R-dimensional search space, where the i-th particle
can be represented by a vector xi = (xi1, ..., xiR). The velocity
of each particle is denoted by vi = (Vi1, ...,ViR).

For this algorithm, M/2 pairs of particles are randomly
formed, ensuring that each particle is selected only once. Each
pair competes, and the particle with the best fitness function is
designated as the winner (xw

m(k)) and promoted into the next it-
eration. The loser (xl

m(k)) has to update its position and velocity
by learning from the winner.

For the m-th competition (m ∈ [0,M/2]), the loser’s particle
velocity and its position for iteration k+1 are updated according
to (34) and (35):

V l
m(k + 1) = r1V l

m(k) + r2(xw
m(k) − xl

m(k))
+ψr3(x̄m(k) − xl

m(k)) (34)

xl
m(k + 1) = xl

m(k) + V l
m(k + 1) (35)

where x̄m(k) is the mean position of the particles in iteration k;
and r1, r2 and r3 are three random vectors with uniform distri-
bution in the range (0,1). Finally, ψ is a parameter that controls
the influence of x̄m(k).

The algorithm ends when at least one of the following criteria
is met: 1) a maximum number of iterations is achieved, or 2)
a maximum number of iterations without improving the fitness
function is achieved.

To adapt the optimization problem described in 2 to be solved
by the CSO, the codification of the particles must be deter-
mined. In this case, each particle refers to an aggregated SOC
for the batteries, which is composed of T ×S values, associated
with the time steps in each scenario for the day-ahead dispatch.
Each particle must be assigned with a fitness function according
to equation (33). This means that for each particle in the swarm,
the cycling and thermal subproblems described in subsections
3.1.1 and 3.2 need to be solved.

The initialization of the swarm is performed by randomly as-
signing SOC values to each specific time frame and scenario.
The stop criterion used in this work is related to consecutive
cycles without improving the fitness function. The complete
outline of the proposed algorithm is shown in figure 5.

START 
Random swarm 

initialization and fitness 
calculation 

¿Stop criteria 
met? 

m = 0  

Obtain cycling 
cost with SDA 

Solve thermal 
subproblem from 

(31)-(32) 

Promote winner to 
the next iteration 

m = m +1 

Calculate fitness 
with (33) 

m = M/2?  

NO 

YES 

END 

Pair two particles 

Include updated 
particle in the 

swarm 

Update loser’s 
velocity and 

position with (34) 
and (35) 

For the updated 
loser’s position 

YES 
NO 

Figure 5: Flowchart of the CSO algorithm used

3.4. Outline of the complete solution methodology

Figure 6 shows an scheme of the complete methodology for
the solution of the MINLP problem. The problem stated in
(2)-(15) presents two main difficulties: 1) the integer nature
of the variables that describe the charging/discharging mode of
the batteries and 2) the difficulty of calculating cycling aging
cost with a direct mathematical expression. To face these dif-
ficulties, the decomposition approach is used, in which a CSO
generates proposals of aggregated SOC, and for each particle
during the CSO evolution, two subproblems are solved: 1) a
cycling subproblem, and 2) a thermal subproblem. The cycling
subproblem takes as input the aggregated SOC of each particle
and assigns a SOC for each of the batteries by using the SDA
explained in subsection 3.1.1. When the dissagregated SOC is
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found, this is used as known data to determine the remaining
operation point of the HEMS with the thermal subproblem.

This way, the iterative process of the CSO allows to find a so-
lution that contains all the information regarding device settings
and energy commitment with the market, to achieve minimum
operation costs.

Complete MINLP 
(Section II.C) w 

  

Cycling 

subproblem 

(section III.A) 

Thermal 

subproblem 

(section III.B) 

Minimize (2) 

Subject to: (3)-(15) 

z 

Minimize (31) 

Subject to: (32) 

Solved with the SDA 

   fitness = w + z  (33) 

iteratively solved 

with CSO  
(section III.C) 

Decomposition 

Figure 6: Scheme of the decomposition approach

4. Results

4.1. Input data
The proposed algorithm is coded in Python. The electric base

load is generated using the logic explained in section 2.1 for the
25 houses in the Evora demonstrator. The location of the HEMS
in the real life distribution network and the resources present in
each house are shown in figure 7. The 25 houses correspond
to two different LV rural networks, A and B, comprising 16
and 9 households respectively and containing the distribution of
resources shown in the figure. In total, there are 25 PV panels,
16 BESS and 15 EWHs. The testcase is composed only by
the HEMS and the control capabilities that an aggregator has
on the device settings. The operation and control of the MV
and LV networks is carried out by the DSO and are not part of
the aggregator’s capabilities or responsibilities. A normalized
thermal load pattern is taken from [42].

Electricity prices are taken from the EPEX-European Power
Exchange database [43], and a persistence model is used to
forecast the day-ahead and imbalance prices, consisting in as-
suming the last known data for the same weekday. This is
done to consider a realistic case in which an aggregator, when
defining day-ahead purchases, does not have the settled prices.
Hence, by taking the prices for the same day in the previous
week, we obtain available input data to make decisions.

The charging and discharging efficiency of the batteres is as-
sumed to be 95%. 15 batteries are rated 3kW / 3.3 kWh, and the
remaining battery is a 10kW / 20 kWh device. All PV panels are
rated 1.5 kWp. The cycling behavior is based on the li-ion bat-
tery information available on the market, and the curve fitting
values to obtain the relation of cycle life versus DOD are taken
from its technical specifications [44]. The coefficients obtained
are n100 = 5135.7 and kp = 1.759.

HEMS in LV Network A 

Solar panel 

Battery  

Electric Water Heater 

Solar panel 

Battery 
Solar panel 

Electric Water Heater 

MV Network 

Location of 
HEMS in LV 
Network A 

Location of 
HEMS in LV 
Network B 

HEMS in LV Network B 

Figure 7: Composition and location of the proposed 25-household HEMS
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Figure 8: Convergence evolution the disaggregation algorithm under 100 ran-
dom cases

The battery’s initial cost is EUR 500 e /kWh, according to
the latest IRENA information on residential storage systems for
European countries [45].

The rated power/energy for all EWH is 1.5 kW / 3 kWh
and thermal resistance/capacitance are 568 (◦C/kW)/0.3483
(kWh/◦C) in line with [33].

4.2. Performance of the SDA
Before using the complete algorithm as outlined in Fig. 5,

tests are carried out to analyze the adequacy of the algorithm
proposed in section 3.1.1 to optimally allocate the individual
SOC for each battery. Two tests are performed: first, 100 ran-
domly generated aggregated SOC patterns are subject to the dis-
aggregation process with random initialization, in order to de-
termine the convergence capabilities by analyzing the evolution
of ∆λmax; second, a specific random SOC is selected and sub-
ject to 100 tests to prove that the algorithm converges to close
values, by measuring the evolution of the total cycling cost.

The converge criterion is set at |∆λmax| ≤ 0.001. As seen in
figure 9, for all the cases run, the algorithm reaches low values
of |∆λmax| after a few iterations. In addition, the convergence is
achieved in 32 iterations on average for the 100 cases.

When one particular aggregated SOC is selected to be ana-
lyzed multiple times under different initial conditions, it is ex-
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Figure 9: Convergence evolution the disaggregation algorithm under 100 ran-
dom cases

pected that the minimum total cycling cost obtained will be the
same or at least close for each simulation, given the non-linear
characteristic of the cycling function. Figure 8 shows the evolu-
tion of the total cycling cost for one particular aggregated SOC
under 100 different initial conditions. The minimum and max-
imum obtained cycling costs are 0.96 e and 1.02 e , respec-
tively; and the mean is 0.98. This shows that the algorithm is
robust towards different initialization values and that, for the
specific case of the unit e , only one decimal place is enough to
express currency in real-life applications, without losing sensi-
tive information for DA electrical markets.

4.3. Comparative analysis of flexibilities under deterministic
approach

To analyze the impacts on the battery operation when differ-
ent sources of flexibility are taken into account, a deterministic
model is run using quantile 50% (median) forecasts for PV and
load, during the complete month of November 2015, given the
availability of the data. All presented values correspond to a
daily average resulting from running the 30 independent DA
models for each day. Considering only PV injection and no
battery or thermal storage, results in an average cost of e 7.0,
which we calle the base case, for comparison purposes. Differ-
ent cases are tested to assess how each technology contributes
in reducing costs, as shown in the table below.

Table 2: Cost of resource management for the deterministic scheme. Average
daily costs. *Includes cycling effects in the optimization. **Calculated after
the optimization

Used flexibility Equiv. cost Total operation Improv.
Case BESS TES cycling [e ] cost [e ] w.r.t base case
Base No No N.A. 7.0 N.A.
1* Yes No 0.1 6.8 2.15%
2* Yes Yes 0.1 5.7 18.7%
3 Yes No 3.8** 8.6 -22.7%
4 Yes Yes 3.7** 8.4 -20.9%

Cases 1 and 2 in table 2 correspond to the problem detailed in
equations (2)-(15), which considers the cycling equivalent cost
within the optimization model. This approach allows to deter-
mine device settings and energy exchanges such that the total
operation cost (energy purchases + equivalent cycling aging)

is minimized at once. Concretely, case 1 disregards the pos-
sibility of thermal storage and only considers electrochemical
storage. When this independent control of the thermal storage
is not allowed, a 2.15% cost reduction is achieved by using only
the battery to minimize the cost. When thermal and power stor-
age are permitted (case 2) to be controlled independently (but
coordinated), a greater cost reduction is obtained, showing that
including thermal storage as another flexibility leads to a de-
crease in the cost. Case 2 shows a reduction of 18.7 % with
respect to the base case.

The cost evolution for the complete month for all of the pro-
posed cases can be found in figure 10. The cost evolution in
the figure shows that not only are the average values (in table 2)
for case 2 lower, but that improvements are achieved for each
of the analyzed days. The costs savings compared to the base
case, range from 14.0% to 32.5% with a median of 18.5%.

In order to demonstrate the value of taking into account the
cycling cost embedded in the model, (as done for cases 1 and 2),
two more cases are proposed, in which the optimization model
only attempts to minimize the energy purchased (first two terms
in objective function (2)), and the battery cycling cost is disre-
garded and only calculated afterwards with the obtained SOC.
This analysis corresponds to cases 3 and 4. Once again, it is
shown that including TES adds flexibility to the model and al-
lows cost reduction. However, these cases show that when cy-
cling is not explicitly considered in the optimization model, the
batteries are subject to deeper cycling, resulting in higher cy-
cling aging and leading to higher total costs when compared to
cases 1 and 2. The most critical case corresponds to an opera-
tion cost of 8.6 e (case 3). It can be concluded that if cycling
cost is ignored in the optimization model, batteries can cycle
without any constraint of frequency or depth, which results in
suboptimal operating points for the aggregator.
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Figure 10: Evolution of daily cost for the deterministic model under the ana-
lyzed cases and for the whole month of November

4.3.1. Analysis for one single day
For the sake of example, one typical day is analyzed by se-

lecting the aggregated SOC pattern for the four cases, shown
in figure 11. As stated before, cases 3 ( ) and 4 ( )
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present deeper and more frequent cycling of batteries than cases
1 ( ) and 2 ( ). The coordinated scheduling of BESS and
TES with the complete optimization model (case 2) represents
the best improvement with respect to the base case given the ef-
ficient scheduling of batteries and the full exploitation of BESS
and TES capabilities. The energy purchase for this determin-
istic case is shown in figure 12 ( ) and it can be seen that
around noon the energy requirements are minimized due to PV
availability; on the other hand, purchases increase during late
night and morning hours.
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Figure 11: Aggregated SOC for deterministic cases 1 ( ), 2 ( ), 3
( ) and 4 ( )
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Figure 12: Energy purchased on the energy market for the deterministic ( )
and stochastic case ( )

4.4. Stochastic management of resources
When the complete two-stage stochastic optimization model

is solved for each of the 30 days, the first-stage variable ob-
tained determines the day-ahead purchase commitment on the
wholesale market. This two-stage model is run by defining the
nine second-stage scenarios as explained in section 2.2.

The average expected daily cost of the stochastic solution
(SS) is 6.3 e and the associated cost for each of the 30 days is
presented in figure 13 ( ). This cost is the result of the DA
commitment and the expected imbalance settling cost plus the
expected battery cycling cost, for each of the nine scenarios, as
per equation 2. To test the adequacy of the presented stochastic
formulation, VS S (Value of Stochastic Solution) index is used
[46].

To calculate the VS S , which measures the cost of ignoring
uncertainty to make a decision, a quantity called the expected
value problem (EVV) needs to be determined. The EVV con-
sists in solving the stochastic problem using the second stage
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Figure 13: Evolution of daily cost for the deterministic case under the analyzed
cases and for the whole month of November
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Figure 14: Power purchase boxplot for each DA timeframe

containing all the necessary scenario information, but fixing
the first-stage variables with the result of the deterministic so-
lution. This allows us to find a second-stage optimal solution
as a function of the first-stage variables obtained using the cen-
tral forecast (quantile 50%). Then, the index is calculated by:
VS S = EVV − S S . The value of EVV for the complete month
is shown in figure 13 ( ). The VSS is positive each day, as
shown in curve ( ). Average values VS S mean and VS S %mean

are afterwards calculated using:

VS S mean = 1/30
30∑
1

(EVVi − S S i) (36)

VS S %mean = 1/30
30∑
1

EVVi − S S i

EVVi
· 100% (37)

As a result, VS S mean = 0.38 e . By using equation (37),
the stochastic approach allows a reduction of operating costs
by VS S %mean = 5.8% on average through the analyzed month,
which is also the mean value of the curve ( ). The VSS
gives an idea of how well the optimization under uncertainty
performs. In this case, the two-stage stochastic optimization
represents the best option, given that it allows a reduction of
the expected average cost when compared to the deterministic
approach for taking the DA purchase decisions (given by EVV).

The boxplot distribution created by the 30 day-ahead pur-
chase commitments in each time frame, is shown in figure 14.
From the figure it can be seen that interaction with the grid de-
creases in the time frames around noon, given the available
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Figure 15: Imbalance boxplot for each scenario in the stochastic optimization

PV. Concretely, the 12h and 13-15h time frames present re-
spectively 22 and 23 days on which zero kW purchased on
the wholesale market. In addition, time frames around mid-
night, such as the interval 23h-3h, indicate a low dispersion of
purchased energy throughout the whole month, showing a ten-
dency for close committed purchase values independently of
the day.

4.4.1. Analysis of a single day
for the sake of example, and taking the same typical day used

for the deterministic case, first-stage purchase commitment is
shown in figure 12 ( ).

From the figure it can be seen that interaction with the grid
decreases in the time frames around noon, given the available
PV. In addition, interaction is also zero for the 19, 20 and 23
time periods; in all time frames, this energy procurement is
lower than the purchase commitment for the deterministic case
( ).

Given that this variable is fixed for all scenarios, second-
stage imbalances allow feasible operation of the system in such
a way that the expected cost is minimized. For this study case,
imbalance is required at different time steps and for all of the
second-stage scenarios, as shown in figure 15. The boxplots
show that additional energy (negative imbalance) must be pur-
chased in order to overcome shortages for the realizations of the
different scenarios. In particular, scenarios 1, 4 and 7 present
higher median and third quartile. These imbalance needs in
fact, correspond to the scenarios with the lowest levels of PV
production, so the aggregator has to purchase additional energy
from the wholesale market to offset the energy imbalance.

Regarding the accumulated SOC for all 16 batteries in the
system, it can be seen from figure 16 that there is a pattern for
all nine scenarios and that storage generally increases around
5h and 16h. It is interesting to point out that scenarios 4
and 7 tend to have higher SOC just before noon. This is
explained by the fact that these scenarios feature low levels of
PV, hence the energy discharge is treated in a more conserva-
tive way. The lowest degradation value is related to scenario 1
( ), which has minimum levels of both load and PV. From
the figure it can be observed that the SOC generally exhibits
values in between those in the scenarios, thus avoiding sudden
changes in stored energy.
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Figure 16: Aggregated SOC for each scenario in the stochastic approach

In this particular case, the found VS S = 0.45e , EVV = 7.85
e and the expected stochastic cost is 7.4 e . This means that,
on this particular day, the stochastic approach allows an average
reduction of operational costs of 5.7% compared to a decision
made by using the median as the expected value for load and
PV.

4.5. Computational remarks

4.5.1. Computational performance of the CSO for the 25-
household testbed

To test the performance of the CSO, several runs were car-
ried out for a specific day in order to determine the quality and
consistency of the obtained solutions. Tests consist in running
the algorithm 20 times for different population sizes, setting the
stop criteria to 30 iterations without improving the best solu-
tion. In addition, the maximum number of iterations is set to
300. In these conditions, the CSO is run, and after each simula-
tion the information saved is: best solution and computational
time in achieving the best solution. In addition, the performance
of the implemented CSO is compared with the performance of a
Particle Swarm Optimization (PSO) algorithm in order to have
another swarm based metaheustic comparison. The values of
the parameters used for the PSO are 0.9, 2.0 and 2.0, for iner-
tia, cognitive and social parameters, respectively.

Table 3 shows the results for both CSO and PSO and the
different population sizes. It can be observed that the CSO
presents lower computational times for solutions close to those
ones obtained with the PSO. Although the average best solu-
tions obtained with the PSO are lower than those obtained with
CSO, the computational times may be prohibitive for day-ahead
decisions, given the need to run the algorithm for several hours.
In contrast, the CSO achieves good quality and stable solutions
in the range of 6500-12000s for population sizes of 30 and 50
particles.

The faster evolution of the CSO is explained by the constant
update of the loser’s velocity and the permanence in the swarm
of the best paired particles, which allows good quality solutions
to be maintained in each iteration and promoted into the next
generational cycles.

4.5.2. Performance of the CSO for larger test systems
To test the performance of our algorithm for a larger number

of households to be aggregated, four additional test cases with
50, 100, 150 and 226 households (referenced as A-50, A-100,

13



Table 3: Computational performance of the CSO and PSO for one typical day
in November

CSO (ψ = 0.3) PSO
Population 30 50 80 30 50 80
Best solu-
tion [e ]

5.29 5.27 5.26 5.24 5.24 5.22

Best sol.
range [e ]

5.29-
5.37

5.27-
5.31

5.26-
5.34

5.24-
5.31

5.24-
5.27

5.22-
5.26

Best sol.
mean [e ]

5.33 5.30 5.28 5.28 5.26 5.24

Best sol.
SD [e ]

0.02 0.02 0.02 0.02 0.01 0.01

Mean time
[s]

6867 11103 17194 13455 25176 41351

Time
range [s]

6571-
7262

9750-
12087

16121-
18547

12750-
14280

23574-
26330

38687-
43111

Time SD
[s]

217 662 765 538 947 1624

A-150 and A-226 respectively) that belong to the same neigh-
bourhood in Evora, Portugal were included. All of the buildings
are within a circle of 250 m radius, mainly residential, with
some restaurants and stores.Although PV, ESS and EWH in the
real life are only installed in the 25 households of the original
testbed, we mirrored the distribution of resources as outlined in
figure 7 and we assigned a proportional number of resources in
each case, based on the original 25-household HEMS.

For this performance analysis, the CSO was run 20 times
for each test system with the following parameters: 30-particle
population, ψ = 0.3 and stop criteria set to 30 iterations without
improving the best solution and the maximum number of itera-
tions is set to 300. The results are condensed in the following
table:

Table 4: Computational Performance for different test systems
Test system Best sol. mean (SD) [e ] Mean time (SD) [s]

A-50 -1.72 (0.05) 7811 (2053)
A-100 -3.36 (0.04) 9767 (2941)
A-150 -5.05 (0.05) 10372 (3809)
A-226 -7.62 (0.08) 11523 (2794)

As expected, the results show that the computational time in-
creases when the number of households to aggregate is larger.
However, the computational times for the larger test system
(A-226 households) remains reasonable for day-ahead deci-
sion making with an average of 11523 s, and ranging from
5590 to 14632 s. This is an important result, provided that it
demonstrates that the algorithm can deal with larger aggrega-
tion without leading to prohibitive computational burden. Neg-
ative results of the objective function indicate that management
of larger number of resources leads to increased profits.

There are two main reasons to explain why the presented ap-
proach can withstand the proposed test systems within reason-
able times: 1) the size of each particle is determined by the
time step and the number of scenarios, but is independent of
the number of batteries in the system. This allows to keep the
search space of the CSO invariant and battery-independent; 2)
the SDA returns the charging/discharging pattern for each bat-
tery; this information is used by the thermal subproblem, with

the advantage that this subproblem is a linear programming
problem, thus avoiding explosion of problem size and binary
variables.

5. Conclusions

A methodology for aggregation and management of re-
sources in HEMS is proposed, in which the coordination of
thermal and electrical storage shows that reduced operation
costs can be achieved. In addition, when considering the cy-
cling aging cost there is a change in the devices settings to avoid
deeper and frequent cycling, while maintaining operation at a
minimum cost.

The proposed scheme, which can also be used to analyze
other sources of flexibilities, configurations and services, shows
that taking cycling into account also avoids operating batteries
close to maximum/minimum values, which can lead to employ-
ing flexibility to match variations in load or available resources
in real-time operation.

The two-stage stochastic approach, shows the importance of
taking into account uncertainties arising from PV and load, in
order to avoid higher expected operation costs in comparison
to deterministic approaches. In our case, the benefit of using a
stochastic approach is demonstrated by means of the VSS. The
average monthly reduction in operation cost measured by the
VSS is 5.8%, and the interval of reduction ranges from 3.6% to
9.0%. These results show that considering a stochastic model
joint with battery cycling leads to savings when compared to
deterministic approaches.

The same decomposition presented in this paper, can be used
not only in HEMS, but in other battery based applications. This
framework can also fit into models in which other agents with
batteries at the DSO/TSO levels are willing to participate in
energy and ancillary markets. In all cases, despite the agent,
the ownership or the battery size, the decomposition approach
will still be valid.

For larger aggregation of resources (i.e. thousands or tens
of thousands) other solution techniques can be explored to de-
crease search space and avoid the computational burden of sce-
nario based approaches, i.e. robust optimization and explicit
modeling of the cycling aging by linearization.

The presented results could also be further explored by in-
cluding intra-day operation, distribution grid services to be of-
fered to the grid, and aggregation of a large set of households
to diversify the portfolio and offer ancillary services.
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Appendix A.

When performing the SDA and after updating the variables
by using (27), some of the variables may exceed the bound-
aries. If this happens, a correction procedure involves each mul-
tiplier λ( j) associated to each violating variable x j. Let ΛY be
the set that contains the violating variables, ΛN the set of the
non-violating variables, and x∗j indicates the minimum or the
maximum allowed value for x j. For each variable in ΛY , a cor-
rection that complies with the following equation needs to be
carried out:

x j + φ · ∆λ( j) = x∗j (A.1)

Reorganizing the terms we obtain the following:

x∗j − x j = φ
( 1

N

∑
i∈ΛN

λ(i) +
1
N

∑
i∈ΛY

λ(i) − λ( j)
)

=
φ

N

∑
i∈ΛY
i, j

λ(i) +
φ

N

∑
i∈ΛN

λ(i) + (
φ

N
− 1)λ( j)

If all of the equations in ΛY are written, a linear system of
the type A · λnew = b is generated, where A is a square matrix, b
is a column vector and λnew is the vector with the multipliers in
ΛY that have to be corrected. To solve this system, the elements
of A are calculated as follows:

A j j =
φ

N
− 1 (A.2)

and,

A ji =
φ

N
(A.3)

where A j j are the elements in the diagonal and A ji the ele-
ments outside the main diagonal. Elements of b, are calculated
with the following expression:

b j = x∗j − x j −
φ

N

∑
i∈ΛN

λ(i) (A.4)

After the linear system is solved, a set of multipliers is obtained
such that the update of x j, ∀ j ∈ ΛY is not out of bounds.
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